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Abstract:First: - We estimated mathematical model for hermitized model in steady-state for the dispersion of air pollutants 

in low winds in three dimensions. The eddy diffusivities have been parameterized in terms of downwind distance for near 

source dispersion [1]. The solution has been used to simulate the field tracer data collected at IIT Delhi in low wind 

convective conditions. 

Second: The analytical solution of advection-diffusion equation in unstable condition has been obtained taking power-law 

profiles for the mean wind speed and vertical eddy diffusivity coefficient. The comparison between the proposed model and 

data collected from nine experiments conducted at Egyptian Atomic Energy Authority has been done. The proposed model 

performs well with observed concentrations.  

Keywords: Hermitized Model, Unstable Condition, Fourier Transform, Non-Gaussian, Copenhagen Experiment. 

 

 

 

1 Introduction 
 

 

 

The dispersion from the source is controlled by the 

downwind pollutants transport through the mean air flow and 

turbulent velocity fluctuation disperses the pollutant in all 

directions [2]. Along-wind diffusion is particularly important 

near the leading edge of the plume, where uncontaminated 

fluid from upwind mixes with the mass initially released [3]. 

In all part of the world and more specifically in tropical 

regions occur weak wind conditions. The low wind can be 

expected to occur 30-45% of the time at most sites [4, 5].   

The Gaussian puff models are assumed to be the same as that 

of the plume, whereas actually puff dispersion and plume 

dispersion theories are quite different [6]. The turbulent 

diffusion in the direction of the mean flow is neglected 

relative to the transport due to advection, which implies that 

the model should be applied for average wind speeds of more 

than 1m/s [7]. From the mathematical point of view: initially 

eddy diffusivities are assumed to be constant for solving the 

diffusion equation.  

 They produce an unreasonable overestimation in low wind 

conditions [8, 9]. However, to overcome the problem of over 

prediction, various modifications in estimating dispersion   

 

 

 

coefficients have been suggested [e.g. split sigma and 

segmented plume methods [10], split sigma theta and short-

term averaging methods [11], Umin approach [12] . 

Various aspects of atmospheric dispersion in low winds have 

been recently been received by [13,14]. 

For nearly thirty years it has known that vertical concentration 

profiles from field and laboratory experiments of near-surface 

point source releases exhibit non-Gaussian distribution [15-17]. 

[18] have derived a puff formula for computing the 

concentration of smoke emitted from a point source in calm 

wind conditions by expressing the dispersion parameters as 

linear functions of time. The non-Gaussian shape has been 

attributed to the non-uniform turbulent mixing that occurs in 

boundary-layer flows. For elevated releases, [19, 20] have 

shown that the agreement between a Gaussian reflected-plume 

formula and measured vertical profiles becomes progressively 

worse at larger downwind distances. 

Several researchers have highlighted the similarities between a 

non-Gaussian model and experimental data for surface releases 

[21, 22]. For elevated releases, [23] found favorable agreement 

between ground-level concentration measurements in a wind 

tunnel and a non-Gaussian model with a prescribed vertical 

diffusion coefficient σz, [24,25] have shown that a non-

Gaussian model better simulates concentration profiles 
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originating from surface sources than a Gaussian reflected-

plume model. 

Analytical models have been developed [26-29] for the 

atmospheric-dispersion in both bounded (inversion) and 

unbounded (infinite mixing layer) domains by expressing 

both eddy diffusivities and wind speed as power law 

functions of height. Tirabassi and his coworkers [30-32] have 

also used height dependent on wind speed as well as eddy 

diffusivities to obtain solutions of advection-diffusion 

equation. 

 

Recently, it has been emphasized [33-36] that for the 

treatment of near source dispersion, eddy diffusivities are 

dependent on a linear function of downwind distance from 

the source. This has been used in dispersion models in 

convective [34] and stable weak wind conditions [35]. 

Analytical solutions of the advection–diffusion equation with 

variable vertical eddy diffusivity and wind speed using 

Hankel transform has been studied by [37].  

