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1 Introduction

Engineering, Physics, Economics, Order statistics, Classification, Ranking, Selection, Number theory, Genetics, Biology,
Medicine, Hydrology, Psychology, these all applied problems depend on the distribution of product and ratio of random
variables[1,2].

As an example of use of the product of random variables in physics, Sornette [3] mentions:
“. . . To mimic system size limitation, Takayasu, Sato, and Takayasu introduced a threshold xc . . . and found a stretched
exponential truncating the power-law pdf beyond xc . Frisch and Sornette recently developed a theory of extreme
deviations generalizing the central limit theorem which, when applied to multiplication of random variables, predicts the
generic presence of stretched exponential pdfs. The problem thus boils down to determining the tail of the pdf for a
product of random variables . . . ”
Several authors have studied The product distributions for independent random variables come from the same family or
different families, see [4] for t and Rayleigh families,[5] for Pareto and Kumaraswamy families, [6] for the t and Bessel
families, and [7] for the independent generalized gamma-ratio family.

Examples of the use of the ratio of random variables include Mendelian inheritance ratios in genetics, mass to energy
ratios in nuclear physics, target to control precipitation in meteorology, and inventory ratios in economics.
Several authors have studied The ratio distributions for independent random variables come from the same family or
different families. The historical review, see [8,9] for the normal family, [10] for Student’s t family, [11] for the Weibull
family, [12] for the noncentral chi-squared family, [13] for the gamma family, [14] for the beta family, [15] for the logistic
family, [16] for the Frechet family, [17] for the inverted gamma family, [18] for Laplace family, [19] for the generalized-F
family, [20] for the hypoexponential family, [2] for the gamma and Rayleigh families, and [21] for gamma and exponential
families.

In this paper, The analytical probability distributions are derived of XY and X/Y , when X and Y are two independent
Pareto and Exponential distributions respectively. with probability density functions (p.d.f.s)

fX (x) =
cac

xc+1
(1)
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fY (y) = λ e−λ y (2)

respectively, for a ≤ x < ∞ , a > 0, c > 0, y > 0, λ > 0.

Notations and Preliminaries

Recall some special mathematical functions, these will be used repeatedly throughout this article.

–The upper incomplete gamma function defined by

Γ (a,x) =
∫ ∞

x
exp(−t)ta−1dt (3)

–The lower incomplete gamma function defined by

γ(a,x) =

∫ x

0
exp(−t)ta−1dt (4)

–The Exponential integral is generalized to,
for n = 0,1,2, ...,x > 0

En(x) =

∫ ∞

1

e−xt

tn
dt (5)

where n is then the order of the integral.

The calculations of this paper involve several Lemmas

Lemma 1 For α ≥ 0, r ∈R, and b ∈ R
∗
+

I(α,r,b) =

∫ ∞

α
xre−bxdx =

1

br+1
Γ (r+ 1,bα) (6)

Proof Let u = bx, then

I(α,r,b) =

∫ +∞

bα

ur

br+1
e−udu =

1

br+1
Γ (r+ 1,bα) (7)

Lemma 2 For t ∈ R ,
d

dx
Γ (t,v(x)) =−v(x)t−1e−v(x) d

dx
v(x) (8)

Proof
d

dx
Γ (t,v) =

d

dv
Γ (t,v)

dv

dx
(9)

Note that

d

dv
Γ (t,v) =−vt−1e−v

Lemma 3 For α ≥ 0, r ∈R, and b ∈ R
∗
+

∫ α

0
xre−bxdx =

1

br+1
γ(r+ 1,bα) (10)
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Proof For u = bx
∫ bα

0

ur

br+1
e−udu =

1

br+1
γ(r+ 1,bα)

Lemma 4 The Exponential integral is generalized to,
for n = 0,1,2, ...,x > 0

En(x) =
∫ ∞

1

e−xt

tn
dt (11)

where n is then the order of the integral. This expression (11) is closely related to the incomplete gamma function as
follows, for n = 0,1,2, ...,x > 0

En(x) = xn−1Γ (1− n,x) (12)

Proof For u = xt

En(x) = xn−1
∫ ∞

x
e−uu−ndu = xn−1Γ (−n+ 1)

2 Distribution of the Product X Y

Theorem 2.1. Suppose X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0 the
cumulative distribution function c.d.f. of Z = XY can be expressed as:

