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Abstract: Some concepts of the biconvex sets and biconvex functions are considered in this paper. Properties of the strongly biconvex

convex functions are investigated under suitable conditions. The minimum of the sum of differentiable biconvex functions and

nondifferentiable biconvex functions is characterized by variational inequality, which is called mixed bivariational inequality. The

auxiliary principle technique is used to propose and investigate some iterative methods along with convergence criteria. Some important

special cases as applications are discussed. Results obtained in this paper can be viewed as significant refinement and improvement of

previously known results.
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1 Introduction

Convexity theory is a branch of mathematical sciences
with a wide range of applications in industry, physics,
social, regional and engineering sciences. It is worth
mentioning that variational inequalities represent the
optimality conditions for the differentiable convex
functions on the convex sets. The convex sets and convex
functions have been extended and generalized in several
directions using innovative ideas to consider completed
problems. See an excellent book by Cristescu and
Lupsa [1]. Inspired by the research work going on in this
field, Noor and Noor [2–4] introduced and and considered
a new class of nonconvex sets and nonconvex functions
with respect to an arbitrary bifunction. This class of
nonconvex set is called the biconvex set and the noncovex
function is called biconvex function. functions is called
the biconvex functions. Noor et al [2–4] have studied
some basic properties of the biconvex functions. It have
been shown that the biconvex functions have
characterizations as the convex functions enjoy.
Mixed variational inequalities involving term can be
viewed as novel extension of variational inequalities.
which were introduced and studied by Stampacchia [5]
and Lions et al [6]. Mixed variational inequalities have
witnessed an explosive growth in theoretical advances,
algorithmic developments and applications across almost

all disciplines of engineering, pure and applied
sciences.and There are several methods for solving mixed
variational inequalities. Due to the nature of the mixed
variational inequalities, projection and Wiener-Hopf
methods cannot be applied for solving mixed variational
inequalities. In recent years, the auxiliary principle
technique is being used to suggest and analyze some
iterative methods for solving variational inequalities and
equilibrium problems. Glowinski et al [7] used this
technique to study the existence problem for mixed
variational inequalities, whereas Noor [8–11] and Zhu et
al. [12] have used this approach to suggest and analyze
some iterative methods for solving various classes of
variational inequalities and equilibrium problems. For
more details, see [5–16] and the references therein.
In this paper, we consider the mixed bivariational
inequalities, which arise as a sum of differentiable
biconvex function and nondiferentiable biconvex
function. The auxiliary principle technique is used to
suggest several new iterative schemes for mixed
bivariational inequalities. We also prove that the
convergence of these methods require either
pseudomonotonicity or partially relaxed strongly
monotonicity. These are weaker conditions than
monotonicity. As a special case, we obtain new iterative
schemes for solving mixed bivariational inequalities,
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variational inequalities and optimization problem. The
comparison of these methods with other methods is a
subject of future research.

2 Preliminaries and basic results

Let K be a nonempty closed set in a real Hilbert space H.
We denote by 〈·, ·〉 and ‖ · ‖ be the inner product and
norm, respectively. Let F : Kβ → R be a continuous

function and let β (.− .) : Kβ ×Kβ → R be an arbitrary
continuous bifunction.
We now recall the known concepts and basic results,
which are mainly due to Noor and Noor [2–4].

Definition 1. The set Kβ in H is said to be biconvex set

with respect to an arbitrary bifunction β (·− ·), if

u+λ β (v− u)∈ Kβ , ∀u,v ∈ Kβ ,λ ∈ [0,1].

The biconvex set Kβ is also called β -connected set. Note

that the biconvex set with β (v,u) = v− u is a convex set
K, but the converse is not true.
For example, the set Kβ = R− (− 1

2
,

1
2
) is an biconvex set

with respect to η , where

β (v− u) =

{

v− u, for v > 0,u > 0 or v < 0,u < 0
u− v, for v < 0,u > 0 or v < 0,u < 0.

It is clear that Kβ is not a convex set.

From now onward Kβ is a nonempty closed biconvex

set in H with respect to the bifunction β (· − ·), unless
otherwise specified.

We now introduce some new concepts of biconvex
functions and their variants forms.

Definition 2. The function F on the biconvex set Kβ is

said to be a strongly biconvex with respect to the bifunction

β (·− ·), if there exists a constant µ > 0 such that

F(u+λ β (v− u)) ≤ (1−λ )F(u)+λ F(v)

−µλ (1−λ )‖β (v− u)‖2
,

∀u,v ∈ Kβ ,λ ∈ [0,1].

