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Abstract: In the present article, we extend the optimal auxiliary function method (OAFM) to integro-differential equations. 
The method has especially contained the auxiliary function and convergence control parameters that accelerate the 
method's convergence. The numerical results, obtained by the OAFM are listed with those obtained by the ADM, CAS 
Wavelet method, and ESA method. Further, the obtained results have been compared with the exact solution through 
different graphs and tables, which shows that the proposed method is very effective and easy to implement for different 
fractional-order PDEs. 
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1 Introduction  

Integral equations play a key role in the field of Science 
and technology. Different problems related to these types of 
problems are given in the series of problems [1-4]. Due to 
the rare exact solution to these types of problems, 
researchers used different approximate analytical methods. 
Some well-known methods are homotopy perturbation 
method (HPM) [5], Homotopy analysis method (HAM) [6], 
Differential transformation method (DTM) [7], Genocchi 
polynomials (GP) [8] reproducing kernel Hilbert space 
method (RKHSM) [9], Chebyshev wavelets method 
(CWM) [10] fixed point method (FPM) [11], Sinc-
collocation method (SCM) [12], Haar functions method 
(HFM) [13], Adomian decomposition method (ADM) [14] 
and relaxed Monte Carlo method (RMCM) [15]. These 
methods have their advantages and disadvantages. Like 
perturbation methods have to need small or large 
parameters and numerical methods have discretization 
issues. There is a proper method to choose an artificial 
parameter assumption in the equation. 

In the same field of research, we introduce another 
approach, which does need any small or large parameter 
assumption and not any discretization. The approach is 
known, the optimal axillary function method (OAFM). This 

approach was presented by Marinca et al. and used to find 
the series solution of the thin-film flow of a fourth-grade 
fluid down vertical cylinder [16]. Later on, the method has 
been extended by Laiq Zada et al. to the partial differential 
equation and used for the Korteweg-Devries equations 
arising in shallow water waves [18]. The beauty of the 
method is that there is no need for artificial small or large 
parameter assumptions like other analytical methods. The 
OAFM method gives a series solution after only one 
iteration.  

The remaining part of the present article is organized as 
follows. Section 1 was the introduction. The second section 
is about OAFM. In section three, about the implementation 
of OAFM with examples. The last section is devoted for the 
conclusion. 

2 OAFM for the Integro-Differential 
Equations 
 

 

The extension of the optimal axillary function method 
(OAFM) to general integro-differential equations can be 
discussed in the following steps.  Let us take the following 
general Integro- differential equations as, 

𝐹′(𝜏) = 𝑔(𝜏) + ∫ 𝛫*+ (𝜂, 𝜏)𝐹(𝜏) 𝑑 𝜏 = 0, 𝐹(0) = 𝐹0. (1)                               
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Here, 2
23

 can be replaced by . Therefore, Eq. (1) can be 
written in the following form. 

𝐿(𝐹(𝜏)) = 𝑔(𝜏) + ∫ 𝛫*+ (𝜂, 𝜏)𝐹(𝜏) 𝑑 𝜏 = 0.  
         (2) 

Step1: For finding the series solution for Eq. (2), we take 
the solution in the form of two components as follow,  

   𝐹5(𝜏) = 𝐹0(𝜏) + 𝐹6(𝜏, 𝐶8), 𝑖 = 1,2,3, . . . . . . 𝑝 
                                                   (4) 

Step 2: By substituting Eq. (4) into Eq. (2), we get the 
zero-order and first-order solution by OAFM method. 

  𝐿(𝐹0(𝜏)) + 𝐿(𝐹6(𝜏, 𝐶8)) + 𝑔(𝜏) + ∫ 𝛫*+ (𝜂, 𝜏)𝐹0(𝜏) 𝑑 𝜏 =
0.                                                                              (5) 

Step 3: For finding initial approximation and first 
 can be obtained from the following linear equations: 

    𝐿[𝐹0(𝜏) + 𝑔(𝜏)] = 0, 𝐹0(0) = 0,                     (6) 

                                                                       (7) 

Step 4: Hence, the nonlinear term in Eq. (7), takes the 
following form, 

 

                                                                       (8) 

Step 5: We see the difficulties in Eq (8), for this purpose 
we consider another expression for Eq. (8) which can be 
easily solved. i.e. 

