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Abstract: In the present article, we extend the optimal auxiliary function method (OAFM) to integro-differential equations.
The method has especially contained the auxiliary function and convergence control parameters that accelerate the
method's convergence. The numerical results, obtained by the OAFM are listed with those obtained by the ADM, CAS
Wavelet method, and ESA method. Further, the obtained results have been compared with the exact solution through
different graphs and tables, which shows that the proposed method is very effective and easy to implement for different

fractional-order PDEs.
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1 Introduction

Integral equations play a key role in the field of Science
and technology. Different problems related to these types of
problems are given in the series of problems [1-4]. Due to
the rare exact solution to these types of problems,
researchers used different approximate analytical methods.
Some well-known methods are homotopy perturbation
method (HPM) [5], Homotopy analysis method (HAM) [6],
Differential transformation method (DTM) [7], Genocchi
polynomials (GP) [8] reproducing kernel Hilbert space
method (RKHSM) [9], Chebyshev wavelets method
(CWM) [10] fixed point method (FPM) [11], Sinc-
collocation method (SCM) [12], Haar functions method
(HFM) [13], Adomian decomposition method (ADM) [14]
and relaxed Monte Carlo method (RMCM) [15]. These
methods have their advantages and disadvantages. Like
perturbation methods have to need small or large
parameters and numerical methods have discretization
issues. There is a proper method to choose an artificial
parameter assumption in the equation.

In the same field of research, we introduce another
approach, which does need any small or large parameter
assumption and not any discretization. The approach is
known, the optimal axillary function method (OAFM). This

approach was presented by Marinca et al. and used to find
the series solution of the thin-film flow of a fourth-grade
fluid down vertical cylinder [16]. Later on, the method has
been extended by Laiq Zada et al. to the partial differential
equation and used for the Korteweg-Devries equations
arising in shallow water waves [18]. The beauty of the
method is that there is no need for artificial small or large
parameter assumptions like other analytical methods. The
OAFM method gives a series solution after only one
iteration.

The remaining part of the present article is organized as
follows. Section 1 was the introduction. The second section
is about OAFM. In section three, about the implementation
of OAFM with examples. The last section is devoted for the
conclusion.

2 OAFM
Equations

for the Integro-Differential

The extension of the optimal axillary function method
(OAFM) to general integro-differential equations can be
discussed in the following steps. Let us take the following
general Integro- differential equations as,

F(1)=g(@® + [, K@ OF@)dt=0,F(0) = F,. (1)
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Here, % can be replaced by L . Therefore, Eq. (1) can be
written in the following form.

LEF@®) = 9@ + [, K, D)F @ dt =0,
@)

Step1: For finding the series solution for Eq. (2), we take
the solution in the form of two components as follow,

F(t)=Fy(t) + F,(t,C),i =1.23,...... p
“4)
Step 2: By substituting Eq. (4) into Eq. (2), we get the
zero-order and first-order solution by OAFM method.
b
L(F,(@) + LA, ) + 9@ + [, K, DF(T) d 7 =
0. ©)

Step 3: For finding initial approximation F{(7)and first

F(7) can be obtained from the following linear equations:

L[Fy(7) + g()] = 0,F,(0) =0, (6)
b
L(F(z,C))+ [KO10)(Fy(2)+ F(7,C))dr =0, F(z)=0.

a

()

Step 4: Hence, the nonlinear term in Eq. (7), takes the
following form,

b

JK(nJ)(Fo(fHE(T,C,-))df=JK(n,T)(ﬂ(f))df+ilz,[]K(M(Fo(f))df]

®)

Step 5: We see the difficulties in Eq (8), for this purpose
we consider another expression for Eq. (8) which can be
easily solved. i.e.

L(F, (5, C)) + A, (Fo (D) [, K (1, 7) (Fo(D)) d T +
Az(Fo(n' 7), C') =0,F(r) =0, )

Remark 1: Here A and A,are two arbitrary auxiliary
functions depending on the initial approximation F|(7)and
a number of the unknown parameters C, andC Iz

i=1,23...,j=s+1,s+2,..p

Remark 2: Here A4, and A4, are not unique. They are like
F,(r)or N [E) (77,2')] or the combination of both F, (1, T)
and [ K (1, T)Fy () d 7.

