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Optical Production of the Husimi Function of Two Gaussian Functions
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The intensity distribution of the Husimi function (HF) and the squared modulus of the
Wigner function (WF) are detected in the phase space of an astigmatic optical proces-
sor. These results, obtained in the laboratory, are compared against numerical results
generated by using analytical calculation for the HF and WF. The signal function is the
superposition of two Gaussian functions with a separation between them, having the
same amplitude but a different variance.
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1 Introduction

In 1932 Wigner introduced a distribution function in the context of quantum me-
chanical correction to thermodynamic equilibrium [1]. It is a bilinear function and its
importance is due to the fact that the WF describes a signal in the time and frequency
domains, called phase space, simultaneously [2]. The WF can describe signals having
two or more variables, or their Fourier transforms. The WF of a signal ¥(q), Wy (¢, p),
has the important property that its marginal probability in each coordinate is given by
the integration of Wy (g, p) in its conjugate coordinate, i.e., P(q) = [ Wy(q,p)dp, and
P(p) = [Wy(q,p)dg. At present, the WF has applications in many fields of physics
and engineering: in quantum mechanics it is useful for identifying non-classic states, such
as Fock states; in optics, to describe a signal in the space and in the spacial frequencies
simultaneously so as in optical information processing [3]. This is because the WF of a
deterministic signal (totally coherent light) relates Fourier optics and geometrical optics,
and the Wigner function of a stochastic signal (partially coherent light) relates radiometry
and partial coherence light theory.

While the WF is one of many distribution functions [3], there are still some functions

not introduced in the classical (optics) world, namely the Glauber Sudarshan P-function
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Figure 1.1: The sum of two Gaussian functions having the same amplitude. They having a difference

in variance and a separation go = 1.5.

[4], [5] and the Husimi Q-function [6, 7]. It is therefore the purpose of this manuscript
to present how the Husimi function (HF) may be obtained in optics. The HF has a one-
to-one correspondence with the WF and to the optical signal (density matrix in quantum
mechanics) [8]. One of the important properties of the HF is that its distribution in the
space is a radiometric observable that can be measured directly. In quantum mechanics,
the HF is refereed as a classical quasi-probability distribution since it is a real and non-
negative quantity. In classical optics, it is directly proportional to the intensity distribution
detected in a one-dimensional Fourier optical transformer, i.e., the HF of a signal is the
squared modulus of the Fourier transform of the signal function times a weighted Gaussian
function.

Here we will obtain the Husimi and (squared) Wigner functions for two Gaussian func-
tions [9] having different variances and positions and will compare them against experi-
mental results. The optical detection of these bilinear functions in the laboratory was made
using an astigmatic processor.

2 The Wigner Distribution Function

From its definition, we have that the Wigner function of a signal is a 1D Fourier trans-
form. Then, the optical description is in the focal plane, called Fourier plane, of a cylin-
drical lens when used in a 1D astigmatic transform system illuminated with a collimated
beam. Because it is detected the intensity of light, in the Fourier plane we have the squared
absolute values of the Fourier transform.

The Wigner distribution function in the space and spatial-frequency domain can be
written as (we use Dirac notation, see [10])

o0 / /
Wi(q,p) = / exp(ipq’) (g — %Iﬁlq - %)dq', (2.1)
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Figure 2.1: Bilinear functions ¥(q, ¢’) and Uy (g, ¢’). They were calculated numerically.

where g is the spatial variable and p is the spatial-frequency, and p is the matrix of density.
For a spatial signal 1(q) we have

oo ) q/ . ql oo ) q/ . q/
| exptind)ia - Slota+ Prda = [ esplivayota - v+ e @2
where the symbol * means conjugation: {(g|v) = v¥(q) and (¢¥|q) = ¥*(q) with ¢)(q) the
signal. The density operator, p, may be given in general by

i.e., a sum of different states. From Eq. (2.2) we can see that the Wigner function is the
Fourier transform of the function ¢ (¢ — ¢'/2)¥*(q + ¢’ /2) having the variables ¢ and p as
the canonic variables. In physics they represent position and momentum but in optics they
are associated with position and spatial frequency.

The functions associated with the variables ¢ and p are related by

U(p)=F[Y(q)] and () =F'[¥(p)], (2.4)

where F[-] means the Fourier transform and F'~![-] means the inverse Fourier transform.
Given a signal, ¥(q), and its Fourier transform, ¥(p), we have

From Equations (2.2) and (2.4) we have that Wy (g, p) is the Fourier transform, in the

variable ¢’, of

r(gid) = vla+ D' la—T) 2.6)
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or, equivalently, Wy (¢, p) is the Fourier transform, in the variable p’, of
Pige, P
R(pip') = W(p+ )0 (p = 3),

where r(q; ¢') and R(p; p’) are related through a 2D Fourier transform. So, the WF can only