 

It is recognized that the planetary boundary layer (PBL) is 

often capped by an inversion, which simply reflects back the 

material reaching the inversion base [38-39]. The earlier 

models [34,40,35,41] imply unrestricted diffusion of plume 

in the vertical direction. This does not occur in the real 

atmosphere where a finite layer of vanishing turbulence at the 

top of the PBL restricts vertical diffusion with the PBL. 

 

In the first thing of the report, an attempt is made for 

generalized the atmospheric diffusion operator. This can be 

accomplished by employing the realizability procedure, to 

identify a surface operator, which ensures self-adjointness of 

the atmospheric diffusion operator. We have formulated a 

mathematical model for dispersion of air pollutants in low 

winds by taking into account the diffusion in all directions 

and advection along the mean wind. The eddy diffusivities 

are assumed to be linear functions of downwind distance. An 

analytical solution has been obtained for the resulting 

advection-diffusion equation with the physically relevant 

boundary conditions, from the series of field experiments (in 

tropical conditions) conducted at IIT Delhi sports ground 

[42], have been simulated by the solution obtained. 
 

In the second thing of the report, we have formulated a 

mathematical model for dispersion of air pollutants in 

moderated winds by taking into account the diffusion in all 

directions and advection along the mean wind. The eddy 

diffusivities are assumed to be linear functions of downwind 

distance and power law in the vertical length. An analytical 

solution has been obtained for the resulting advection-

diffusion equation with the physically relevant boundary 

conditions. The moderate data collected during the 

convective conditions. From nine experiments conducted at 

Inshas site, Cairo-Egypt [36] has been calculated by the 

solution obtained. 

2 First Case 

2.1 Adjoint of the Atmospheric Diffusion Operator 

We now give formal proof for the assertion that the 

conventional atmospheric diffusion operator in the steady 

state, in the simplest form; namely: 
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It does not represent a hermitean operator, in which (Kx, Ky, 

Kz ) are regular eddy diffusivity functions. 

     In view of the conventional second order Sturm-Liouville 

Differential operator [43,44] namely:                        

)(xf
x

K
x

E
x

















                                            (2) 

is not self-adjoint by itself, and its adjoint  [43, 44], reads:    
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Where 
x




and )x(
~
 are defining in the equations (A.8) and 

(A.9). 

By virtue of the above two equations, the ad joint of 

equation (1) can be expressed as: 
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H is not Hermitian (self-adjoint by itself) due to the presence 

of the four commutators, namely: 
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2.2 Reliability of the Atmospheric Diffusion 

Operator 

Alternatively, and in view of equation (4), it is to be noted 

that, the atmospheric diffusion operator H can be rendered 

self-adjoint by adding any member of commentators as given 

in equations (5, 6). 

In this respect, let us denote by H
~

the following operator: 
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fixed upon evaluating its adjoint; namely: 
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By virtue of equation (5) and equation (6) and inserting 

equation (4) and equation (A.6) in equation (8); we get: 
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Employing the intrinsic self-adjointness: 


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There from, one sets the relationships: 
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such set of algebraic equations has the solutions; 

21           

         

1    









and                                                             (13) 

Consequently, the associate operator as given by equation 

(4) reads: 
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This surface operator not only ensures intrinsic self-

adjointness of the atmospheric diffusion operator, but also is 

self-consistent, in view of the fact that it does not include the 

arbitrary boundary condition. 

2.3 Model Formulation of Hermitized Diffusion 

Equation 

By virtue of equation (1) together with the two equations (14) 

and (15), considering the intrinsically self-adjoint diffusion 

equation in the steady state and the mean wind U is in the 

direction of x-axis [40]; namely: 
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Upon, choosing Ks
 
 [34] in the above equation as: 
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 as given by equation (A.8) 

and canceling the terms containing )x(
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x  (Messiah
 
1962) , 

equation(18) becomes: 
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This partial differential equation under the boundary 

conditions: 

i. Far away from the source, the concentration decreases to 

zero, i.e. 
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Ground surface is assumed impermeable to the pollutants, i.e. 
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Eq. (19) has been solved analytically using the method of 

integral transforms [29], to obtain: 
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which, is similar to Gaussian plume solution with (
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2.4 Parameterization 

 For practical application of solution (22), one needs to 

specify the turbulence parameters α, β and γ. These 

parameterized can be identified as squares of turbulence 

intensities using Taylor’s statistical theory of diffusion [1]  

i.e.  