Remark 3:

o If F(y,7)or f:K (m,7)Fy(r)dT a polynomial
function then A4 and A4,should be the sum of
polynomial functions.

e If F(n,7)or f; K (n,t)Fy(r)dt an exponential
function then Al and A2 should be the sum of
exponential functions.

o If F(n,7)or ff K (m,t)Fy,(r)dt a trigonometric
function then A4 and A,should be the sum of
trigonometric functions.

e If in the special case f; K (m,t)Fy(r)dt =0 then it
is clear that F; (77,7)is an exact solution of Eq. (5)

Step 7: using inverse operator after substitution of
Auxiliary function to Eq. (12), one can get the first-order
approximate solution of F(77,7).

Step 8: Different methods are used for finding the
numerical values forC,. Some of them Ritz method,

collocation method, Galerkin's method, or least square
method. Here we use the least method to minimize the
eITors.

J(€. ) = [ [, R?(n.7; C,, C;)dndc.

Here R denotes the residual,

(13)

R(t,C,C)=F @ +g@ + f:K(n,‘L')I:"(r)dT,L' =
12,..5j =S+1,5+2,..p. (14)

3 Implementation of OAFM
In this part of the problem, we test our method for the

integrodifferential equations. Numerical results and

graphical results can prove the efficiency and accuracy of
the proposed method. For the sack of simplicity, we used

Mathematica 10.

3.1 Example 1

Consider the linear Fredholm integral-differential in the
following form:

F'(n) =ne"+e"—n+
J, nF (1)dt,F(0) = 0 (15)

The exact solution for Eq. (15) is,

F(n) =ne" 17
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In Eq. (15), we have linear and nonlinear terms are given
below,

' 1
L(F) = F'(n),N(F) = — [, nF (1)dz, g () = ne” + " —
(18) According to the nonlinear operator, we choose A, and A,

n

The initial approximate F; (77,7)is obtained from eq. (9) as

Fy(n) —nem” —e" +n = 0.Fy(n) = 0. (19) {41 =0 (e"—g)+62 (en_g)2+63 (en_

The first approximation F](77,7)is given by Eq. (12)
Fi(n) = =4, (Fo(m)N[Fo(m)] - AZ(FO(U)' C])

(22)

2)3
2 )

4,=C, (e'7 —%)4 +Cs (e" —g)s +C, (e" —g)ﬁ.

Solution for the Eq. (19) is written as follow,

Fy(n) = >n(2e" = 7). (20)

Using Eq. (20) into Eq. (18), the nonlinear term is,

Adding eq. (18) and eq. (22) we get 1% order approximate

solution as

Fn,7)= %(2677 - 77)77 —0.1388888888888889(—6C, —13.5¢2—-29.91666666666

6664C, —27.7C, —61.273333333333326C, —171.30358333333336C, + 6C,e” +
12C,e" +27C,€" +21.599999999999998C ¢ +54C,e”" +162C,e" +1.5C,e™" +
2.25C,€*" +2.6999999999999997C,e”" +3.375C,e”" +5.0625C,e™" +0.66666666
66666666C;¢™" +1.5999999999999999C, e +1.3333333333333333C,e* +1.333
3333333333333c6e’ +1.7999999999999998C,e*” +1.125C,e*" +0.84375C " +
1.44C,e™ +0.8639999999999999C ™ +1.2C,e*" —6C,e"n —12C,e"n - 27C,e"

17 —21.599999999999998C,e"n — 54C,e"n —162C,e"n —3C,e’"'n — 4.5C,e”"n -
5.3999999999999995C,e”"n — 6.75C,e*'n —10.125C,e*"n — 2C,e""n — 4.8C,e’'n
—4C,e’"n -4C,e""'n—4.5C,e"'n-3.375C,e*"'n —4.32C.e”"n + 6C,e"n* +13.5C,e”
17 +10.799999999999999C,e"n” +27C.e"n* +81C,e"n* +4.5C,e*"n* +5.39999
99999999995C,e*"n* + 6.75C,e™"n* +10.125C,e*"17° +5.999999999999999C, ™"’
+5.999999999999999C e*"5* +6.75C.e*"n” + C;ip* — 4.5C;e"n’ —3.5999999999
999996C,e"1° —9C,e"n’ —27C,e"n’ —4.5C,e*" 7’ —6.75C,e*"n’ —5.99999999999
9999C,e*"n’ —0.375C,n* +2.25C,e"n* +6.75Ce"n* +3.375C,e"n* +0.15000000
000000002¢37° +0.09C,77° —1.3499999999999999¢6¢"n” —0.0375C;° +0.01607
142857142857C,n")

C, = 3.373733421313527,C,

(23)

Using eq. (20), and (21) into Eq. (22), and apply the inverse
operator, we get the first approximation as

24)

For finding unknown parameters C;, we used the least
square method. The numerical values of C;are given as

- = —3.5819082868832943, C;
F(n) = Fo(n) + F1(n, Cy, C3, G5, Cy, Cs5, Cg). = 1.5184569051063876.

