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Abstract: The Gompertz distribution of lifetimes was introduced in 1825 and a probability model was derived for studying human

mortality. In this paper, an attempt has been made to Bayesian fitting of Gompertz distribution. The Bayesian approach is implemented

with R and JAGS for analytic and simulation tools. Our main target is to explore the use of Laplace Approximation for Bayesian

analysis. A real right censored data is used. Finally, the model is compared with Weibull distribution using Bayesian prediction tools.
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1 Introduction

For many statisticians analysis of survival data has become a topic of considerable interest. In this paper we consider the
real right censored data and deal in inference for important parametric models - Gompertz and Weibull. Among several
survival models we used two models that quite effectively analyze skewed data set and give best fit. The analysis of time
to event data is, generally called survival analysis. The event can be the development of disease, response to a treatment,
relapse, or death. Survival data are collected over a finite period of time and consequently the failure times may not be
observed for all individuals, which results censored data. The problem of analyzing time to event arises in a number of
applied fields, such as medicine, biology, public health, economics and demography. Bayesian analysis of survival data
has received much recent attention due to advanced computational and modeling techniques. Bayesian methods are now
becoming quite common for survival data analysis and have made their way into the medical and public health arena. Our
main target is to explore the use of Laplace Approximation for Bayesian analysis. A Bayesian approach may help using
MCMC techniques and available softwares e.g. LaplacesDemon and JAGS. The function of LaplaceApproximation of
LaplacesDemon approximates the posterior results analytically and then after convergence it gives simulated results using
sampling importance resampling (SIR). Another important function is LaplacesDemon, which maximizes the logarithm
of unnormalized joint posterior density using one of the Morkov chain Monte Carlo(MCMC) algorithms. JAGS is Just
Another Gibbs Sampler that was mainly written by Martyn Plummer. R2jags is an R package that allows running JAGS
models from within R. R2jags package is used for the simulation from posterior density. Thus, Bayesian analysis of
survival models have been made with following objectives:

–To define a Bayesian model, that is, specification of likelihood and prior distribution.
–To write down the R and JAGS code for approximating posterior densities with LaplaceApproximation and simulation
tools.

–To illustrate numeric as well as graphic summaries of posterior densities.

2 The Gompertz Distribution

The Gompertz distribution (1825) is generally used as survival model. It was introduced as a parametric model as an
approximation to the true law of mortality. Gompertz worked closely with data on mortality, and developed a
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theoretical basis of his distribution. The probability density function (pdf) of Gompertz distribution is given by

f (t) = bexp(t/θ )exp(bθ (1− exp(t/θ ))), 0 < t < ∞ (1)

where b > 0 is shape and θ > 0 is scale parameter.
The cdf of Gompertz distribution is given by

F(t) = 1− exp(bθ (1− exp(t/θ ))) (2)

survival function is
S(t) = exp(bθ (1− exp(t/θ ))) (3)

and hazard function is
h(t) = bexp(t/θ ) (4)

2.1 Functions for Gompertz distribution in R

1. R code for probability density function is

dgomp<-function(x,b,theta){

d<-b*exp(x/theta)*exp(b*theta*(1-exp(x/theta)))

return(d)

}

2. R code for cumulative distribution function is

pgomp<-function(x,b,theta){

p<-1-exp(b*theta*(1-exp(x/theta)))

return(p)

}

3. R code for random generation function is

rgomp<-function(n,b,theta){

u<-runif(n)

x<-theta*log(1-(log(1-u)/b*theta))

return(x)

}

4. R code for survival function is

sgomp<-function(x,b,theta){

s<-exp(b*theta*(1-exp(x/theta)))

return(s)

}

5. R code for hazard function

hgomp<-function(x,b,theta){

h<-dgomp(x,b,theta)/sgomp(x,b,theta)

return(h)

}

3 Weibull Distribution

Weibull distribution plays very important role in survival analysis, that introduced by W. Weibull in 1951 in the context
of industrial reliability testing. The Weibull distribution has been used extensively in medical studies also.
The probability density function (pdf) of Weibull distribution is given by

f (t) = (b/λ )(t/θ )(b−1)exp[−(t/θ )b], 0 < t < ∞ (5)
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Fig. 1: The pdf, cdf, survival and hazard curves of Gompertz distribution for θ =1 and for different values of b.

where b > 0 is shape and θ > 0 is scale parameter
with cumulative distribution function is

F(t) = 1− exp[−(t/θ )b] (6)

survival function is

S(t) = exp[1− (t/θ )b] (7)

and hazard function is

h(t) = (b/θ )(t/θ )(b−1) (8)
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Fig. 2: The pdf, cdf, survival and hazard curves of Weibull distribution for θ =1 and for different values of b
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4 Bayesian Analysis of Gompertz Model

4.1 The Model

The likelihood function of right censored data is given by

L =
n

∏
i=1

[ f (yi)]
δi [S(yi)]

1−δi (9)

where δi=0 is censored and δi=1 is uncensored.