The function F is said to be strongly biconcave, if and
only if, −F is strongly biconvex function. Consequently,
we have a new concept.

Definition 3. A function F is said to be strongly affine

involving an arbitrary bifunction β (·− ·), if

F(u+λ β (v− u)) = (1−λ )F(u)+λ F(v)

−µλ (1−λ )‖β (v− u)‖2
,

∀u,v ∈ Kβ ,λ ∈ [0,1].

Note that every strongly biconvex function is a strongly
affine biconvex, but the converse is not true.

If β (v− u) = v− u, then the strongly biconvex function
becomes a strongly convex function, that is,

F(u+λ (v− u)) ≤ (1−λ )F(u)+λ F(v)

−µλ (1−λ )‖β (v− u)‖2
,

∀u,v ∈ K,λ ∈ [0,1].

For the properties of the convex functions in variational
inequalities and equilibrium problems, see
Noor [7–10, 14], Zhu et al. [12] and Patriksson [16].

Definition 4. The function F on the biconvex set Kβ is

said to be strongly quasi biconvex with respect to the

bifunction β (·− ·), if

F(u+λ β (v− u)) ≤ max{F(u),F(v)}

−µλ (1−λ )‖β (v− u)‖2
,

∀u,v ∈ Kβ ,λ ∈ [0,1].

Definition 5. The function F on the biconvex set Kβ is

said to be strongly log-biconvex with respect to the

bifunction β (·− ·), if

F(u+λ β (v− u)) ≤ (F(u))1−λ (F(v))λ

−µλ (1−λ )‖β (v− u)‖2
,

∀u,v ∈ Kβ ,λ ∈ [0,1].

where F(·)> 0.

We can rewrite the Definition 5 in the following form

Definition 6. The function F on the biconvex set Kβ is

said to be strongly log-biconvex with respect to the

bifunction β (·− ·), if

logF(u+λ β (v− u)) ≤ (1−λ ) logF(u)+λ logF(v)

−µλ (1−λ )‖β (v− u)‖2
,

∀u,v ∈ Kβ ,λ ∈ [0,1].

where F(·)> 0.

This definition can be used to discus the properties of the
differentiable strongly log-biconvex functions.

From the above definitions, we have

F(u+λ β (v− u)) ≤ (F(u))1−λ (F(v))λ

−µλ (1−λ )‖β (v− u)‖2

≤ (1−λ )F(u)+λ F(v)

−µλ (1−λ )‖β (v− u)‖2

≤ max{F(u),F(v)}

−µλ (1−λ )‖β (v− u)‖2
.
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This shows that every strongly log-biconvex function is
strongly biconvex function and every strongly biconvex
function is a strongly quasi-biconvex function. However,
the converse is not true.

For λ = 1, Definition 2 and 5 reduce to the following
condition.

Assumption 1

F(u+β (v− u)) ≤ F(v), ∀v,u ∈ Kβ ,

which is called the Condition A.

To derive the main results, we need the following
assumptions regarding the bifunction β (·− ·).

Assumption 2. The bifunction β (,−,) said to satisfy the

assumptions, if

(i). β (γβ (v− u)) = γβ (v− u),∀u,v ∈ Kβ ,γ ∈ Rn
.

(ii). β (v− u− γβ (v− u))= (1− γ)β (v− u),∀u,v∈ Kβ ,

which is called the Condition M.

Remark. Let β (· − ·) : Kβ × Kβ → H satisfy the
assumption

β (v− u) = β (v− z)+β (z− u),∀u,v,z∈ Kβ .

One can easily show that β (v − u) = 0 ∀u,v ∈ Kβ .

Consequently

β (v− u) = 0 ⇔ v = u,∀u,v ∈ Kβ .

Also

β (v− u)+β (u− v)= 0, ∀u,v ∈ Kβ .

This implies that the bifunction β (.− .) is skew symmetric.

Theorem 1. Let Kβ be a biconvex function in H and the

condition M hold. If the function F is a differentiable

strongly biconvex function with constant µ > 0, then the

following are equivalent.

(i). The function F is a strongly biconvex function.

(ii). F(v)−F(u)≥ 〈F ′(u),β (v− u)〉
+µ‖β (v− u)‖2,∀u,v ∈ Kβ .