   𝐿(𝐹6(𝜏, 𝐶8)) + 𝛢6(𝐹0(𝜏)) ∫ 𝛫*+ (𝜂, 𝜏)(𝐹0(𝜏)) 𝑑 𝜏 +
𝛢AB𝐹0(𝜂, 𝜏), 𝐶CD = 0, 𝐹6(𝜏) = 0,                                       (9) 

Remark 1: Here and are two arbitrary auxiliary 
functions depending on the initial approximation and 

a number of the unknown parameters  and
𝑗 = 𝑠 + 1, 𝑠 + 2, . . 𝑝. 

Remark 2: Here and are not unique. They are like 

or  or the combination of both 𝐹0(𝜂, 𝜏) 

and ∫ 𝛫*+ (𝜂, 𝜏)𝐹0(𝜏) 𝑑 𝜏. 

Remark 3:   

• If or ∫ 𝛫*+ (𝜂, 𝜏)𝐹0(𝜏) 𝑑 𝜏 a polynomial 

function then should be the sum of 
polynomial functions. 

•  If or ∫ 𝛫*+ (𝜂, 𝜏)𝐹0(𝜏) 𝑑 𝜏 an exponential 

function then should be the sum of 
exponential functions. 

•  If or ∫ 𝛫*+ (𝜂, 𝜏)𝐹0(𝜏) 𝑑 𝜏 a trigonometric 

function then should be the sum of 
trigonometric functions.  

• If in the special case ∫ 𝛫*+ (𝜂, 𝜏)𝐹0(𝜏) 𝑑 𝜏 = 0 then it 
is clear that is an exact solution of Eq. (5) 

Step 7: using inverse operator after substitution of 
Auxiliary function to Eq. (12), one can get the first-order 
approximate solution of . 

Step 8: Different methods are used for finding the 
numerical values for . Some of them Ritz method, 
collocation method, Galerkin's method, or least square 
method. Here we use the least method to minimize the 
errors. 

𝐽B𝐶8, 𝐶CD = ∫ ∫ 𝑅AB𝜂, 𝜏; 𝐶8, 𝐶CD𝑑𝜂𝑑𝜏.J
3
0                (13) 

Here 𝑅 denotes the residual, 

 𝑅B𝜏, 𝐶8, 𝐶CD = 𝐹5 ′(𝜏) + 𝑔(𝜏) + ∫ 𝛫*+ (𝜂, 𝜏)𝐹5(𝜏) 𝑑 𝜏 , 𝑖 =
1,2, . . 𝑠, 𝑗 = 𝑆 + 1, 𝑆 + 2, . . 𝑝.                                    (14) 

3 Implementation of OAFM 
In this part of the problem, we test our method for the 

integrodifferential equations. Numerical results and 

graphical results can prove the efficiency and accuracy of 

the proposed method. For the sack of simplicity, we used 

Mathematica 10. 

3.1 Example 1 
Consider the linear Fredholm integral-differential in the 
following form:     
                         𝐹ʹ(𝜂) = 𝜂𝑒M + 𝑒M − 𝜂 +
∫ 𝜂𝐹(𝜏)𝑑𝜏,6
0 𝐹(0) = 0           (15)                                                           

                                                                          
The exact solution for Eq. (15) is,   
  

    𝐹(𝜂) = 𝜂𝑒M                   (17) 
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In Eq. (15), we have linear and nonlinear terms are given 
below, 
𝐿(𝐹) = 𝐹′(𝜂), 𝑁(𝐹) = −∫ 𝜂𝐹(𝜏)𝑑𝜏, 𝑔(𝜏) = 𝜂𝑒M + 𝑒M −6

0
𝜂                                                                          (18) 
The initial approximate is obtained from eq. (9) 

      𝐹0′ (𝜂) − 𝜂𝑒M − 𝑒M + 𝜂 = 0. 𝐹0(𝜂) = 0.                    (19)                                                    
 
                                                                                
Solution for the Eq. (19) is written as follow, 

    𝐹0(𝜂) =
6
A
𝜂(2𝑒M − 𝜂).                   (20)                                          

 

Using Eq. (20) into Eq. (18), the nonlinear term is, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adding eq. (18) and eq. (22) we get 1st order approximate 

solution as 
 

    𝐹5(𝜂) = 𝐹0(𝜂) + 𝐹6(𝜂, 𝐶6, 𝐶A, 𝐶P, 𝐶Q, 𝐶R, 𝐶S). 