2.7

be reconstructed by a holographic process and reconstructed holographically. Through an
astigmatic optical processor that can be detected is the squared modulus of Wy, (g, p) or

3 The Husimi Distribution Function

The HF of a given signal is defined as

Qula.p) = ~(alpla), @

where |«) is a so-called coherent state [7]. The above equation written in normal notation
is

]' > / ! !/
Qulan) = 2| [ valamaro@)i, (32
where 14 (¢, p; ¢') is given by [7]
! \2
vala. ) = 7 Fexpl- T L ip(y — ) (33

which can directly be detected through an astigmatic optical processor since it is the
squared modulus of a Fourier transform. The term exp(—ipq’) in Eq.(3.3) being the kernel
of the Fourier transform and the function to be transformed is

Vla.d) = Vruldespl- L)

that is the equivalent expression of 7 (g, ¢’) given in Eq. (2.6) for the Wigner function.

3.4)

3.1 The Wigner function

The signal considered in this work is two Gaussian functions having unitary amplitudes

and centered a quantity ¢y and —¢qq from the origin

¥(q) = exp[—b(g — g0)*] + exp[—(q + q0)?] (3.5)

where b is the inverse of the relative standard variation, i.e., the standard variation of the
first Gaussian function divided by that of the second Gaussian function. Fig. 1.1 shows the
function v (q) for go = 1.5 and b = 1 that it has a minimum at origin. By substituting Eq.
(3.5) in (3.2) we have

21 4b2 — 2—|— 2 4(qg + 2+ 2
Ww(‘lap)_\/:exp[ (g 261;) pH\/ﬁeXp[fW
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The first and the second terms of this equation are the Wigner functions of the each

terms of Eq. (12), respectively. The third term is the interference term, which gives the
negative values in the Wigner function. The intensity distribution in the phase space is then

Iw(q,p) = W2(q,p)- 3.7

3.2 The Husimi function

For the Husimi function, by substituting Egs. (3.3) and (3.5) in Eq. (3.2), we have

2 1 2b(q — q0)* +p?, 1 2(q + qo)? + p?
Qy(q,p) = —= [2b+ I xp[— ST gexp[—f]

NG
_1(b=1)(g —q0)* +2(2b + 1)(¢* + ¢5) + (b + 2)p°

2
+ ———ex
V3(2b+1) d 3 20+ 1

]+

]

2p (b—1)g = (5b + 1)qo
os[ T ]] (3.8)
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Figure 3.1: The astigmatic processor used in this work. A cylindrical lens is illuminated with a
collimated beam.

Figs. 3.2a and 3.2b show the gray level plots of the numerical values obtained for the
bilinear signals given in Egs. (3.4) and (2.6), respectively, for the signal given in Eq. (3.3).
These plots were taken like the objects to be used in the astigmatic optical processor.

4 Experimental Process

Fig. 3.1 is an schematic diagram of a 1D Fourier transform processor, the astigmatic
optical processor used for detecting the HF and the squared modulus of the WF. A conver-

gent cylindric lens is illuminated by a coherent collimated light, He-Ne laser beam having a
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Figure 3.2: Distributions in gray levels of (a) the Husimi function, and (b) squared modulus of the
Wigner function.
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Figure 3.3: Images obtained in laboratory. (a) For Husimi function, and (b) for the squared modulus
of the Wigner function. These have to be compared against those given in Fig. 3.2.
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wavelength of 632.8 nm. In front of the lens is collocated the object, a transparency of Fig.
2.1a for the Husimi function case and Fig. 2.1b for the Wigner function case. These trans-
parencies were photo-reduced 170 times from its original size. The negatives were made
in a Technical Pan photographic film from Kodak and developed using a D-19 dilution. In
order to avoid the vignetting effects, the transparencies were put in contact with the cylin-
drical lens [11]. Because of the photographic process some noise sources are present. The
printing process and the non linearity response of the film reduce and change the gray tones
of the photoreduction. In the optical reproduction, another sources of errors are present as
the spatial coherence of the light source and the aberrations of the lens that produces strong
speckle.

Fig. 3.2 shows the results obtained for the Husimi and Wigner functions, Fig. 3.2a
and 3.2b respectively. A mechanical misalignment of the photoreduction film produces the
effect that can be seen in Fig. 3.3a were the secondary lobes, i.e., the maxima of intensity
are moved down and up from their nominal positions. A good alignment produces a good
reconstruction, as can be seen in Fig. 3.3b.

5 Conclusions

We have detected in gray levels the Husimi function and the squared modulus of the
Wigner function. The function used as a signal to be recorded is the superposition of
two Gaussian functions displaced from each other a quantity 2gq and having two different
standard variances. They are compared against those obtained using theoretical calculation,
which were plotted numerically. In spite of many sources of error are present during the
recording, the results given are good enough for recognizing the HF and the WF of the
signal. Finally, we have introduce in classical optics a commonly used distribution function

in quantum mechanics, namely, the Husimi @)-function.
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