(iii). 〈F ′(u),β (v− u)〉+ 〈F′(v),β (u− v)〉
≤ −µ{‖β (v− u)‖2+ ‖β (u− v)‖2‖},∀u,v ∈ Kβ .

3 Main Results

In this section, we consider and study the mixed
bivariational inequalities. Some iterative methods are
suggested for finding the approximate solution of the
mixed bivariational inequalities. First of all, we discuss
the optimality conditions for the differentiable biconvex
functions. To be more precise, we consider the energy
functional I[v] defined as:

I[v] = F(v)+φ(v), ∀v ∈ H, (3.1)

where F and φ are two suitable biconvex functions.

Theorem 2. Let F be a differentiable biconvex

function and φ be a nondifferentiable biconvex function.

If u ∈ Kβ is the minimum of the energy functional I[v], if

and only if, u ∈ Kβ satisfies the

〈F ′(u),β (v− u)〉+φ(v)−φ(u)≥ 0, ∀v ∈ Kβ . (3.2)

Proof. Let u ∈ Kβ be a minimum of the functional I[v].
Then

I(u)≤ I(v),∀v ∈ Kβ . (3.3)

Since Kβ is a biconvex set, so, ∀u,v ∈ Kβ , λ ∈ [0,1],

vλ = u+λ β (v− u)∈ Kβ .

Taking v = vλ in (3.3), we have

F(u)+φ(u) ≤ F(u+λ β (v− u))+φ(u+λ β (v−u))

≤ F(u+λ β (v− u))+φ(u)+λ (φ(v)−φ(u)),

from which, we have

0 ≤ lim
λ→0

{
F(u+λ β (v− u))−F(u)

λ
}+φ(v)−φ(u)

≤ 〈F ′(u),β (v− u)〉+φ(v)−φ(u), (3.4)

which is the inequality (3).
Conversely, let u ∈ Kβ satisfy (3). We have to show that

u ∈ Kβ is the minimum of the functional I[v] defined by
(3.1).
Since F is differentiable biconvex function, so

F(u+λ β (v− u))≤ F(u)+λ (F(v)−F(u)),∀u,v ∈ Kβ ,

which implies that

F(v)−F(u)≥ lim
λ→0

{
F(u+λ β (v− u))−F(u)

λ
} (3.5)

From (3.1), (3) and (3.5), we obtain

I[u]− I[v] = −{F(v)−G(u)+φ(v)−φ(u)}

≤ −{〈F ′(u),β (v− u)〉+φ(v)−φ(u)}

≤ 0.

This implies that

I[u]≤ I[v], ∀v ∈ Kβ ,

This shows that u ∈ Kβ is the minimum of the functional

I[v] defined by (3).
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The inequality of the type (3) is called the mixed
bivariational inequality and appears to new one.

It is worth mentioning that inequalities of the type (3)
may not arise as a minimization of the biconvex
functions. This motivated us to consider a more general
mixed bivariational inequality of which (3) is a special
case.

For a given operator T, bifunction β (. − .) and
continous function φ , consider the problem of finding
u ∈ H, such that

〈Tu,β (v− u)〉+φ(v)−φ(u)≥ 0,∀v ∈ H, (3.6)

which is called mixed bivariational inequality.

It is worth mentioning that for suitable and
appropriate choice of the operators, biconvex sets and
spaces, one can obtain a wide class of variational
inequalities and optimization problems. This shows that
the mixed bivariational inequalities are quite flexible and
unified ones.

Due to the inherent nonlinearity, the projection
method and its variant form can not be used to suggest the
iterative methods for solving these bivariational
inequalities. To overcome these drawback, one uses the
auxiliary principle technique of Glowinski et al. [7] to
suggest and analyze some iterative methods for solving
the mixed bivariational-like inequalities(3.6). This
technique does not involve the concept of the projection,
which is the main advantage of this technique. We again
use the auxiliary principle technique coupled with
Bergman functions. These applications are based on the
type of convex functions associated with the Bregman
distance. We now suggest and analyze some iterative
methods for mixed bivariational inequalities (3.6) using
the auxiliary principle technique coupled with Bregman
distance functions.

For a given u ∈ Kβ satisfying the bivariational
inequality (3.6), we consider the auxiliary problem of
finding a w ∈ K such that

〈ρTw,β (v−w) + 〈E ′(w)−E ′(u),β (v−w)〉

+φ(v)−φ(u)≥ 0, ∀v ∈ H, (3.7)

where ρ > 0 is a constant and E ′(u) is the differential of a
strongly biconvex function E(u) at u ∈ Kβ . Since E(u) is
a strongly biconvex function, this implies that its
differential E ′ is strongly β -monotone. Consequently it
follows that the problem (3.6) has an unique solution.