                                                                                         (25) 
𝑁[𝐹0(𝜂)] = −∫ 𝜂𝐹0(𝜏)𝑑𝑡

6∫
0                                            (21)                                   

The first approximation is given by Eq. (12)      
𝐹6′(𝜂) = −𝛥6(𝐹0(𝜂))𝑁[𝐹0(𝜂)] − 𝛥AB𝐹0(𝜂), 𝐶CD.            (22) 
                                                       
According to the nonlinear operator, we choose and  
as 
 

V
𝛥6 = 𝐶6 W𝑒M −

M
A
X + 𝐶A W𝑒M −

M
A
X
A
+ 𝐶P W𝑒M −

M
A
X
P
,

𝛥A = 𝐶Q W𝑒M −
M
A
X
Q
+ 𝐶R W𝑒M −

M
A
X
R
+ 𝐶S W𝑒M −

M
A
X
S
.
    

                          

 

                                                                                (23) 
Using eq. (20), and (21) into Eq. (22), and apply the inverse 
operator, we get the first approximation as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
For finding unknown parameters	𝐶8, we used the least 
square method. The numerical values of 𝐶8are given as 
𝐶" = 3.373733421313527, 𝐶,

= −3.5819082868832943, 𝐶2
= 1.5184569051063876.	
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𝐶4 = −0.24224716321190523, 𝐶5
= 0.2842195008402797, 𝐶6
= −0.04230051739009267 

 

Using these values in Eq.(25), we get the first-order 
approximate solution for prolem 1.  
  

3.2 Example 2 
 
Consider the linear Fredholm integral-differential in the 
following form:     
                                    𝐹ʹ(𝜂) = 1 − 6

P
𝜂 +

∫ 𝜂𝐹(𝜏)𝑑𝜏,6
0 𝐹(0) = 0                   (26) 

The exact solution for Eq. (26) is,   
  
       𝐹(𝜂) = 𝜂.                                            (27) 
In Eq. (26), we have linear and nonlinear terms are given 
below 
𝐿(𝐹) = 𝐹′(𝜂), 𝑁(𝐹) = −∫ 𝜂𝐹(𝜏)𝑑𝜏,6

0 𝑔(𝜏) = −1 + 6
P
𝜂

                             
                                                                                 (28) 

The initial approximate is obtained from eq. (9) 

    𝐹0′ (𝜂) − 1 +
6
P
𝜂 = 0. 𝐹0(𝜂) = 𝜂.                                                                   

 
                                                                                   (29) 

Solution for the Eq. (29) is written as follow, 
     𝐹0(𝜂) =

6
S
𝜂(6 − 𝜂).                                                                                            

                                                                   (30) 
By substituting Eq. (20) into Eq. (18), the nonlinear term 
becomes 
𝑁[𝐹0(𝜂)] = −∫ 𝜂𝐹0(𝜏)𝑑𝑡

6∫
0       

                                                           (31) 
The first approximation 𝐹6(𝜂, 𝜏) is given by Eq. (12) 
  𝐹6′(𝜂) = −𝛥6(𝐹0(𝜂))𝑁[𝐹0(𝜂)] − 𝛥AB𝐹0(𝜂), 𝐶CD.                                                
 
                                                                                     (32) 
According to the nonlinear operator, we choose and  
as 

      [𝛥6 = 𝐶6(𝜂)A + 𝐶A(2𝜂),
𝛥A = −𝐶P(2𝜂).

                                        (33) 

 
Using eq. (30), and (31) into Eq. (32), and apply the inverse 
operator, we get the first approximation as     𝐹6(𝜂) =
𝐶P𝜂A + 0.19444444444444445𝐶A𝜂P +
0.07291666666666667𝐶6𝜂Q.                                    (34) 
Adding eq. (18) and eq. (22) we get 1st order approximate 
solution as 
   𝐹5(𝜂, 𝜏) = 𝐶P𝜂A + 0.19444444444444445𝐶A𝜂P +
0.07291666666666667𝐶6𝜂Q +

6
S
𝜂(6 − 𝜂).               (35) 

For finding unknown parameters , we used the least 

squre method. The numerical values of are given as,  

𝐶6 = 4.4900966975061266 × 10a6Q, 𝐶A
= −3.1540280819972604 × 10a6Q, 

𝐶P = 0.16666666666666968. 
Using these values in Eq. (35), we get the first-order 
approximate solution for problem 2`. 
 