α = (σu /U )
2; β= (σv /U )

2; γ = (σw /U )
2
                             (25) 

When the measurements of intensities of turbulence are 

available, the turbulence parameters should be computed 

directly from the above relations. However, in the absence of 

direct measurements of σu, σv and σw, they can be 

parameterized through the use of empirical similarity 

relations for the planetary boundary layer (PBL)[6,45-49,1]  

     For the convective boundary layer (CBL), mixed layer 
similarity scaling and empirical turbulence data suggested 

that σu= σv ≈aw* (a=0.56) [50] and σw=b w*, where w* is the 

convective velocity scale. The constant b can take values 

from 0.4 to 0.6, depending on the dimensionless height z/zi, 

where zi is the convective mixing height. As a good 

approximation, one can take b≈0.4 for modeling dispersion in 

the surface layer and b≈0.6 for dispersion in the mixed layer. 

With the above parameterization of turbulence in the surface 

layer in convective conditions, equation (25) can be 

expressed as:  

α = β =0.31(w*/U)
2
;   γ=0.16(w*/U)

2
                               (26) 

The relations (26), for convective conditions, have been used 

in solution (22) for estimating the diffusion experiments 

conducted at IIT Delhi for ground-level releases during low 

wind conditions.  

2.5 The Field Tracer Data 

The diffusion data chosen for the simulation were collected 

during SF6–tracer experiments in low wind and unstable 

conditions at IIT Delhi sports ground. During each test run, 

the tracer was released for an hour at a height of about 1 m 

and the air samples were collected during the latter half of 

the release period, at a height of about 0.5m. Twenty sampler 

pumps for collecting air samples were placed on three 

circular arc of radii 50,100, and 150m with the centre as the 

release point in most of the cases. The air samples thus 

collected were later analyzed in the Air Pollution Lab (Dry), 

CAS, IIT Delhi,  

Table1: Relevant experimental details of the convective test 

runs conducted at IIT Delhi sports ground in February 1991. 
 

 

Run  

no. 

Sampling 

time 

(h) 

Wind     

speed 

(m/s) 

w* 

(m/s) 

zi 

(m) 

P-G 

Stab. 

1 1200-1230 1.36 2.37 1570 A-B 

2 1530-1600 0.74 2.26 1240 B 

6 1000-1030 1.40 2.04 1070 B 

7 1245-1315 1.54 2.28 1240 B 

8 1645-1715 0.89 1.09 943 B 

11 1000-1030 1.07 1.83 1070 A-B 

12 1215-1245 1.55 2.32 1325 B 

13 1530-1600 1.08 1.72 1070 B 
 

Using electron–capture gas chromatography [42]. 

Meteorological inputs have been provided by the measurements 

done at 1, 2, 4, 8, 15, and 30m levels at a 30m   

micrometeorological tower located about 300m south-east of 

the release point. Table 1 gives the relevant information about 

the diffusion tests and the wind vectors. In addition, it includes 

values of w* and zi. The data from these 8 unstable test runs 

have been utilized for the following analysis. 

2.6 Results and Discussion 

Solution (22) for a ground-level source is adopted here to 

calculate concentration. Its usage requires the specification of 

mean wind speed U, source strength Q and the turbulence 

parameters α, β and γ. In convective conditions α and β are 

nearly the same, as σu≈ σv. This is reflected in equation (26). 

Therefore, solution (22) simplifies to Sodar measurements 

done by the National Physical Laboratory at a slightly 

different location (only a few kilometers away) in Delhi. All 

these factors could affect the model predictions. The 

concentrations are computed at z=0.5m which is sampling 

height. 
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The peak concentrations obtained from solution (27) on 50 

and 100m arc are tabulated along with observations in Tables 

2 and 3, respectively. The tables reveal that the present model 

(eq. (27)) gives an under predicting trend on both the arcs. 

The peak values are under predicted, roughly by a factor of 3 

to 10. 