So, the likelihood function is given by

L =
n

∏
i=1

[bexp(t/θ )exp(bθ (1− exp(t/θ )))]δi [exp(bθ (1− exp(t/θ )))]1−δ1

4.2 Priors

Let Y ∼ Gompertz(b,θ ). Prior probabilities are specified for b and β :

b ∼ hal fCauchy(α)

f (b) =
2×α

π(b2 +α2)
, b > 0

The half-Cauchy distribution with scale parameter α= 25, used as a noninformative prior distribution for shape
parameter. [4] suggested to use uniform or half cauchy if more information is essential. For α = 25, the half-Cauchy
distribution becomes almost flat(see FIGURE 3).
For positive parameter θ , logarithm link function is used to spread them on the whole real line, i.e.

logθ = Xβ

θ = exp(Xβ )

where X is model matrix , β is the regression coefficients.

Parameter β is assigned a weak informative Gaussian prior probability distribution. Assuming that β ′
j is are

independently distributed as normal with mean=0 and standard deviation=1000, so that a flat prior can be obtained as
(see FIGURE 3)

β j ∼ N(0,1000).

Now, the joint posterior density is

p(b,β |y,X) ∝ L(y,X |b,β )× p(b)× p(β )

∝
n

∏
i=1

[bexp(t/θ )exp(bθ (1− exp(t/θ )))]δi [exp(bθ (1− exp(t/θ )))]1−δ1

× 2×α

π(b2 +α2)
×

J

∏
j=1

1√
2π × 103

exp

(

−1

2

β 2
j

103

)

(10)

Marginal for b

p(b|y,X) =
∫ ∞

0
p(b,β |y,X)dβ (11)

Marginal for β

p(β |y,X) =

∫ ∞

−∞
p(b,β |y,X)db (12)

Closed forms for these densities are not available, so numerical integration or MCMC methods are required to evaluate
them. Three methods can be used to solve the complex numerical integration including censoring mechanism by using
LaplaceApproximation, LaplacesDemon and Jags functions.
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Fig. 3: Weakly informative priors for the parameters

4.3 Prognosis for women with breast cancer data

Breast cancer is one of the most common forms of cancer occurring in women living in the Western World. Survival data
set is carried out at the Middlesex Hospital, documented in Leathem and Brooks (1987) and discussed by [1], was to
evaluate a histochemical marker that discriminates between primary breast that has metastasised and that which has not.
The marker under study was lectin from the albumin gland of the Roman snail, Helix pomatia, known as Helix pomatia
agglutinin or HPA. The marker binds to those breast cancer cells associated with metastasis to local lymph nodes, and the
HPA stained cells can be identified by microscopic examination. The data given in table 1 refer to survival times in months
of women who had received a simple or radical mastectomy to treat a tumor of Grade II, III or IV, between January 1969
and December 1971. In the table, the survival times of each woman are classified according to wether their tumor was
positively or negatively stained. Censored survival times are labelled with an asterisk.

Table 1: Survival times of women with tumours that were negatively or positively stained with HPA.

Negatively Stained Positively Stained

23 5 68

47 8 71

69 10 76⋆

70⋆ 13 105⋆

71⋆ 18 107⋆

100⋆ 24 109⋆

101⋆ 26 113

148 26 116⋆

181 31 118

198⋆ 35 143

208⋆ 40 154⋆

212⋆ 41 162⋆

224⋆ 48 188⋆

50 212⋆

59 217⋆

61 225⋆
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4.4 Implementation using LaplacesDemon

Bayesian modeling of Gompertz(b,θ ) distribution and fitting model using LaplaceApproximation and
LaplacesDemon functions.