FZ(z) =

{

0 if z ≤ 0

1− ac

zcλ c Γ (c+ 1)+ ac

zcλ c Γ (c+ 1, λ z
a
)− e−

λz
a if z > 0

(13)

Proof the c.d.f. corresponding to (1) is FX(x) = 1− ( a
x
)c Thus, one can write the c.d.f. of XY as

Pr(XY ≤ z) =

∫ ∞

0
FX(

z

y
) fY (y)dy

=

∫ z/a

0
(1− (

ay

z
)c) fY (y)dy

(14)

We can write FZ(z) as:

FZ(z) =

∫ ∞

0
(1− (

ay

z
)c) fY (y)dy−

∫ ∞

z/a
(1− (

ay

z
)c) fY (y)dy (15)

Let

I1 =
∫ ∞

0
(1− (

ay

z
)c) fY (y)dy (16)

And

I2 =

∫ ∞

z/a
(1− (

ay

z
)c) fY (y)dy (17)

Then
FZ(z) = I1 − I2

.

Calculus of I1

I1 =

∫ ∞

0
(1− (

ay

z
)c) fY (y)dy

= 1−
ac

zc

∫ ∞

0
ycλ e−λ ydy

= 1−
λ ac

zc

∫ ∞

0
yce−λ ydy

(18)

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


294 N. Obeid, S. Kadry: Distributions of the product and ratio of two...

Using Lemma 1 (6) in the integral above

I1 = 1−
ac

zcλ c
Γ (c+ 1) (19)

Calculus of I2

I2 =
∫ ∞

z/a
(1− (

ay

z
)c) fY (y)dy

=
∫ ∞

z/a
λ e−λ ydy−

ac

zc

∫ ∞

z/a
ycλ e−λ ydy

= e−λ z/a −
ac

zc

∫ ∞

z/a
ycλ e−λ ydy

(20)

Using Lemma 1 (6) in the integral above

I2 = e−λ z/a −
ac

zcλ c
Γ (c+ 1,

λ z

a
)

And finally

FZ(z) =

{

0 if z ≤ 0

1− ac

zcλ c Γ (c+ 1)+ ac

zcλ c Γ (c+ 1, λ z
a
)− e−

λz
a if z > 0

(21)

Corollary 2.2. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0, the

probability density function p.d.f. of Z = XY can be expressed as:

fZ(z) =











0 if z ≤ 0

cac

λ czc+1

[

Γ (c+ 1)−Γ (c+ 1, λ z
a
)

]

if z > 0
(22)

Proof The probability density function fZ(z) in (22) follows by differentiation using Lemma 2

Corollary 2.3. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for c > r, z > α ,

α > 0. the moment of order r of Z = XY can be expressed as:

E[Zr] =

[

cac
[

Γ (c+ 1)−Γ (c+ 1,λ α/a)
]

αc−rλ c(c− r)
+

cacΓ (r+ 1,λ α/a)

λ c(c− r)

]

(23)

Proof

E[Zr] =

∫ +∞

0
zr fZ(z)dz

= lim
α→0+

∫ +∞

α
zr cac

λ czc+1

[

Γ (c+ 1)−Γ (c+ 1,λ z/a)

]

dz

= lim
α→0+

[

∫ ∞

α

cac

λ czc−r+1
Γ (c+ 1)dz−

∫ ∞

α

cac

λ czc+1−r
Γ (c+ 1,λ z/a)dz

]

(24)

Let

I1 =

∫ ∞

α

cac

λ czc−r+1
Γ (c+ 1)dz
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and

I2 =

∫ ∞

α

cac

λ czc+1−r
Γ (c+ 1,λ z/a)dz

E[Zr] =
[

I1 − I2

]

(25)

Calculus of I1

I1 =

∫ ∞

α

cac

λ czc−r+1
Γ (c+ 1)dz =

cacΓ (c+ 1)

λ cαc−r(c− r)
(26)

Calculus of I2

I2 =
cac

λ c

∫ ∞

α
zr−1−cΓ (c+ 1,λ z/a)dz (27)

Integration by parts implies of I2:

I2 =−
αr−c

r− c
Γ (c+ 1,λ α/a)+

λ c+1

ac+1(r− c)