Tables 2 and 3 include the results from slender plume 

approximation (α→0) which is the same as the Gaussian 

plume formula with σ’s based on the above-mentioned 

similarity scaling.  Theoretically the downwind diffusion is 

important away from the plume centerline [51,52]. 

Table 2: Peak values of tracer concentration (ppt) observed 

and predicted by various cases at 50m downwind of the 

source. 
 

Run 

no. 

 

Obs-

erved 

 

Present 

Model 

 

Sharan 

Model 

(1996) 

 

Similarit

y 

Present 

model 

Gaussia

n 

Similarit

y 

Sharan 

 

1 832 118 123 155 133 

2 1068 74 67 85 76 

6 1101 85 90 121 97 

7 248 73 77 103 81 

8 1282 304 333 484 354 
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11 616 85 90 113 91 

12 759 117 125 165 139 

13 1060 155 164 212 178 

 

Run 

no. 

 

Obs-

erved 

 

Present 

Model 

 

Sharan 

Model 

(1996) 

 

Similarit

y 

Present 

model 

Gaussia

n 

Similarit

y 

Sharan 

 

1 832 118 123 155 133 

2 1068 74 67 85 76 

6 1101 85 90 121 97 

 

Table 3: Peak values of tracer concentration (ppt) observed 

and predicted by various cases at 100m downwind of the 

source. 

 

Run 

no. 

 

Obs-

erved 

 

Present 

Model 

 

Sharan 

Model 

(1996) 

 

Similarity 

Present 

model 

Gaussian 

Similarit

y 

Sharan 

 

1 345 37 38 40 41 

2 460 20 20 21 19 

6 176 23 23 25 24 

7 288 18 18 20 20 

8 345 83 83 93 88 

11 162 24 24 26 23 

12 222 31 31 34 35 

13 215 40 40 44 44 

 
 

Fig. 1: Scatter diagram of the peak model predictions for 

convective cases and the corresponding observations. dashed 

lines indicate a factor of two and solid a factor of six. 
 

The results from the present model for convective cases are 

shown in Fig. 1. The figure gives a scatter diagram of the 

peak of the predicted and observed concentrations from all 

the test runs. It may be seen that although there’s a clear 

under predicting trend, the number of predictions within a 

factor of 6 are reasonable. A similar trend has been observed 

for the results from model [1]. 

3 Second Case 

3.1 Model Formulation 

The dispersion of pollutants in the atmosphere is governed by 

the basic atmospheric diffusion equation. Under the 

assumption of incompressible flow, atmospheric diffusion 

equation based on the Gradient transport theory can be 

written in the rectangular coordinate system as: 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
=

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝐶

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝐶

𝜕𝑧
) + 𝑆 + 𝑅                                                        (28) 

 

where C is the mean concentration of a pollutant (Bq/m
3
);  S 

and R are the source and removal terms, respectively; (u,v,w) 

and (kx , ky, kw) are the components of wind and diffusivity 

vectors in x , y and w directions , respectively , in an Eulerian 

frame of reference. 

The following assumptions are made in order to simplify 

equation (29): 

1) Steady -state conditions are considered,  i.e.  C/ t 

= 0 

2) As the vertical velocity is much smaller than the 

horizontal one, the term w(  C/ z) is neglected. 

3) x-axis is oriented in the direction of mean wind 

(u=U and v=0). 

4) Source and removal (physical / chemical) pollutants 

are ignored so that S=0 and R=0. 

With the above assumptions, equation (28) reduces to: 

 

𝑢
𝜕𝐶

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝐶

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝐶

𝜕𝑧
)                  (29) 

 

Here U is taken to be function of power law of z: 

0
U   z 0   and      U=U    at z=0

p
z               (30) 
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    (31) 

Where α, β, and γ represent turbulence parameters and 

depend on atmospheric stability. Using above 
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parameterization of diffusivities, equation (29) becomes: 

 

𝛾𝑧𝑛 𝜕2𝐶

𝜕𝑧3 + 𝑛𝛾𝑧𝑛−1 𝜕𝐶

𝜕𝑧
+ 𝛼𝑧𝑝 𝜕2𝐶

𝜕𝑥2 + 𝛽𝑧𝑝 𝜕2𝐶

𝜕𝑦2 = 0           (32) 

We are going to solve the above equation together with the 

following boundary conditions: 

A continuous point source with strength Q is assumed to be 

located at the point (0,0,0), i.e. 