4.4.1 Creation of data for LaplacesDemon

The function of LaplaceApproximation requires data that is specified in a list. Response variable or survival times of
women with tumors that were negatively and positively stained with HPA. Since an intercept term will be included, a
vector of 1’s is inserted into model matrix X, naming of predictors, naming of the parameters, information regarding
censoring.

require(LaplacesDemon)

y<-c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,

5,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,78,

105,107,109,113,116,118,143,154,162,188,212,217,225)

x1<-c(rep(0,13),rep(1,32))

censor<-c(1,1,1,0,0,0,0,1,1,0,0,0,0,rep(1,18),0,0,0,0,1,0,1,1,rep(0,6))

X<-cbind(1,x1)

J<-2

mon.names<-c("LP","b")

parm.names<-as.parm.names(list(beta=rep(0,J),log.b=0))

pos.beta<-grep("beta",parm.names)

pos.b<-grep("log.b",parm.names)

MyData<-list(J=J,X=X,mon.names=mon.names,parm.names=parm.names,

pos.beta=pos.beta,pos.b=pos.b,y=y,censor=censor)

Here J=2 independent variables (including the intercept), one for each column in model matrix X. mon.names is the
monitored variables of log posterior LP and b. The grep function is used to populate pos.beta and pos.b.
pos.beta and pos.b explain the position of beta and b respectively in parm.names. However, there are 3
parameters including log.b are specified in a vector parm.names. Atlast, all these things are combined in a list of
MyData.

4.4.2 Model Specification

To use LaplacesDemon package, Bayesian model for which likelihood is specified (e.g., [8]).
We must specify a model

y ∼ Gompertz(b,θ )

with log-link function

logθ = Xβ .

The response variable, y follows Gompertz distribution with shape parameter b and scale parameter θ , the scale parameter
θ is equal to the cross product of design matrix X and the parameter β . Prior probabilities are specified for b and β are

β j ∼ N(0,1000), j = 1, . . . ,J

b ∼ HC(25).

The large variance indicates a lot of uncertainty about each β ′
j and hence is a weakly informative prior distribution.

Similarly, half-Cauchy is weakly informative prior for b [15].

The full Bayesian model code for the regression analysis is described below:
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Model<-function(parm,Data)

{

## Parameters

beta<-parm[Data$pos.beta]

b<-exp(parm[Data$pos.b])

# Log(Prior Densities)

beta.prior<-dnormv(beta,0,1000,log=TRUE)

b.prior<-dhalfcauchy(b,25,log=TRUE)

## Loglikelihood

mu<-tcrossprod(beta,Data$X)

theta<-exp(mu)

LL<-censor*log(b)+(y/theta)+(b*theta*(1-exp(y/theta)))

+(1-censor)*(b*theta*(1-exp(y/theta)))

LL<-sum(LL)

## log-Posterior

LP<-LL+beta.prior+b.prior

#LP<-LL

LP<-sum(LP)

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,b),

yhat=rgomp(length(y),b,theta),parm=parm)

return(Modelout)

}

4.5 Initial Values

LaplaceApproximation requires a vector of initial values for estimation of parameters. When all initial values are set
to zero LaplaceApproximationwill optimize initial values using trust region algorithm. Generally, parameter
beta has been set equal to zero and parameter log.b has been set equal to log(1), which is also zero. However, instead
of taking this default guess we have taken regression coefficients obtained from fitting lm function for

log(y) = β0 +β1x1.

Initial.Values <-c(coef(lm(log(y)˜x1)),log(1))

4.6 Fitting With LaplaceApproximation

The LaplaceApproximation is a family of asymptotic techniques used to approximate the integrals. It
approximates accurately unimodal posterior moments and marginal posterior distributions in many cases. This function
deterministically maximizes the logarithm of unnormalized joint posterior density with one of several optimization
algorithms. The goal of LaplaceApproximation is to estimate the posterior mode and variance of each parameter.
The function and arguments are as follows :

LaplaceApproximation(Model, parm, Data, Interval=1.0E-6,

Iterations=100, Method="SPG",Samples=1000, CovEst="Hessian",

sir=TRUE,Stop.Tolerance=1.0E-5,CPUs=1,Type="PSOCK")

First argument Model defines the model to be implemented,which contains specification of likelihood and prior.
LaplaceApproximation passes two arguments to the model function, parm and Data. The parm argument
requires a vector of initial values equal in length to the number of parameters. Data argument accepts a list of data. By
default method is Method=SPG. We have found that trust region is better choice compared to other methods. The
Trust Region algorithm of [11] is used.