(25)

NIFy ] = = [ nFy(2)dt @1)

© 2021 NSP

Natural Sciences Publishing Cor.



410 NS

L. Zada et al.: A New Approach for Solving Fredholm...

C, = —0.24224716321190523, Cs
= 0.2842195008402797, C¢
= —0.04230051739009267

Using these values in Eq.(25), we get the first-order
approximate solution for prolem 1.

3.2 Example 2

Consider the linear Fredholm integral-differential in the
following form:

F=1-n+
J, nF (1)dt, F(0) = 0 (26)

The exact solution for Eq. (26) is,

F@m) =n. 27
In Eq. (26), we have linear and nonlinear terms are given
below

L(F) = F' (), N(F) = = f, nF (1)dt, g(r) = =1 + 7

(28)
The initial approximate F; (77,7)is obtained from eq. (9)

Fo(n) =1+ 20 = 0.Fy(m) =1.

29)

Solution for the Eq. (29) is written as follow,
1
Fo(m) = -n(6 —n).

(30)
By substituting Eq. (20) into Eq. (18), the nonlinear term
becomes

1f

N[F,(m] =— fo nky(r)dt

€2y
The first approximation F; (1, T) is given by Eq. (12)

Fi (m) = —4,(Fo(mM)N[F,(m)] — Az(Fo m, C')-

(32)
According to the nonlinear operator, we choose A and A,
as
4y = C1(m)? + C(2n),
33
{Az = —C;(2n). 33)

Using eq. (30), and (31) into Eq. (32), and apply the inverse

operator, we get the first approximation as Fi(n) =
C3n? + 0.19444444444444445C,n3 +
0.07291666666666667C;n*. (34)

Adding eq. (18) and eq. (22) we get 1% order approximate
solution as
F(n,1) = C3n? + 0.19444444444444445C,n° +

0.07291666666666667C;n* + %n(6 —-n). (35)
For finding unknown parameters Cl. , we used the least

squre method. The numerical values of C, are given as,

C; = 4.4900966975061266 x 10714, C,
= —3.1540280819972604 x 10714,
C; = 0.16666666666666968.
Using these values in Eq. (35), we get the first-order
approximate solution for problem 2.

3.2 Example 3
Consider the linear Fredholm integral-differential in the
following form:

F)=e+e ' =1+ [ F(1)dr,F(0) =1

(36)

The exact solution for Eq. (36) is,
F(m) =e™. 37)
In Eq. (36), we have linear and nonlinear terms are given

below,
L(F) = F'(),N(F) = — [ F(t)dt,g(x) = e +
6_1 +1 (38)

The initial approximate F; (77,7)is obtained from eq. (9)

FomM+e M +e+1=0.F(n) =1 (39)
Solution for the Eq. (39) is written as follow,
Fo(n) = —e~*M(—e —ne" +ne'*M). (40)

Using Eq. (39) into Eq. (42), the nonlinear term tekes the
following form,

1f
N[Fo(m] = — [~ Fo(r)dt (41)
The first approximation Fj(#,7)is given by Eq. (12
Fi(n) = =4, (Fo(m)N[Fo(m)] - AZ(FO(U)' C')-

According to the nonlinear operator, we choose A and A,

(42)

as

= n 2n
{Al Cine™ + C,yne-". (43)

4, = —Cs.
Using eq. (43), and (41) into Eq. (42), and apply the inverse
operator, we get the first approximation as

Fim) =e+C, (0.07901506985356971 +
€21(—0.07901506985356971 +
0.15803013970713942n)) +
C1(0.31606027941427883 +
e7(—0.31606027941427883 +
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0.3160602794142788371)) —0.6321205588285576n +
Csm. (44)

Adding eq. (18) and eq. (22) we get 1% order approximate
solution asF(n, 1) = Cn? +
0.19444444444444445C,n3 +
0.07291666666666667C;n*  +=1(6 —n).

(45)
For finding unknown parametersC;, we used the least squre

method. The numerical values of Ci are given as,

C, = 2.932751768256368 x 10715, C,
= —1.1755675453600516 x 10715,
C; = 0.6321205588285577.
Using these values in Eq. (45), we get the first-order
approximate solution for problem 3.

4 Numerical and Graphical Discussions

Tables (1-2) shows the numerical comparison of OAFM,
CAS Wavelet method, and ESA method for problem 1 and
2 respectively. Similarly, table 3, shows the numerical
solution of OAFM and Block Pulse Functions and
Operational Matrices for problem 3. Furthermore, in figures
(1-3), we present the comparison between OAFM and the
exact solution for problems 1, 2, and 3 respectively.
Similarly figure (3-4) shows the absolute errors obtained by
the proposed method.