( ) ( )            as          z=0UC Q x y              (33) 

Where  (…) is Dirac
’
s delta function.         

 Far away from the source, the concentration 

decreases to zero, i.e. 

 0  as        x.y ,z  C                                    (34) 

One can solve the power three-dimensional partial 

differential equation (32) analytically by using the method of 

integral transformation, this can be accomplished upon using 

cosine transform in x and cosine transform in y, to obtain a 

partial differential equation in one-dimensional only z, 

namely: 
2

1 2 2

2 12
0

n n p pC C
z n z z C z C

z z
    

 

 

 
   

 
 (35) 

this, is simply reads: 
2

2 2 2 2

1 22
( , , ) 0

aC C
z nz b a z C z

z z
  



 
  

 
 (36) 

where, C* = C* (z) is transformed variable and is 
related to C(x,y,z) as: 

C*(z)= 1 2

o 0

( , , ) cos cos   C x y z x y dx dy 

 

  (37) 

and a, b is given by: 

                       𝑎 =
𝑝−𝑛+2

2
                                            (38) 

where p and n are constants which takes values 0.15-0.28 and 

0.5-0.9 respectively for the smooth boundary layer [22].   

                          𝑏 = [
𝛼𝜆1

2

𝛾𝑎2 +
𝛽𝜆2

2

𝛾𝑎2]

1

2
                                 (39) 

Equation (37) can be reducible to Bessel
’
s equation [53], 

namely: 

 
2

22 2

2
0

C C
z z bz C

z z
 

   

 

 
    
  

     (40) 

On changing the dependent (C*) and independent (z) 

variables by means of the substitutes: 

And 

1
                      

2         

        

n

a

C C z

z z



 




 









             (41) 

in which is given by: 

                      
1

2

n

a



                                               (42) 

Equation (40) is a modified Bessel equation and has a 

solutions a modified Bessel function  I bz 
  of first  kind 

and  K bz 
of second kind of order 𝑣 = (1 − 𝑛)/2𝑎.  

The general solution of equation (36) is thus: 

 (43) 

where A and B are arbitrary constants of integration, and can 

be determent upon using the boundary conditions (34), and 

boundary condition (33) which imply respectively that: 

                 A=0 

and 

                 B=  
1-

0

 2
1- sin   b

 

Q

U


 


         

Consequently; equation (44) can be expressed explicitly as: 

                      1 2
( , , )

a
C z b k bz



 


                     (44) 

Under the conditions: 



n < 1    &    p > n-2 

where, is a function in z namely: 

                    =   
1-

0

 2
1- sin   z

 

aQ

U


 


           (45) 

Consequently; Eq. (44) can be expressed explicitly as: 

                1 2
( , , )

a
C z b k bz



 


                              (46) 

Under the conditions: 



n < 1    &    p > n-2 

where, is a function in z namely: 

 =   
1-

0

 2
1- sin   z

 

aQ

U


 


                              (47) 

Now, inverting Eq. (45) with respect to the parameters and 

 one gets: 

C(x,y,z)=  
2

1 2 1 22

o 0

2
  cos  cos   

a
b K bz x y d d



   



 

     (48)   

Upon, introducing in the above equation, the explicit 

expression of b as given in equation (40) which is a function 

in  and 2
 , one can evaluate the double integral in 

equation (47), where the integration on  is given by [54]: 

  1 1

0

cos  
a

b K bz x d



 



 =  
1

2
2 1 2

2

xz
K




 






     (49)     

where, xz
 and  


  are functions in x and z and 

independent of 2
 , namely: 

   
1

2
1 2

( , , )  +

n

a a a
C z C z AI bz Bk bz z



 
 



 
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 
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1
1

2
a2

2

2 2a

2

                   z

                = x  

in which   

              x = x   &     z = z     

xz

xz

a
a

and

z

a




 

 

 

 

  
  
 



 

 


       





  







(50) 

Upon, inserting equation (49) in equation (48), one gets: 

C(x,y,z) =  
1

2
2 1 2 2 22

20

4
cos y 

xz
K d




   