∫ ∞

α
zre−λ z/adz (28)

Using Lemma 1 (6) in the integral above then

I2 =
cacΓ (c+ 1,λ α/a)

λ c(c− r)αc−r
−

cacΓ (r+ 1,λ α/a)

λ c(c− r)
(29)

And finally

E[Zr] =

[

cac
[

Γ (c+ 1)−Γ (c+ 1,λ α/a)
]

αc−rλ c(c− r)
+

cacΓ (r+ 1,λ α/a)

λ c(c− r)

]

(30)

Corollary 2.4. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for c > 1. the

Expected value of Z = XY can be expressed as:

E[Z] =

[

cac
[

Γ (c+ 1)−Γ (c+ 1,λ α/a)
]

αc−1λ c(c− 1)
+

cacΓ (2,λ α/a)

λ c(c− 1)

]

(31)

Corollary 2.5. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for c > 2. the

Variance of Z = XY can be expressed as:

σ2 =
cac

[

Γ (c+ 1)−Γ (c+ 1,λ α/a)
]

αc−2λ c(c− 2)
+

cacΓ (3,λ α/a)

λ c(c− 2)

−

[

cac
[

Γ (c+ 1)−Γ (c+ 1,λ α/a)
]

αc−1λ c(c− 1)
+

cacΓ (2,λ α/a)

λ c(c− 1)

]2
(32)

Proof By definition of variance :

σ2 = E[Z2]−E[Z]2
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Corollary 2.6. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0. the

Survival function of Z = XY can be expressed as:

SZ(z) =

{

1 if z ≤ 0
ac

zcλ c Γ (c+ 1)− ac

zcλ c Γ (c+ 1, λ z
a
)+ e−

λz
a if z > 0

(33)

Proof By definition of the Survival function SZ(z) = 1−FZ(z)

Corollary 2.7. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0. the

Hazard function of Z = XY can be expressed as:

hZ(z) =















0 if z ≤ 0

cac

[

Γ (c+1)−Γ (c+1,λ z/a)

]

zac

[

Γ (c+1)−Γ (c+1,λ z/a)

]

+zc+1λ ce−λz/a

if z > 0
(34)
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a=1,c=3.5,�=1

a=1,c=4.2,�=1

Fig. 1: Plots of the pdf (22) for a = 1,c = 2.5,3.5,4.2,λ = 1

Figure 1 illustrates possible shapes of the pdf (22) of the product distribution XY for a range of values of the scale
parameter c = 2.5,3.5,4.2, a = 1 and λ = 1.
Note that the pdf’s curves are positive, continuous and decreasing in the interval 0 < z < +∞, in addition the area
between the density curve and horizontal X-axis is equal to 1,

∫ +∞
0 fZ(z) = 1, moreover the shapes are uni-modal and the

parameter c control the scale of the pdf’s curves.

Figure 2 illustrates possible shapes of the pdf (22) of the product distribution XY for a range of values of the location
parameter a = 1,2,3, c = 2 and λ = 1.
Note that the pdf’s curves are positive, continuous and decreasing in the interval 0 < z <+∞, in addition the area between
the density curve and horizontal X-axis is equal to 1,

∫+∞
0 fZ(z) = 1, moreover the shapes are uni-modal and the value of

the parameter a largely dictates the behaviour of the pdf near z = 0.
Figure 3 shows the shape of the hazard function of the product distribution XY for different values of the shape

parameter c = 3,5.6,a = 1,λ = 1. Note that the hazard’s curves are positive, continuous and decreasing in the interval
0< z<+∞ and limz→∞ hZ(z) = 0, moreover the shapes are uni-modal and the parameter c control the scale of the hazard’s
curves.
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Fig. 2: Plots of the pdf (22) for a = 1,2,3,c = 2,λ = 1
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Fig. 3: Plots of the Hazard function (34) for a = 1,c = 3,5.6,λ = 1

3 Distribution of the Ratio X/Y

Theorem 3.1. Suppose X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0
the cumulative distribution function c.d.f. of Z = X/Y can be expressed as:

FZ(z) =



























0 if z ≤ 0

e−λ a/z− acλ c

zc Γ (−c+ 1,λ a/z) if z > 0,c < 1

e−λ a/z− aλ
z

Ec(λ a/z) if z > 0,c = 1,2,3, ...