Remark. The function

B(w,u) = E(w)−E(u)−〈E ′(u),β (w,u)〉

associated with the biconvex function E(u) is called the
generalized Bregman function. By the strongly

boiconvexity of the function E(u), the Bregman function
B(., .) is nonnegative and B(w,u) = 0, if and only if
u = w,∀u,w ∈ Kβ .

We note that, if w = u, then clearly w is solution of
the mixed bivariational inequality (3.7). This observation
enables us to suggest and analyze the following iterative
method for solving (3.7).

Algorithm 1. For a given u0 ∈ H, compute the
approximate solution un+1 by the iterative scheme

〈ρTun+1,β (v−un+1)〉 + 〈E ′(un+1)−E ′(un),β (v−un+1)〉

+ φ(v)−φ(un+1)≥ 0, ∀v ∈ H, (3.8)

where ρ > 0 is a constant. Algorithm 1 is called the
proximal method for solving mixed bivariational
inequalities (3.6). In passing we remark that the proximal
point method was suggested in the context of convex
programming problems as a regularization technique.

If β (v− u) = v− u, then Algorithm 1 collapses to:

Algorithm 2. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative scheme

〈ρT (un+1),v− un+1〉 + 〈E ′(un+1)−E ′(u),v− un+1

+φ(v)−φ(u)≥ 0, ∀v ∈ H,

for solving the mixed variational inequality.

For suitable and appropriate choice of the operators
and the spaces, one can obtain a number of known and
new algorithms for solving variational inequalities and
related problems.

Theorem 3. Let the operator T be pseudomonotone. Let

E be differentiable higher order strongly biconvex

function with module ν > 0 and Condition M hold. If

ρµ ≤ ν, then the approximate solution un+1 obtained

from Algorithm 1 converges to a solution u ∈ K satisfying

the mixed bivariational inequality(3.6).

Proof.Let u ∈ H be a solution of mixed bivariational
inequality(3.6). Then

〈Tu,β (v− u)〉+φ(v)−φ(u)≥ 0, ∀v ∈ H,

implies that

−〈Tv,β (u− v))+φ(v)−φ(u)〉 ≥ 0, ∀v ∈ H, (3.9)

since T is β -pseudomonotone.
Taking v = u in (3.8) and v = un+1 in (3.9), we have

〈ρT (un+1),β (u,u− n+ 1)〉

+〈E ′(un+1)−E ′
k(un,β (u− un+1)〉

+φ(u)−φ(un+1)≥ 0. (3.10)

and

−〈Tun+1,β (u− un+1)〉+φ(v)−φ(un+1)≥ 0. (3.11)
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We now consider the Bregman distance function

B(u,w) = E(u)−E(w)−〈E ′(w,β (u−w)〉

≥ ν‖β (u−w)‖2
, (3.12)

using higher order strongly biconvexity of E.

Now combining (3.12),(3.10) and (3.11), we have

B(u,un)−B(u,un+1)

= E(un+1)−E(un)−〈E ′(un),β (u− un)〉

+〈E ′(un+1),β (u− un+1)〉

= E(un+1)−E(un)−〈E ′(un)−E ′(un+1,β (u− un+1)〉

−〈E ′(un,un+1 − un〉

≥ ν‖β (un+1 − un)‖
2 + 〈E ′(un+1)−E ′(un),β (u− un+1)〉

≥ ν‖β (un+1 − un)‖
2 −ρ〈T(un+1),β (u− un+1)〉

−ρµ‖β (u− un+1)‖
2

≥ (ν −ρµ)‖β (un+1− un)‖
2
.

If un+1 = un, then clearly un is a solution of the
problem(3.6). Otherwise, it follows that
B(u,un)−B(u,un+1) is nonnegative and we must have

lim
n→∞

‖β (un+1 − un)‖ = 0.

from which, we have

lim
n→∞

‖un+1 − un‖= 0.

It follows that the sequence {un} is bounded. Let ū be a
cluster point of the subsequence {uni

}, and let {uni
} be a

subsequence converging toward ū. Now using the
technique of Zhu and Marcotte [12], it can be shown that
the entire sequence {un} converges to the cluster point ū

satisfying the mixed bivariational inequality(3.6).