      (51) 

The integration in Eq. (49) can be evaluated from [54] to 

give: 

C(x,y,z)=  
1 1

1
2 22 2

2

4
2 ( 1)

xz xz
y

  

 


   



 
      

 
  (52) 

which, upon employing the value of  
 as given in Eq. (48), 

the mean concentration of a pollutant C(x,y,z), is finally 

expressed explicitly as: 

C(x,y,z)=

   
15/2

-2 - -1/2 1/ 2 2 2 2 2

5 / 2 2

0

 2
1- 1+ sin   a z

 

a aQ
x y z

U a



     
     

  

 

  
    

 
    

                                                                        -----------(53) 

The solution given by Eq. (33) can be rewritten as: 

C(x,y,z)=
 

2
2 2

2 2
2 2

2

1

1/11/25/2 2

2 2 2

3/ 2 2 2

0

 2
 z 1

 

a

a

a
x y

a z
x y

z
a

a

Q a
x y

U a z

 


  

   


    

 
       

      


 
       
        

       
 

  

                                                                -----------(54)  

If Kx,  Ky , Kz are functions in xU(z) (i.e. p=n), the mean 

concentration of a pollutant C(x,y,z), reads: 

C(x,y,z)=
  2 2

2

11/25/2 1
2

3/ 2

0

 2
 z

 

x y
zQ

e
U

 


 


  

  
   

    
   
   

(55)  

 Assuming that at the ground surface the wind velocity Uo 

equals 2.0m/s. While α=3, p=0.12-0.28 and n=0.5-0.9. [22]. 

The turbulence parameters have been obtained [29] as 

follows: 
2

*
2

* )/(16.0)/(31.0 UwandUw       (56) 

 

where w* is the convective scale vertical velocity.  
 

The relation (56) for convective conditions has been used in 

solution (55) and (54) for estimating the diffusion of nine 

experiments worked at Inshas, Cairo for elevated releases 

during moderate wind condition. 

 

3.2 Source  

Source in EAEA. The study area is flat, dominated by sandy 

soil with poor vegetation cover. The air samples collected 

were analyzed in Radiation Protection Department, NRC, 

EAEA, using a high-volume air sampler with 220V /50Hz 

bias [14]. Meteorological data have been provided by the 

measurements done at 10 and 60 m. Table 4. gives the data 

information about the diffusion tests and the wind vectors. In 

addition, it contains values of vertical velocity scale (w*) and 

mixing height (zi). The data from these nine unstable test 

runs have been utilized for the following analysis. 

Table 4: Meteorological data of the nine convective test runs 

at Inshas site in March and May 2006.   

 

 

Run 

no. 

Working 

Hours 

Wind 

speed 

W* 

(ms-

1) 

Emission 

rate 

Bq 

zi 

(m) 

P-G 

Stab. 

1 48 4 2.27 1028571 600.85 A 

2 49 4 3.05 1050000 801.13 A 

3 1.5 6 1.61 42857.14 973 B 

4 22 4 1.23 471428.6 888 C 

5 23 4 0.958 492857.1 921 A 

6 24 4 1.3 514285.7 443 D 

7 28 4 1.51 1007143 1271 C 

8 

9 

48.7 

48.45 

4 

4 

1.64 

2.1 

1043571 

1033929 

1842 

1642 

C 

A 

 

3.3 Model Parameters 
 

For the concentration computations, we require the 

knowledge of wind speed, wind direction, source strength, 

the dispersion parameters, mixing height and the vertical 

scale velocity. Wind speeds are greater than 3m/s most of the 

time even at 10m level. Further the variation wind direction 

with time is also visible. Thus in the present study, we have 

adopted dispersion parameters for urban terrain which are 

based on power law functions. The analytical expressions 

depend upon downwind distance, vertical distance and 

atmospheric stability. The atmospheric stability has been 

calculated from Monin-Obukhov length scale (1/L) [55] 

based on friction velocity, temperature, and surface heat flux. 
 

