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Abstract: This paper presents the fractional integral in the Caputo-Fabrizio sense. For the first order integral and the classical Riemann-

Liouville fractional integral, the kernel of the corresponding operator is trivial, but it is not the case for the Caputo-Fabrizio integral

operator. This is one of the misleading points in relation to this fractional derivative with nonsingular kernel and we present it here in a

crystalline form.
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1 Introduction

There are many generalizations of the classical integer-order derivatives and integrals.
For a function f : R→ R, the primitive or first order integral is F(t) = [I1 f ](t) =

∫ t
0 f (s)ds.

Integrating n = 1,2,3 . . . repeatedly and using the classical formula of repeated integration due to Cauchy:

In f (t) = I · In−1 f (t) =
1

(n− 1)!

∫ t

0
(t − s)n−1 f (s)ds

leading to the obvious definition of fractional integral of order α > 0 [1,2,3]

Iα f (t) =
1

Γ (α)

∫ t

0
(t − s)α−1 f (s)ds. (1)

This is valid also for α ∈ C with Re(α)> 0.
To define a fractional derivative, several ideas were given by great mathematicians, such as Euler [4], Laplace [5],

Lacroix [6], Fourier [7], Liouville [8] and Riemann [9]. The derivative in the sense of Liouville and Riemann of fractional
order β ∈ (0,1) is set, as follows:

Dβ ϕ(t) =
1

Γ (β − 1)

d

dt

∫ t

0
(t − s)−β ϕ(s)ds (2)

suggested by the relation

Dβ f = [D1 · I1−β ] f =
d

dt
I1−β f .

If one uses the relation Dα = I1−α ·D1 to introduce the fractional derivative, then the fractional derivative in the sense
of Caputo [1,10] is given by
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CDα f (t) =
1

Γ (α − 1)

∫ t

0
(t − s)−α f ′(s)ds. (3)

For a ≤ 0 and f : [a,∞) → R a smooth function, Caputo and Fabrizio have recently defined the following integral
trasnform or fractional derivative with exponential kernel [11]

CF Dβ ϕ(t) =
1

1−β

∫ t

a
e
− β

1−β
(t−s)

ϕ ′(s)ds, t ≥ 0. (4)

We point out that a ∈ [−∞,0]. As indicated in a recent paper [12], for a = 0, one obtains a classical operator with
fading memory, but for a < 0, one has

∫ t

a
e−

α
1−α (t−s) f ′(s)ds =

∫ 0

a
e−

α
1−α (t−s) f ′(s)ds+

∫ t

0
e−

α
1−α (t−s) f ′(s)ds (5)

and the last term

∫ t

0
e−

α
1−α (t−s) f ′(s)ds (6)

is considered in some papers as the Caputo-Fabrizio fractional derivative. There is a substantial difference between
definition (5) and (6) as developed in [12].

For some real applications of this operator, we refer the reader, for example, to [13,14,15,16].

In (5) we have a nonsingular kernel (the exponential e−
α

1−α (t−s)
,s ∈ [0, t] is always positive and continuous and so

bounded). However, according to formula (6) of [12], we have

CF Dα f (t) =
1

1−α

∫ t

0

[

g′0(s)

f ′(s)
δ (t − s)+ e−

α
1−α (t−s)

]

f ′(s)ds, t ≥ 0

with

g′0(t) =

∫ 0

a
e−

α
1−α (t−s) f ′(s)

so a singular kernel δ (t − s) appears for a < 0.
In the classical situation

D1I1 f = f

and
I1D1 f = f + c

c is an arbitrary real constant. Note that the subspace of constant functions is precisely the kernel of the operator D1. Also,
note that the kernel of the operator I1 is trivial.

In the fractional case, we have an analogous situation depending on the type of fractional calculus used. For the Caputo
fractional derivative and for α ∈ (0,1), it holds

CDα Iα f = f

and
Iα CDα f = f + c

c is an arbitrary real constant. This is due to the fact that the Caputo fractional derivative of a constant is zero.
However, the Riemann-Liouville fractional derivative of a constant different from zero is not zero. Indeed, if f (t) = c,

then
Dα f (t) =

c

Γ (1−α)
t−α

,

which is different from zero unless c = 0.
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Thus, for α ∈ (0,1)

Dα Iα f (t) = f (t)

but

Iα Dα f (t) = f (t)+ ctα−1
,

c is an arbitray real constant.