Table 1: Comparison of absolute errors obtained by a different method and OAFM for problem 1 n € (0.0,1.0).

n CAS Wavelet [18] ESA [18] The method in [20] OAFM
0.1 1.34917637x 107> 1.00118319x 107> 2.433330x107° 5.44857x107°
02 6.38548213x 107> 2.78651355x 107> 9.735080x 10~ 2.80414x107°
03 7.91370487x 107> 5.08730892 x 1072 2.193150x107* 2.57483x107°
0.4 2.15586005x 1072 7.55356316x 1072 3.917420x 107 2.01829x107
0.5 4.99358429%x 1072 9.71888592 x 107> 6.200050x 10~ 5.44857x107
0.6 2.21728810x 1072 1.09551714x 107 9.184720x10™* 2.80414x107°
0.7 1.05645449x 107> 1.04133232x 107> 1.319230x 107 2.57483x107°
038 1.43233681x 1072 6.94512700x 107> 1.885530x 107 2.01829%107°
0.9 2.07747461x 107> 1.00034260x 1072 2.731360x 107 5.44857%107

Table 2: Comparison of absolute errors obtained by a different method and OAFM for problem 2 n € (0.0,1.0).
n CAS Wavelet [18] ESA [18] The method in [20] OAFM
0.1 2.17942375x 107 1.66666667x 107 2.06509% 107 277556 107"
02 6.38548213x 107 6.09388620x 10~ 8.04069% 107 8.32667x107"7
03 7.91370487x107* 1.32017875%x 107> 1.72624x107 1.11022x107'°
0.4 2.15586005x 1072 229140636 x 1072 2.86044x 107 2.22045x107'°
0.5 4993584291073 3.51578404x 1072 4.04527%x107° 1.66533x107'°
0.6 2.21728810x 1072 6.69648304x 107> 9.184720x 107> 1.11022x107"¢
0.7 1.05645449x 107 7.12430514x 107> 5.06663x 107 1.11022x107"¢
038 1.43233681x107° 8.63983845x 1072 5.65279% 107 1.11022x107"¢
0.9 2.07747461 <1072 1.08103910% 10" 410753x107 0.0
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Table 3: Comparison of absolute errors obtained by a different method and OAFM for problem 2 n € (0.0,1.0).

n Exact Solution [19] The method in [19] OAFM Solution
0.1 0.904837 0.910993 0.904837
0.2 0.818731 0.804005 0.818731
0.3 0.740818 0.755324 0.740818
0.4 0.670320 0.666636 0.670320
0.5 0.606530 0.588375 0.606530
0.6 0.548812 0.552766 0.548812
0.7 0.496585 0.487894 0.496585
0.8 0.449329 0.458378 0.449329
0.9 0.406570 0.404606 0.406570

= Exact
25 - OAFM
-
20 <
"
154
-

g
210 -
= "

0.5 =

-
- -
0.0 -
oo " l'.'lr2 ) I!II-1 I l:IrB ) I}‘ﬂ I III:l

Fig. 1: 2D surfaces show the comparasion of OAFM and exact solution for the numerical example 1 when i €
(0.0,1.0).
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Fig.2: 2D surfaces show the comparison of OAFM and exact solution for the numerical example 2 when n €
(0.0,1.0).
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Fig.3: 2D surfaces show the comparison of OAFM and exact solution for the numerical example 3 when 1 € (0.0, 1. 0).
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Fig. 4: 2D surface shows the absolute errors, obtained by the OAFM for the numerical example 1 when i € (0.0, 1.0).
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Fig.5: 2D surface shows the absolute errors, obtained by the OAFM for the numerical example 2 when 1 € (0.0, 1. 0).
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Fig.6: 2D surface shows the absolute errors, obtained by the

4 Conclusions

The optimal auxiliary function method (OAFM) has been
extended to integrodifferential equations and has been used
for a family of integrodifferential equation. After obtaining
numerical and graphical results, we can say the proposed
method has the following advantages.

e The method is very easy to implement and gives an
approximate solution after only one iteration. and

e  The proposed method contains auxiliary functions and
convergence control parameters that control the
convergence of the method.

e No need for small or large parameter assumptions into
the equation to solve.

e If we want to increase the accuracy of the method, we
just increase the number of convergence control
parameters.

From the above conclusion, it clear that the method is very

effective and can be extended to other nonlinear problems

arising in different science and technology.
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