(35)
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Proof the c.d.f. corresponding to (1) is FX(x) = 1− ( a
x
)c

FZ(z) = pr(X/Y ≤ z)

=

∫ ∞

0
FX(zy) fY (y)dy

=

∫ ∞

a/z
(1− (

a

yz
)c) fY (y)dy

=

∫ ∞

a/z
fY (y)dy−

ac

zc

∫ ∞

a/z

fY (y)

yc
dy

(36)

Let

I1 =

∫ ∞

a/z
λ e−λ ydy = e−λ a/z

And

I2 =
∫ ∞

a/z

λ e−λ y

yc
dy

Then we can write

FZ(z) = I1 − I2

Calculus of I2

I2 = λ

∫ ∞

a/z

e−λ y

yc
dy

= λ

∫ ∞

a/z
y−ce−λ ydy

if we substitute u = λ y, Then

I2 = λ

∫ ∞

λ a/z
e−u(

u

λ
)−c du

λ

= λ c

∫ ∞

λ a/z
u−ce−udu

= λ cΓ (1− c,λ a/z)

(37)

Finally we get

FZ(z) =−
acλ c

zc
Γ (−c+ 1,

λ a

z
)+ e−λ a

z (38)

For c < 1.

For c = 1,2,3, ... using Lemma 4 we have

Γ (1− c,λ a/z) = (
λ a

z
)1−cEc(λ a/z)

, and

FZ(z) = e−λ a/z−
aλ

z
Ec(λ a/z) (39)

Where c is the order of the integral.

Corollary 3.2. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0, the
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probability density function p.d.f. of Z = X/Y can be expressed as:

fZ(z) =























0 if z ≤ 0

c(aλ )c Γ (1−c,aλ/z)
zc+1 if z > 0,c < 1

λ a
z2 e−λ a/z− (aλ )2

z3 Ec−1(λ a/z)+ aλ
z2 Ec(λ a/z) if z > 0,c = 1,2,3, ...

(40)

Proof The probability density function fZ(z) in (40) follows by differentiation using Lemma 2(8), and

d

dz
En(z) =−En−1(z) (41)

For n = 1,2,3, ...

Corollary 3.3. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0.the

Survival function of Z = X/Y can be expressed as:

SZ(z) =



























1 if z ≤ 0

1− e−λ a/z+ acλ c

zc Γ (−c+ 1,λ a/z) if z > 0,c < 1

1− e−λ a/z+ aλ
z

Ec(λ a/z) if z > 0,c = 1,2,3, ...

(42)

Proof By definition of the Survival function SZ(z) = 1−FZ(z)

Corollary 3.4. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for z > 0. the

Hazard function of Z = X/Y can be expressed as:

hZ(z) =































0 if z ≤ 0

c(aλ )cΓ (1−c,aλ/z)

z(aλ )cΓ (1−c,aλ/z)+zc+1(1−e−λa/z)
if z > 0,c < 1

λa

z2 e−λa/z− (aλ)2

z3 Ec−1(λ a/z)+ aλ
z2 Ec(λ a/z)

1−e−λa/z+ aλ
z Ec(λ a/z)

if z > 0,c = 1,2, ...

(43)

Proof By definition of the hazard function hZ(z) =
fZ(z)
SZ(z)

Figure 4 illustrates possible shapes of the pdf (40) of the ratio distribution X/Y for a range of values of the hazard rate
λ , a = 1, c = 0.5 and λ = 1,2,5.
Note that the pdf’s curves are positive and continuous, in addition these curves are increasing then decreasing in the
interval 0 < z < +∞, in addition the area between the density curve and horizontal X-axis is equal to 1,

∫ +∞
0 fZ(z) = 1,

moreover the shapes are uni-modal and the value of the parameter λ control the scale of the pdf’s curves.
Figure 5 illustrates possible shapes of the pdf (40) of the ratio distribution X/Y for a range of values of the scale

parameter c = 2,3,4, a = 1 and λ = 1.
Note that the pdf’s curves are positive, continuous and increasing in the interval 0< z ≤ 0.6 then decreasing in the interval
0.6< z <+∞, in addition the area between the density curve and horizontal X-axis is equal to 1,