We see that Iα Dα f coincides with f up to a term given by the function tα−1. For α = 1, I1D1 f = f up to a constant
since tα−1 = 1.

Therefore, the general solution of the fractional differential equation

Dα u = 0

is

u(t) = c · tα−1
,c ∈ R.

In this note, we solve the question of what is the fractional integral corresponding to the Caputo-Fabrizio fractional
derivative. Note that the classical fractional derivatives are introduced using integer derivatives and the original definition
of fractional integral. Here, we start from definition (4) of a fractional derivative and will construct the associate fractional
integral and the properties of the corresponding fractional operators.

We recall that CDα Iα f = f and Iα CDα f = f up to a constant times a function in the kernel of the fractional derivative
operator. On the other hand, if we have that CF Dα f = g, then the fractional integral in the Caputo-Fabrizio sense, denoted
by CF Iα g, should be the function f up to a multiple of a function and this is the case as we will show below. However,
the fractional derivative of the fractional integral in the Caputo-Fabrizio sense of a given function is not, in general, the
same function. This is a totally different aspect of this fractional calculus that has to be considered when solving fractional
differential equations.

2 Kernel of the Caputo-Fabrizio fractional derivative

Consider the simple Caputo-Fabrizio fractional differential equation

CF Dα f = 0. (7)

We will see that f is constant. Indeed,

1

1−α
e−

α
1−α t

∫ t

0
e−

α
1−α s f ′(s)ds = 0, t ≥ a,

and taking the derivative:

1

1−α
·
−α

1−α
e−

α
1−α t

∫ t

0
e−

α
1−α s f ′(s)ds+

1

1−α
f ′(s) = 0,

that is,

−α

1−α
CF Dα f (t)+

1

1−α
f ′(t) = 0.

Therefore,

f ′(t) = 0, t ≥ a,

and f is constant.

The solutions of (7) are only the constant functions or, in other words, the kernel of the Caputo-Fabrizio fractional
derivative operator is the one-dimensional subspace of constant functions.
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3 Caputo-Fabrizio fractional integral

Now, let us study the non-homogeneus equation associated to (7):

CF Dα f = g.

First of all, if we have two solutions f1, f2, then CF Dα( f1 − f2) = 0 and we conclude that f1 − f2 = c, i.e., f1, f2

coincide up to a constant.

Note that

1

1−α
e−

α
1−α t

∫ t

0
e−

α
1−α s f ′(s)ds = g(t), t ≥ a,

and then

d

dt
CF Dα f (t) =

−α

1−α
CF Dα f (t)+

1

1−α
f ′(t) = g′(t).

This last relation is equation (5) of [17] with a = 0 to simplify expressions where the authors adopted a different
perspective based on Laplace transform and Bode diagrams. It is standard in linear systems and describes the input/output
of a highpass filter [18].

−α

1−α
g(t)+

1

1−α
f ′(t) = g′(t).

Integrating on the interval [a, t], we have

f (t) = (1−α)[g(t)− g(a)]+α

∫ t

0
g(s)ds+ f (a), t ≥ a,

where g(a) = CF Dα f = 0 by the definition (4).

On the other hand, for t ≥ 0, integrating on [0, t], we obtain

f (t) = (1−α)[g(t)− g(0)]+α

∫ t

0
g(s)ds+ f (0) (8)

and now

g(0) =

∫ 0

a
e−

α
1−α s f ′(s)ds.

In general, g(0) 6= 0 as it is incorrectly derived, in some cases, from [19].

Setting g(0) = g0, f (0) = f0 and using (8), we have

f = (1−α)(g− g0)+αI1g+ f0

or

f − f0 = (1−α)(g− g0)+αI1g.