3.4 Results and Discussion 
 

The concentration is computed using data collected at 

vertical distance of a 30m multi-level micrometeoro-logical 

tower. In all a test runs were conducted for the purpose of 

computation. The concentration at a receptor can be 

computed in the following two ways: 
 

(i) Applying formula (54) which contains eddy 

diffusivities as function with power law at 

y=0.0 for half hourly averaging. 
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(ii) Applying formula (55) with eddy diffusivities are 

function in linear downwind distance at y=0.0 

for half hourly averaging. 

Table 5: Observed and predicted concentrations for Run 9 

experiments. 
 

 

Test 

 

Down 

wind 

distance 

(m) 

 

Z 

(m)l 

Obs. 

Conc. 

(Bq 

/m
3
) 

Predicted 

Conc. 

Eq.(54) 

 (Bq/m3) 

 

Pred. 

Conc. 

Eq.(55) 

(Bq/m3) 

1 100 5 0.025 0.020 0.030 

2 98 10 0.037 0.039 0.135 

3 115 5 0.091 0.078 0.253 

4 135 5 0.197 0.121 0.499 

5 99 2 0.272 0.292 0.011 

6 184 11 0.188 0.124 0.134 

7 165 12 0.447 0.280 0.105 

8 

9 

134 

96 

7.5 

5.0 
0.123 

0.032 

0.121 

0.031 

0.151 

0.109 

 

As an illustration, results computed from these approaches 

are shown in Table 5, for nine typical test. This Table 

shows that the observed and predicted concentrations for 

I135 using Eq. (54) with power law    of the wind speed 

and eddy diffusivities are nearer to each other. While the 

predicted concentrations are estimated from Eq. (55) since 

the wind speed is function in power law of “z” are greater 

three times than the observed concentrations of I135. 

Fig. 2 shows the variation of predicted and observed 

concentration of I135 with the downwind distance. One gets 

good agreement between observed and predicted 

concentration which is estimated from Eq. (55), while the 

concentration using Eq. (56) are a factor of four with the 
corresponding observations.  Fig. 3 shows that the predicted 

concentrations which are estimated from Eq. (54) are a factor 

of two with the observed concentration while the predicted 

concentrations which is estimated from Eq. (55) are in factor 

of four with the corresponding observations.   

 
 

Fig. 2: Maximum computed concentrations compared  

with observed maximum value for each test run. 

 

 

 
 

 

Fig. 3: Diagram of Predicted model for two Eqns. (54) and 

(55) with corresponding observation. Solid lines indicate a 

factor of two and dashed lines a factor of three. 
 

From this study, one can get when the wind speed is function 

in power law of “z” and the eddy diffusivities are linear 

function and power law in downwind and vertical distances 

respectively, the predicted concentrations are in a best 

agreement with the corresponding observation than the 

predicted concentrations from Eq. (55) since the wind speed 

is function in power law of the vertical distance and eddy 
diffusivities are function in linear downwind distance. 

4 Conclusions 

An analytical solution of the mathematical model for 

hermitized atmospheric dispersion of a pollutant has been 

obtained for the steady-state form of advection-diffusion 

equation with linearly varying eddy diffusivities.  

The slender plume approximation which gives concentration 

close to the plume centerline is shown to be analogous to the 

Gaussian plume solution.  

The turbulence parameters in the model have been identified 

as squares of intensities of turbulence. They have been 

parameterized in terms of empirical relations using similarity 

theory. 

Using the solution of equation (22) for a ground-level source, 

IIT-SF6 convective diffusion tests have been simulated.  

The present model simulations are found to be low relative to 

the observations and the Gaussian plume simulations.  

The simulations are close to those based on Sharan’s and 

Arya’s models and Gaussian approach using 

parameterization in terms of convective velocity.  

The solution described in this study has a practical limitation 

that it doesn’t give the concentration field in the region 

upstream of the source, although the upstream diffusion may 
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be expected near the source under low wind convective 

conditions [1].  

From second study, one can get when the wind speed is 

function in power law of “z” and the eddy diffusivities are 

linear function and power law in downwind and vertical 

distances, the predicted concentrations are in a best 

agreement with the corresponding observation than the 

predicted concentrations from Eq. (55) with the eddy 

diffusivities are linear function in downwind since the wind 

speed is function in power law of the vertical distance.  
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