To fit the model with LaplaceApproximation
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Mg<-LaplaceApproximation(Model,Initial.Values,

Data=MyData,Method="TR",Iterations=1000)

print(Mg)

4.6.1 Summarizing Output

Table 2 and Table 3 describe the analytic and simualtion posterior summaries, respectively.

Table 2: Posterior mode, posterior sd and their quantiles

Parameter Mode SD LB UB

beta[1] 3.66 0.12 3.41 3.91

beta[2] -0.08 0.06 -0.21 0.05

log.b -9.00 0.52 -10.04 -7.96

Table 3: Posterior mode, posterior sd and their quantiles

Parameter Mode SD MCSE ESS LB Median UB

beta[1] 3.6787 0.1125 0.0035 1000.00 3.4430 3.6791 3.9039

beta[2] -0.0885 0.0630 0.0019 1000.00 -0.2161 -0.0859 0.0228

log.b -8.9945 0.4828 0.1527 1000.00 -9.9753 -8.987 -8.0225

Deviance 287.2947 1.0772 0.03406 1000.00 286.0408 287.0154 290.0349

LP -303.3911 1.0772 0.03406 1000.00 -306.4430 -303.1087 -302.1339

b 0.0001 0.00006 0.000002 1000.00 0.00004 0.0001 0.0003

4.7 Fitting with LaplacesDemon

The LaplacesDemon function is the main function of LaplacesDemon package. This function maximizes the
logarithm of the unnormalized joint posterior density with MCMC and provides samples of the marginal posterior
distributions, deviance, and other monitored variables. The LaplacesDemon function for this model, simulates the
data from posterior density with Independent Metropolis (IM) algorithm. The main arguments of the
LaplacesDemon can be seen by using the function args as:

LaplacesDemon(Model, Data, Initial.Values, Covar= NULL,

Iterations= 10000, Status= 1000, Thinning= 100, Algorithm= "RWM", Specs=

NULL,...)

The arguments Model and Data specify the model to be implemented and list of data, which are specified in the
previous section, respectively. The argument Iterations accepts integers larger than 10, and determines the number
of iterations that Laplace’s Demon will update the parameters while searching for target distributions.

The function LaplacesDemon is used to analyze the same data.

Initial.Values<-as.initial.values(Mg)

Mgld <- LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=Mg$Covar, Iterations=1000, Status=100, Thinning=1,Algorithm="IM",

Specs=list(mu=Mg$Summary1[1:length(Initial.Values),1]))

print(Mgld)
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4.7.1 Summarizing Output

Table 4 describes the simulated posterior summary by Independent Metropolis algorithm.

Table 4: Posterior mean, posterior sd and their quantiles

Parameter Mean SD MCSE ESS LB Median UB

beta[1] 3.6609 0.04793 0.0016 1000.00 3.5718 3.6598 3.7572

beta[2] -0.08482 0.0272 0.0010 1000.00 -0.1396 -0.0872 -0.03274

log.b -9.0177 0.1987 0.0067 1000.00 -9.4017 -9.0165 -8.6157

Deviance 286.1642 0.2154 0.0068 1000.00 285.9281 286.1118 286.6808

LP -302.2574 0.2154 0.0068 1000.00 -302.7741 -302.2051 -302.0214

b 0.0001 0.00002 0.000 1000.00 0.00008 0.0001 0.0001
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Fig. 4: Posterior density plots for Gompertz(b,θ ) model, LA stands for LaplaceApproximation and LD for LaplacesDemon
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5 Fitting Bayesian model in JAGS

The software JAGS is called from within R via R2jags [12,13] to conduct the Bayesian analysis of Gompertz model for
Prognosis of women breast cancer data. R2jags is designed for inference on Bayesian models using Markov chain
Monte Carlo (MCMC) simulation. Running a model refers to generating samples from the posterior distribution of the
model parameters. The JAGS function takes data and starting values as input. It automatically writes a jags script, calls
the model, and saves the simulations for easy access in R. There are four steps for Bayesian fitting of Gompertz model in
JAGS.