It is well-known that to implement the proximal point
methods, one has to find the approximate solution
implicitly, which is itself a difficult problem. To overcome
this drawback, we now consider another method for
solving the mixed bivariational inequality(3.6) using the
auxiliary principle technique.

For a given u ∈ H, find w ∈ Kβ such that

〈ρT (u,β (v−w)〉 + 〈E ′(w)−E ′
,β (v−w)〉

+φ(v)−φ(u)≥ 0, ∀v ∈ H, (3.13)

where E ′(u) is the differential of a biconvex function E(u)
at u ∈ H. Problem (3.13) has a unique solution, since E is
strongly biconvex function. Note that problems (3.13) and
(3.7) are quite different problems.
It is clear that for w = u, w is a solution of (3.6). This fact
allows us to suggest and analyze another iterative method
for solving the mixed bivariational inequality (3.6).

Algorithm 3. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative scheme

〈ρTun,β (v− un+1)〉

+〈E ′(un+1)−E ′(un),β (v− un+1)〉

+φ(v)−φ(un+1)≥ 0,∀v ∈ H, (3.14)

for solving the mixed bivariational inequality (3.6).

If β (v,u)) = v− u, Algorithm 3 collapses to:

Algorithm 4. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative schemes

ρ〈Tun,v− un+1〉 + 〈E ′(un+1)−E ′(un),v− un+1〉

+φ(v)−φ(un+1)≥ 0,∀v ∈ H,

for solving the variational inequalities and appears to be a
new one.

We now again use the auxiliary principle to suggest some
more iterative methods for solving bivariational
inequalities.
For a given u ∈ H satisfying (3.6), find w ∈ H such that

〈ρT (w,β (v−w)〉+ 〈w− u+α(u− u),v−w〉

+φ(v)−φ(u)≥ 0,∀v ∈ H, (3.15)

which is the auxiliary mixed bivariational inequality. We
note that, if w = u, w is a solution of (3.6). This fact
allows us to suggest and analyze another iterative method
for solving the mixed bivariational inequality (3.6).

Algorithm 5. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative schemes

ρ〈Tun+1,β (v− un+1)〉

+〈un+1 − un)+α(un − un−1),v− un+1〉

+φ(v)−φ(un+1)≥ 0,∀v ∈ H, (3.16)

where α is a constant. Algorithm 5 is called the inertial
proximal method for solving the mixed bivariational
inequalities (3.6).
For α = 0, Algorithm 5 becomes:

Algorithm 6. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative schemes

ρ〈Tun+1,β (v− un+1)〉 + 〈un+1 − un),v− un+1〉

+φ(v)−φ(un+1)≥ 0,∀v ∈ H,

which is called the proximal method for solving the
mixed bivariational inequalities (3.6).

If β .− .) = v− u, then the boconvex set Kβ becomes the
convex set K. Consequently Algorithm 3.6 reduces to:

Algorithm 7. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative schemes

ρ〈Tun+1,v− un+1〉

+ 〈un+1 − un)+α(un − un−1),v− un+1〉 ≥ 0, ∀v ∈ H.

Algorithm 7 is known as the inertial proximal method for
solving variational inequalities.
We now consider the convergence analysis of Algorithm
5.
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Theorem 4. Let ū ∈ H be a solution of (3.6) and let un+1

be the approximate solution obtained from Algorithm 5. If

the T : H −→ R is pseudo β -monotone, then

‖un+1 − ū‖2

≤ ‖un − ū‖2 −‖un+1− un −αn(un − un−1)‖
2

+αn{‖un − ū‖2 −‖un−1− ū‖2

+2‖un − un−1‖
2}. (3.17)

Proof.Let ū ∈ H be a solution of (3.6). Then

〈Tu,β (v− u)〉+φ(v)−φ(u)≥ 0, ∀v ∈ H,

implies that

−〈Tv,β (ū− v))+φ(v)−φ(u)≥ 0, ∀v ∈ H, (3.18)

since T is pseudo β -monotone.
Taking v = un+1 in (3.18), we have

〈Tun+1,β (ū− un+1)〉 ≥ 0. (3.19)

Now taking v = ū in (3.16), we obtain

〈ρTun+1,β (ū− un+1)〉

+ 〈un+1 − un −αn(un − un−1), ū− un+1〉 ≥ 0. (3.20)

From (3.19) and (3.20), we have

〈un+1 − un −αn(un − un−1), ū− un+1〉

≥ −〈ρTun+1,β (ū− un+1)〉 ≥ 0, (3.21)

One can write (3.21) in the form

〈un+1 − un, ū− un+1〉

≥ αn〈un − un−1, ū− un + un − un+1〉. (3.22)

Using the inequality
2〈u,v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2,∀u,v ∈ H and
rearranging the terms in (3.21), one can easily obtain
(3.17), the required result.