3.2 Example 3 
Consider the linear Fredholm integral-differential in the 

following form:     

    𝐹ʹ(𝜂) = 𝑒aM + 𝑒a6 − 1 + ∫ 𝐹(𝜏)𝑑𝜏,6
0 𝐹(0) = 1                                                                       

(36) 

The exact solution for Eq. (36) is,   
  

 𝐹(𝜂) = 𝑒aM.                     (37)                                        

In Eq. (36), we have linear and nonlinear terms are given 

below, 

    𝐿(𝐹) = 𝐹′(𝜂), 𝑁(𝐹) = −∫ 𝐹(𝜏)𝑑𝜏,6
0 𝑔(𝜏) = 𝑒aM +

𝑒a6 + 1                                                                            (38) 

The initial approximate is obtained from eq. (9) 

  𝐹0′ (𝜂) + 𝑒aM + 𝑒a6 + 1 = 0. 𝐹0(𝜂) = 1.                      (39)                                                    

Solution for the Eq. (39) is written as follow, 

𝐹0(𝜂) = −𝑒a(6cM)(−𝑒 − 𝜂𝑒M + 𝜂𝑒6cM).                        (40)         

Using Eq. (39) into Eq. (42), the nonlinear term tekes the 

following form, 

𝑁[𝐹0(𝜂)] = −∫ 𝐹0(𝜏)𝑑𝑡
6∫
0                                              (41) 

The first approximation is given by Eq. (12 

𝐹6′(𝜂) = −𝛥6(𝐹0(𝜂))𝑁[𝐹0(𝜂)] − 𝛥AB𝐹0(𝜂), 𝐶CD.            (42)                                    

According to the nonlinear operator, we choose and  

as 

    [𝛥6 = 𝐶6𝜂𝑒M + 𝐶A𝜂𝑒AM.
𝛥A = −𝐶P.

                   (43)                                          

Using eq. (43), and (41) into Eq. (42), and apply the inverse 

operator, we get the first approximation as  

     𝐹6(𝜂) = 𝑒aM + 𝐶AB0.07901506985356971 +

𝑒AM(−0.07901506985356971 +

0.15803013970713942𝜂)D +

𝐶6B0.31606027941427883 +

𝑒M(−0.31606027941427883 +

0 ( , )F h t
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0.31606027941427883𝜂)D − 0.6321205588285576𝜂 +

𝐶P𝜂.                                                                                (44) 

Adding eq. (18) and eq. (22) we get 1st order approximate 
solution as𝐹5(𝜂, 𝜏) = 𝐶P𝜂A +
0.19444444444444445𝐶A𝜂P +
0.07291666666666667𝐶6𝜂Q 				+

6
S
𝜂(6 − 𝜂).       

			                                                (45) 
For finding unknown parameters𝐶8, we used the least squre 
method. The numerical values of are given as,  
𝐶6 = 2.932751768256368 × 10a6R, 𝐶A

= −1.1755675453600516 × 10a6R, 
𝐶P = 0.6321205588285577. 

Using these values in Eq. (45), we get the first-order 
approximate solution for problem 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Numerical and Graphical Discussions 
 

Tables (1-2) shows the numerical comparison of OAFM, 
CAS Wavelet method, and ESA method for problem 1 and 
2 respectively. Similarly, table 3, shows the numerical 
solution of OAFM and Block Pulse Functions and 
Operational Matrices for problem 3. Furthermore, in figures 
(1-3), we present the comparison between OAFM and the 
exact solution for problems 1, 2, and 3 respectively. 
Similarly figure (3-4) shows the absolute errors obtained by 
the proposed method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iC

Table 1: Comparison of absolute errors obtained by a different method and OAFM for problem 1 𝜂 ∈ (0.0,1.0). 
 CAS Wavelet [18] ESA [18] The method in [20] OAFM 

0.1 1 .34917637  1.00118319  2.433330  5.44857  

0.2 6.38548213  2.78651355  9.735080  2.80414  

0.3 7.91370487  5.08730892  2.193150  2.57483  

0.4 2.15586005  7.55356316  3.917420  2.01829  

0.5 4.99358429  9.71888592  6.200050  5.44857  

0.6 2.21728810  1.09551714  9.184720  2.80414  

0.7 1.05645449  1.04133232  1.319230  2.57483  

0.8 1.43233681  6.94512700  1.885530  2.01829  

0.9 2.07747461  1.00034260  2.731360  5.44857  
 

Table 2: Comparison of absolute errors obtained by a different method and OAFM for problem 2 𝜂 ∈ (0.0,1.0). 