–Creation of data
–Model definition
–Initial values
–Model Fitting

5.1 Creation of data

require(R2jags)

y<-c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,

5,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,78,

105,107,109,113,116,118,143,154,162,188,212,217,225)

x1<-c(rep(0,13),rep(1,32))

censor<-c(1,1,1,0,0,0,0,1,1,0,0,0,0,rep(1,18),0,0,0,0,1,0,1,1,rep(0,6))

X<-cbind(1,x1)

J<-ncol(X)

n<-length(y)

zeros<- rep(0,n)

C<-10000

data<-list(n=n,J=J,y=y,X=X,zeros=zeros,censor=censor,C=C)

5.2 Model definition

For modeling the breast cancer data , the Gompertz model is used and defined as

yi ∼ Gompertz(b,θ )

with log-link function

logθ = Xβ .
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where, X is model matrix and β is the vector of regression coefficients. Moreover, prior probabilities for parameters are
specified as

β ∼ N(0,0.001)

b ∼U(0,100).

Thus, the JAGS code of the Gompertz model is

cat("model{

for (i in 1:n){

zeros[i]˜dpois(phi[i])

phi[i]<- -l[i]+C

l[i]<-censor[i]*log(b)+(y[i]/theta[i])+(b*theta[i]*
(1-exp(y[i]/theta[i])))+(1-censor[i])*(b*theta[i]*
(1-exp(y[i]/theta[i])))

log(theta[i])<-inprod(X[i,],beta[])

}

## Deviance

dev<-sum(l[])

Deviance<- -2*dev

## Priors

b˜dunif(0,100)

for (j in 1:J){

beta[j]˜dnorm(0,0.001)

}

}",file="modelgomp.txt")

5.3 Initial Values

To Start the MCMC simulation, starting values for one chain is a named list, names are the parameters used in the model.
Here we use two chains, and the initial values is given below

inits<-function(){list(b=runif(1),beta=rnorm(2))}

5.4 Model Fitting

Finally, Bayesian model using jags function is fitted and results are assigned with object Mg.Jags.

Mg.jags<-jags(data=data,inits=inits, param=c("beta","b"),

n.chains=2, n.iter=10000,model.file="modelgomp.txt")

set.seed(245)

print(Mg.jags)

denplot(Mg.jags,parms=c("beta[1]","beta[2]"),main=c("beta1","beta2"))

denplot(Mg.jags,parms=c("beta[1]","beta[2]"),main=c("beta1","beta2"))

Table 5: Summary of JAGS simulations after being fitted to the Gompertz(b, θ ) model for the breast cancer data

Parameter mu.vect sd.vect 2.5% 50% % 97.5% Rhat n.eff

beta[1] 3.864 0.222 3.502 3.833 4.379 1.01 150

beta[2] -0.111 0.123 -0.399 -0.100 0.101 1.00 2000

b 0.0001 0.00006 0.00004 0.0001 0.001 1.01 110

deviance 289.986 3.431 286.213 289.032 298.973 1.00 1
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Fig. 7: Posterior density plot for b, using the function jags

6 Bayesian Analysis of Weibull Model

6.1 The Model

The likelihood function of right censored is given by

L =
n

∏
i=1

[ f (yi)]
δi [S(yi)]

1−δi (13)

where δi=0 is censored and δi=1 is uncensored.

So, the likelihood function is given by

L =
n

∏
i=1

[

(b/θ )(t/θ )(b−1)exp[−(t/θ )b)
]δi
[

exp(−(t/θ )b)
]1−δ1

The joint posterior density is

p(b,β |y,X) ∝ L(y,X |b,β )× p(b)× p(β )

∝
n

∏
i=1

[

(b/θ )(t/θ )(b−1)exp[−(t/θ )b)
]δi
[

exp(−(t/θ )b)
]1−δ1

× 2×α

π(b2 +α2)
×

J

∏
j=1

1√
2π × 103

exp

(

−1

2

β 2
j

103

)

(14)

Marginal for b

p(b|y,X) =
∫ ∞

0
p(b,β |y,X)dβ (15)
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Marginal for β

p(β |y,X) =

∫ ∞

−∞
p(b,β |y,X)db (16)

6.2 Implementation using LaplacesDemon

Bayesian modeling of Weibull (b,θ ) distribution and fitting model using LaplaceApproximation and
LaplacesDemon functions.