Theorem 5. Let H be a finite dimensional space. Let

un+1 be the approximate solution obtained from

Algorithm 5 and ū ∈ H be a solution of (3.6). If there

exists α ∈ (0,1) such that 0 ≤ αn ≤ α, ∀n ∈ N and

∞

∑
n=1

αn‖un − un−1‖
2 ≤ ∞,

then limn−→∞ un = ū.

Proof.Let ū ∈ Kβ be a solution of (3.6). First we consider
the case αn = 0. In this case, we see from (3.17) that the
sequence {‖ū− un‖} is nonincreasing and consequently
{un} is bounded. Also from (3.17), we have

∞

∑
n=0

‖un+1 − un‖
2 ≤ ‖u0 − ū‖2

,

which implies that

lim
n−→∞

‖un+1− un‖= 0. (3.23)

Let û be the cluster point of {un} and the subsequence
{un j

} of the sequence {un} converge to û ∈ H. Replacing
un by un j

in (3.17) and taking the limit n j −→ ∞ and
using (3.23), we have

〈T û,β (v− û)〉+φ(v)−φ(û)≥ 0, ∀v ∈ H,

which implies that û solves the mixed bihemivariational
inequality problem (3.6) and

‖un+1 − un‖
2 ≤ ‖un − ū‖2

.

Thus it follows from the above inequality that the sequence
{un} has exactly one cluster point û and

lim
n−→∞

un = û.

Now we consider the case αn > 0. From (3.17), we
have

∞

∑
n+1

‖un+1 − un − αn(un − un−1)‖
2 ≤ ‖u0 − ū‖2

+
∞

∑
n=1

{α‖un − ū‖2 + 2‖un− un−1‖
2} ≤ ∞,

which implies that

lim
n−→∞

‖un+1 − un −αn(un − un−1)‖
2 = 0.

Repeating the above arguments as in the case αn = 0, one
can easily show that limn→∞ un = û, the required result.

For a given u ∈ H satisfying the mixed bivariational
inequality (3.6), consider the auxiliary problem of finding
w ∈ H such that

〈ρTu,β (v− u)〉 + 〈w− u,v−w〉

+φ(v)−φ(u)≥ 0, ∀v ∈ H, (3.24)

where ρ > 0 is a constant. Problem (3.24) is known as the
auxiliary bivariational inequality. We note that, if w = u,

then clearly w is a solution of the problem (3.6). This
observation enables us to suggest and analyze the
following iterative method for solving the problem(3.6).

Algorithm 8. For a given u0 ∈ H, compute the

approximate solution un+1 by the iterative scheme

〈ρTwn,β (v−wn)〉

+〈un+1 −wn,v− un+1〉+φ(v)−φ(un+1)≥ 0,∀v ∈ H,

〈νT (un,β (v− un)〉

+〈wn − un,v−wn〉+φ(v)−φ(wn)≥ 0, ∀v ∈ H,

where ρ > 0 and ν > 0 are constants. Algorithm 8 is
two-step predictor-corrector method for solving the
mixed bivariational inequalities (3.6).

Remark. For suitable and appropriate choice of the
operators and the spaces, one can obtain various known
and new algorithms for solving mixed bivariational
inequality (3.6) and related optimization problems.
Convergence analysis of these new algorithms can be
considered and investigated using the above techniques
and ideas.
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4 Conclusion

In this paper, we have shown that the optimality
conditions of a sum of differentiable biconvex functions
and nondifferentiable biconvex can be characterised by a
class of bivariational inequalities. This result is used to
introduce a more general class of mixed bivariational
inequalities. Auxiliary principle techniques is used to
suggest and analyze some iterative methods for solving
the mixed bivariational inequalities. Convergence analysis
of the proposed methods is condition using the pseudo
monotonicity which is a weaker condition than
monotonicity. Our method of proofs is very simple as
compared with other techniques. Despite the current
activities in these fields, much clearly remains to be done
in these fields. It is expected that the ideas and techniques
of this paper may be starting point for future research
activities.
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