 CAS Wavelet [18] ESA [18] The method in [20] OAFM 

0.1 2.17942375  1.66666667  2.06509  2.77556  

0.2 6.38548213  6.09388620  8.04069  8.32667  

0.3 7.91370487  1.32017875  1.72624  1.11022  

0.4 2.15586005  2.29140636  2.86044  2.22045  

0.5 4.99358429  3.51578404  4.04527  1.66533  

0.6 2.21728810  6.69648304  9.184720  1.11022  

0.7 1.05645449  7.12430514  5.06663  1.11022  

0.8 1.43233681  8.63983845  5.65279  1.11022  

0.9 2.07747461  1.08103910  4.10753  0.0 

 

h
310-´ 210-´ 510-´ 610-´
310-´ 210-´ 510-´ 610-´
310-´ 210-´ 410-´ 510-´
210-´ 210-´ 410-´ 710-´
210-´ 210-´ 410-´ 610-´
210-´ 210-´ 410-´ 610-´
210-´ 210-´ 310-´ 610-´
210-´ 210-´ 310-´ 610-´
210-´ 210-´ 310-´ 610-´

h
410-´ 310-´ 410-´ 1710-´
410-´ 310-´ 410-´ 1710-´
410-´ 210-´ 310-´ 1610-´
210-´ 210-´ 310-´ 1610-´
310-´ 210-´ 310-´ 1610-´
210-´ 210-´ 310-´ 1610-´
410-´ 210-´ 310-´ 1610-´
310-´ 210-´ 310-´ 1610-´
210-´ 110-´ 310-´
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Table 3: Comparison of absolute errors obtained by a different method and OAFM for problem 2 𝜂 ∈ (0.0,1.0). 
 Exact Solution [19] The method in [19] OAFM Solution 

0.1 0.904837 0.910993 0.904837 

0.2 0.818731 0.804005 0.818731 

0.3 0.740818 0.755324 0.740818 

0.4 0.670320 0.666636 0.670320 

0.5 0.606530 0.588375 0.606530 

0.6 0.548812 0.552766 0.548812 

0.7 0.496585 0.487894 0.496585 

0.8 0.449329 0.458378 0.449329 

0.9 0.406570 0.404606 0.406570 

 

 
Fig. 1: 2D surfaces show the comparasion of OAFM and exact solution for the numerical example 1 when 𝜼 ∈
(𝟎. 𝟎, 𝟏. 𝟎). 

 
Fig.2: 2D surfaces show the comparison of OAFM and exact solution for the numerical example 2 when 𝜼 ∈
(𝟎. 𝟎, 𝟏. 𝟎). 

 

h
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Fig.3: 2D surfaces show the comparison of OAFM and exact solution for the numerical example 3 when 𝜼 ∈ (𝟎. 𝟎, 𝟏. 𝟎). 

 

 

 
Fig. 4: 2D surface shows the absolute errors, obtained by the OAFM for the numerical example 1 when 𝜼 ∈ (𝟎. 𝟎, 𝟏. 𝟎). 

 

 

 
Fig.5: 2D surface shows the absolute errors, obtained by the OAFM for the numerical example 2 when 𝜼 ∈ (𝟎. 𝟎, 𝟏. 𝟎). 
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4 Conclusions 
 

The optimal auxiliary function method (OAFM) has been 
extended to integrodifferential equations and has been used 
for a family of integrodifferential equation. After obtaining 
numerical and graphical results, we can say the proposed 
method has the following advantages. 

• The method is very easy to implement and gives an 
approximate solution after only one iteration. and  

• The proposed method contains auxiliary functions and 
convergence control parameters that control the 
convergence of the method. 

• No need for small or large parameter assumptions into 
the equation to solve. 

• If we want to increase the accuracy of the method, we 
just increase the number of convergence control 
parameters. 

From the above conclusion, it clear that the method is very 
effective and can be extended to other nonlinear problems 
arising in different science and technology. 

“Data Availability Statement: No data used in this 
study” 

“Funding: None” 

“Conflict of interest: None” 
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