6.2.1 Creation of data for LaplacesDemon

require(LaplacesDemon)

y<-c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,

5,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,78,

105,107,109,113,116,118,143,154,162,188,212,217,225)

x1<-c(rep(0,13),rep(1,32))

censor<-c(1,1,1,0,0,0,0,1,1,0,0,0,0,rep(1,18),0,0,0,0,1,0,1,1,rep(0,6))

X<-cbind(1,x1)

J<-2

mon.names<-c("LP","b")

parm.names<-as.parm.names(list(beta=rep(0,J),log.b=0))

pos.beta<-grep("beta",parm.names)

pos.b<-grep("log.b",parm.names)

MyData<-list(J=J,X=X,mon.names=mon.names,parm.names=parm.names,

pos.beta=pos.beta,pos.b=pos.b,y=y,censor=censor)

6.2.2 Model Specification

To use LaplacesApproximationmethod must specify a model

y ∼Weibull(b,λ ).

To specify a model and create a function called Model.

Model<-function(parm,Data)

{

beta<-parm[1:Data$J]

b<-exp(parm[Data$J+1])

beta.prior<-sum(dnorm(beta,0,1000,log=T))

b.prior<-dhalfcauchy(b,25,log=T)

mu<-tcrossprod(beta,Data$X)

lambda<-exp(mu)

LL<-censor*dweibull(Data$y,b,lambda,log=TRUE)+

(1-censor)*pweibull(Data$y,b,lambda,log.p=TRUE,lower.tail=FALSE)

LL<-sum(LL)

LP<-LL+beta.prior+b.prior

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,b),

yhat=rweibull(length(y),b,lambda),parm=parm)

return(Modelout)

}

6.2.3 Fitting With LaplaceApproximation

Initial.Values <-c(coef(lm(log(y)˜x1)),log(1))

Mw<-LaplaceApproximation(Model,Initial.Values,Data=MyData,

Iterations=8000, Method="TR")

print(Mw)
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6.2.4 Summarizing Output

Table 6 shows the analytic results using LaplaceApproximation function while Table 7 shows the simulated results
using sampling importance resampling method.

Table 6: Posterior mode, posterior sd and their quantiles

Parameter Mode SD LB UB

beta[1] 5.87 0.51 4.85 6.88

beta[2] -1.01 0.55 -2.11 0.10

log.b -0.08 0.17 -0.41 0.26

Table 7: Posterior mode, posterior sd and their quantiles

Parameter Mode SD MCSE ESS LB Median UB

beta[1] 6.03 0.50 0.02 1000.00 5.19 6.02 7.08

beta[2] -1.13 0.54 0.02 1000.00 -2.19 -1.13 -0.17

log.b -0.13 0.15 0.00 1000.00 -0.38 -0.14 0.19

Deviance 316.18 2.04 0.06 1000.00 313.67 315.69 321.07

LP -177.41 1.02 0.03 1000.00 -179.86 -177.17 -176.16

b 0.89 0.14 0.00 1000.00 0.68 0.87 1.21

6.2.5 Fitting With LaplacesDemon

Now, the data has been fitted using LaplacesDemon function for Weibull distribution using Independent

Metropolis (IM) algorithm.

Initial.Values<-as.initial.values(Mw)

Mwld <- LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=Mw$Covar, Iterations=1000, Status=100, Thinning=1,

Algorithm="IM",

Specs=list(mu=Mw$Summary1[1:length(Initial.Values),1]))

print(Mwld)

6.2.6 Summarizing Output

Table 8 describes simulated posterior summary.

Table 8: Posterior mean, posterior sd and their quantiles

Parameter Mean SD MCSE ESS LB Median UB

beta[1] 5.89 0.21 0.01 1000.00 5.49 5.89 6.29

beta[2] -1.02 0.23 0.01 1000.00 -1.49 -1.02 -0.56

log.b -0.09 0.06 0.00 1000.00 -0.21 -0.09 0.03

Deviance 313.92 0.43 0.02 882.42 313.44 313.81 314.93

LP -176.28 0.21 0.01 882.49 -176.79 -176.23 -176.04

b 0.92 0.06 0.00 1000.00 0.81 0.91 1.03
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Fig. 8: Posterior density plots for Weibull(b,θ ) model, LA stands for LaplaceApproximation and LD for LaplacesDemon
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Fig. 9: Survival curve of Weibull (b, θ ) Model

7 Fitting Bayesian model in JAGS

Let us consider the Bayesian analysis with JAGS using an interface of R, i.e., R2jags. For modeling the Prognosis of
women with breast cancer data in JAGS, one must specify the model to run, and to load data which is created in a separate
file and the initial values of the model parameters for a specified number of Markov chains.