∫+∞
0 fZ(z) = 1, moreover

the shapes are uni-modal and the parameter c control the scale of the pdf’s curves.
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Fig. 4: Plots of the probability density function (40) for a = 1,c = 0.5,λ = 1,2,5
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Fig. 5: Plots of the probability density function (40) for a = 1,c = 2,3,4,λ = 1

4 Hazard function

It is useful to think about real phenomena and how their hazard functions might be shaped. For example, if T denotes the
age of a car when it first has a serious engine problem, then one might expect the corresponding hazard function h(t) to
be increasing in t; that is, the conditional probability of a serious engine problem in the next month, given no problem so
far, will increase with the life of the car. In contrast, if one were studying infant mortality in a region of the world where
there was poor nutrition, one might expect h(t) to be decreasing during the first year of life. This is known to be due to
selection during the first year of life. Finally, in some applications (such as when T is the lifetime of a light bulb or the
time to which you won a BIG lottery), the hazard function will be approximately constant in t. This means that the
chances of failure in the next short time interval, given that failure hasn’t yet occurred, does not change with t; e.g., a
1-month old bulb has the same probability of burning out in the next week as does a 5-year old bulb. As we will see
below, this ’lack of aging’ or ’memory less’ property uniquely defines the exponential distribution, which plays a central
role in survival analysis. The hazard function may assume more a complex form. For example, if T denote the age of
death, then the hazard function h(t) is expected to be decreasing at first and then gradually increasing in the end,
reflecting higher hazard of infants and elderly.

Let take an example, for Z = X/Y quotient of Pareto and Exponential random variables, For z > 0

hZ(z) =
c(aλ )cΓ (1− c,aλ/z)

z(aλ )cΓ (1− c,aλ/z)+ zc+1(1− e−λ a/z)
(44)
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1.Continuity of hZ(z):
for z > 0

hZ(z) =
u(z)

v(z)

Where

u(z) = c(aλ )cΓ (1− c,aλ/z) (45)

And

v(z) = z(aλ )cΓ (1− c,aλ/z)+ zc+1(1− e−λ a/z) (46)

We have Γ (1 − c,aλ/z) is continuous, then u(z) is a continuous function , and for z > 0, (1 − e−λ a/z) > 0 and

continuous, then the function v(z) > 0 is positive and continuous. finally we get that, hZ(z) =
u(z)
v(z) is a continuous

function.

2.Derivative of hZ(z)

the derivative of hZ(z) is given as

d

dz
hZ(z) =

c(1+ c)(1− e−aλ/z)zc(aλ )cΓ (1− c,aλ/z)+ (aλ )2cc(Γ (1− c,aλ/z))2

[

z(aλ )cΓ (1− c,aλ/z)+ zc+1(1− e−λ a/z)

]2

+
(aλ )ce−aλ/z

z−c+2
[

(1− e−aλ/z)z1+c +(aλ )czΓ (1− c,aλ/z)
]

(47)

Proof

d

dz

(u(z)

v(z)

)

=

du(z)
dz

v(z)− u(z) dv(z)
dz

v(z)2
(48)
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a=1,c=0.3,lambda=2

Fig. 6: Plot of the Hazard function (43) for a = 1,c = 0.3 and λ = 2.

Figure 6 shows the shape of the hazard function of the ratio distribution X/Y for the parameters c = 0.3,a = 1,λ = 2.
Note that the hazard’s curve is positive and continuous, in addition the hazard curve is increasing then decreasing in the
interval 0 < z <+∞, and limz→∞ hZ(z) = 0.
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5 Applications and simulations

5.1 Replenishment of a Life Support system

With the advent of long-duration manned space flights, estimating the changes that will occur in the quantities of certain
substances in the desired ecological system has become more complex.
Ideally, a mathematical model for general system analysis of an ecological system for.lung-duration flights will provide
for:

1.A formulation of the control problem from which optimal control functions car be determined.
2.A preliminary design for the ecological system in respect to system stability and control considerations.
3.A method for determining the time required to restore the Iṡystem to a suitable balance in the case of a mishap and

the time required initially to put the system into operation.
4.The determination of resupply requirements.

One aspect of a preliminary model designed to include the above considerations has resulted in the requirement for
evaluating a product of random variables. It may be stated in the following manner:

Consider the amount of oxygen in a cabin atmosphere. The amount is affected by leakage, crew consumption, and
resupply from a storage capacity. Let:

X(t)=amount of oxygen (in moles) in the cabin atmosphere at time t.