Therefore, the Caputo-Fabrizio fractional integral of order α ∈ (0,1) of the function g is (1−α)(g− g0)+αI1g up
to a constant. Finally, we have derived the Caputo-Fabrizio fractional integral operator of order α ∈ (0,1). For a function
g : [a,∞)→R smooth, the Caputo- Fabrizio integral of order α ∈ (0,1) is defined as

CF Iα g(t) = (1−α)[g(t)− g(0)]+α

∫ t

0
g(s)ds

with g0 =
∫ 0

a e−
α

1−α s f ′(s)ds. Of course, if a = 0, then g0 = 0, and CF Iα g(t) = (1−α)g(t)+α
∫ t

0 g(s)ds.
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4 Kernel of the Caputo-Fabrizio fractional integral

Now, consider the integral equation
CF Iα g = 0.

Therefore,

(1−α)[g(t)− g(a)]+α

∫ t

a
g(s)ds = 0,

and g′(t) = −α
1−α g(t), that is,

g(t) = g(a)e−
α

1−α (t−a)
.

Let

cα(t) = e−
α

1−α (t−a)
.

Note that fot t > a, lim
α→1−

cα(t) = 0, but cα(a) = 1.

The kernel of the operator CF Iα is the one-dimensional subspace generated by cα . This is quite different to the case
of the usual fractional where Iαg = 0 implies that g = 0.

We will now show that

CF Dα · CF Iα f = f − f (a)cα ,

i.e., the fractional derivative of the fractional integral of a function is the same function up to a multiple of cα . This is new
and it is not noted in many papers.

Indeed, using that CF Iα f (t) = (1−α)[ f (t)− f (0)]+α
∫ t

0 f (s)ds, we get

d

dt
CF Iα f (t) = (1−α) f ′(t)+α f (t)

and

CF Dβ · CF Iβ ϕ(t) =
1

1−β

∫ t

a
e
− β

1−β
(t−s)

[(1−β )ϕ ′(s)+β ϕ(s)]ds.

Integrating by parts the term corresponding to f ′, we arrive at

CF Dα · CF Iα f (t) = f (t)− f (a)e−
α

1−α (t−a) = f (t)− f (a)cα(t),

being cα(t) = e−
α

1−α (t−a)
. To compute the value of CF Iα CF Dα f , note that

d

dt
CF Dα f (t) =

−α

1−α
CF Dα f (t)+

1

1−α
f ′(t)

and

CF Iα CF Dα f (t) = (1−α)[ CF Dα f (t)− f0]+α

∫ t

0

CF Dα f (s)ds.

Taking derivatives,

d

dt
CF Iα CF Dα f (t) = (1−α)

d

dt
CF Dα f (t)+α CF Dα f (t) = f ′(t).

Therefore,

CF Iα · CF Dα f (t) = f (t)+ c,

with c an arbitrary real constant.

These relations will be useful to solve fractional ordinary and partial differential equations.
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5 Conclusion

The behavior of the classical fractional derivatives (Riemann-Liouville and Caputo) is similar to the classical integer
order derivatives in the sense that they satisfy that the derivative of the integral is the same function. However, for the new
Caputo-Fabrizio derivative, we have

CF Dα · CF Iα f = f − f (a)cα , cα(t) = e−
α

1−α (t−a)
.

Also, the kernel of the Riemann-Liouville integral operator is trivial. However, for the Caputo-Fabrizio integral, the
kernel is not trivial:

ker
(

CF Iα
)

=< cα > .

This aspect has to be considered.
As a summary, we include the following table

Operator Kernel Subspace Generator

D1 constant < c > 1

I1 0 {0} 0

Iα 0 {0} 0

Dα constant· tα−1 < cα > cα (t) = tα−1

CDα constant < c > 1
CF Iα constant ·e−

α
1−α (t−a)

< cα > cα (t) = e−
α

1−α (t−a)

CFDα constant < c > 1

To conclude, the kernel of the Caputo-Fabrizio and Losada-Nieto fractional integral is not trivial.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] S. G. Samko, A. A. Kilbas and O. I. Marcihev, Fractional integrals and derivatives, theory and applications, Gordon and Breach,

Switzerland, Reading, 1993.

[2] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons,

New York, 1993.

[3] K. B. Oldman and J. Spanier, The fractional calculus, Academic Press, San Diego, 1974.

[4] L. Euler, De progressionibus transcendentibus, seu quarum termini generales algebraice dari negueunt, Comment. Acad. Scient.

Petropol. 5, 36-57 (1738).
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[6] S. F. Lacroix, Traite du calcul différentiel et du calcul integral, Courcier, Paris, 1820.
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