7.1 Creation of data

require(R2jags)

BC<-data.frame(time=c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,

5,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,78,

105,107,109,113,116,118,143,154,162,188,212,217,225),

censor=c(1,1,1,0,0,0,0,1,1,0,0,0,0,rep(1,18),0,0,0,0,1,0,1,1,rep(0,6)))

y<-BC$time

x1<-c(rep(0,13),rep(1,32))
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X<-cbind(1,x1)

J<-ncol(X)

censored=!BC$censor

is.censored=as.numeric(censored)

y[censored]=NA

N<-length(y)

y.cens=BC$time

jags.data=list("y","N","is.censored","y.cens","J","X")

7.2 Model definition

For modeling the breast cancer data , the Weibull model is used and defined as

yi ∼Weibull(b,θ )

with log-link function

logθ = Xβ

and priors

β ∼ N(0,0.0001)

b ∼U(0,5).

Now, the JAGS code of the Weibull model is

cat("model{

for(i in 1:N){

is.censored[i]˜dinterval(y[i],y.cens[i])

y[i]˜dweib(b,1/scale[i])

log(scale[i])<-inprod(X[i,],beta[])

}

b˜dunif(0,5)

for(j in 1:J){

beta[j]˜dnorm(0.0,.0001)

}

}",file="modelw.txt")

7.3 Initial Values

To Start the MCMC simulation, it is required to specify different starting values for each chain, for the censored
observations. Hence the initial values is a list of three chains

y.init=rep(NA,length(y))

y.init[censored]=y.cens[censored]+1

inits1=list(beta=rnorm(2),b=0.85,y=y.init)

inits2=list(beta=rnorm(2),b=0.80,y=y.init)

inits3=list(beta=rnorm(2),b=0.75,y=y.init)

inits=list(inits1,inits2,inits3)

7.4 Model Fitting

Finally, fitting the above specified model using jags function

Mw.jags=jags(data=jags.data,inits,param=c("b","beta"),n.chains=3,

n.iter=10000,model.file="modelw.txt")

print(Mw.jags)

denplot(Mw.jags,parms=c("beta[1]","beta[2]"),main=c("beta1","beta2"))

denplot(Mg.jags,parm=c("b"))
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Table 9: Summary of JAGS simulations after being fitted to the Weibull (b, θ ) model for the same data

Parameter mu.vect sd.vect 2.5% 50% % 97.5% Rhat n.eff

beta[1] 5.716 0.901 4.089 5.677 7.616 1.002 2300

beta[2] -1.021 0.507 -2.031 -1.009 -0.067 1.003 3000

b 0.961 0.155 0.685 0.950 1.279 1.012 890

deviance 283.572 6.868 271.323 283.040 298.700 1.002 1900
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Fig. 10: Posterior density plot for β ′s using the function jags
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Fig. 11: Posterior density plot for b, using the function jags

8 Model Comparison

Comparison of models can be done by Deviance, Deviance information criterion (DIC) and Bayesian predictive
information criterion (BPIC). Deviance is defined as -2 times the log-likelihood [2]. In Bayesian inference the lowest
expected deviance has the highest posterior probability [2]. DIC is an important method for assessing model fit and
comparing models. In this paper, DIC using JAGS and BPIC are used as techniques for model fitting. The goal is to
select most appropriate model. BPIC is a variation of DIC where effective parameters are computed by 2pD. Comparing
all the three criteria, it is seen that (see Table 10) Gompertz model has better explained the data than the Weibull model.
So, Gompertz model would be most suitable for the Prognosis of women with breast cancer.

Table 10: Model Comparison for Gompertz and Weibull Model

Model Deviance Deviance Deviance DIC BPIC DIC with

(SIR) (IM) Jags

Gompertz 287.29 286.16 289.98 286.55 288.45 293.3

Weibull 316.18 313.92 283.57 314 321.63 307.3

9 Conclusion

In this paper, Gompertz and Weibullmodel are used to analyze the lifetime data in Bayesian paradigm. A real survival
data set is used for illustration. The Bayesian approach is implemented with R and JAGS for analytic and simulation
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process. Analytic posterior summary and simulated posterior summary by Sampling importance resampling (SIR) are
obtain by the function LaplaceApproximation in package LaplacesDemon. Simulated posterior summaries are
produced by LaplacesDemon and Jags. On the basis of Deviance, DIC and BPIC it is clear that Gompertz model
provides better results as compared to Weibull model.
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