L= proportion of rate of loss of oxygen due to leakage from the cabin atmosphere per time period.

Y1=rate of increase in oxygen content in the cabin atmosphere from storage per time period.

K=rate of decrease in the oxygen content in the cabin atmosphere due to crew consumption per time period.

The estimated amount of oxygen at time t is:

X(t) = exp(Lt)(Y1 −K)+X(0) (49)

In this study, W = exp(Lt) and Z = (Y1 − K) represent random variables which are functions of time. A knowledge
of combining random Variables in product forms is required for solving this problem. Suppose Z is a random variable
follows Pareto distribution with parameter c = 2 and a = 1, and W is a random variable follows Exponential distribution
with parameter λ = 1, then The estimated amount of oxygen at time t is:

X(t) =











0 if t < 0

X(0) if t = 0
2[Γ (3)−Γ (3,t)]

t3 if t > 0

(50)

5.2 Measurement or Radiation by Electronic Counters

Proportional, Geiger, and scintillation counters are often used to ’ detect X and γ radiation, as well as other charged
particles such as electrons and α particles. Design of these counters and their associated circuits depends to some extent
on what is to be detected. A device common to all counters is a scalar. This electronic device counts pulses produced by
the counter. Once the number of pulses over a measured period of time is known, the average counting rate is obtained
by simple division. If the rate of pulses is too high for a mechanical device, it is necessary to scale down the pulses by a
known factor before feeding them to a mechanical counter. There are two kinds of scalars: the binary scalar in which the
scalar factor is some power of 2, and the decade scalar in which the scaling factor is some power of 10.

A typical binary scalar has several scaling factors ranging from 20 to 214. The scaling circuit is made up of a number
of identical ”stages” connected in series, the number of stages being equal to n, where 2n is the desired scaling factor,
Each stage is composed of a number of vacuum tubes, capacitors, and resistors, connected so that only one pulse of
current is transmitted for every two pulses received, Since the output of one stage is connected to the input of another, this
division by two is repeated as many times as there are stages. The output of the last stage is connected to a mechanical
counter that will register one count for every pulse transmitted to it by the last stage. Thus, if N pulses from a counter are
passed through a circuit of n stages, only N

2n will register on the mechanical counter. Because arrival of X-ray quanta in
the counter is random in time, the accuracy of a counting rate measurement is governed by the laws of probability. Two
counts of the same X-ray beam for identical periods of time will not be precisely the same because of the random spacing
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between pulses, even though the counter and scaler are functioning perfectly. Clearly, the accuracy of a rate measurement
of this kind improves as the time of counting is prolonged. It is therefore; important to know how long to count in order
to attain a specified degree of accuracy. This problem is complicated when additional background causes contamination
in the counting process. This unavoidable background is due to cosmic rays and may be augmented, particularly in some
laboratories, by nearby radioactive materials. Suppose we want to estimate the diffraction background in the presence of
a fairly large unavoidable background. Let N be the number of pulses ! counted in a given time from a radiation source;
Let Nb be the number counted in the same time with radiation source removed. The Nb counts are due to unavoidable
background and (N −Nb) to the diffract able background being measured. The relative probable error in (N −Nb) is

EN−Nb
=

67
√

N +Nb

N −Nb

percent.
since N and Nb are random variables, the desirability of obtaining the density function of the above quotient from of

random variable is apparent.
For instance, if

√
N +Nb is a random variable follows Pareto distribution with parameter c = 0.5 and a = 1, and N −Nb is

a random variable follows Exponential distribution with parameter λ = 1, then by using our result The relative probable
error in (N −Nb) is

EN−Nb
=

{

0 if z ≤ 0
33.5Γ (0.5,1/z)

z1.5 if z > 0
(51)

6 Conclusion

This paper has derived The analytical expressions of the PDF, CDF, the moment of order r, the survival function, and
the hazard function, for the distributions of XY and X/Y when X and Y are Pareto and Exponential random variables
distributed independently of each other. we illustrate our results in some graphics of the distributions of product and ratio.
Finally we have discussed two examples of engineering applications for the distribution of the product and ratio.
The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that
improved this paper.
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