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Abstract: In this article, new definitions for a correlation coefficient using the rough sets technique are introduced. These definitions

are more general than statistic definitions, which give the capability to handle all information system tables (qualitative, quantity,

ordered, and unordered data). By using these definitions, dealing with all unordered data tables can be done, which can’t deal with it

by using a statistical definition, these definitions will be discussed in detail through some examples.
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1 Introduction

In the past few years, rough sets theory [1,2] has attracted
great attention in numerous domains, such as data mining,
pattern identification, and machine learning. The classical
rough sets (CRS) model [1,2,3,4] was effectively utilized
as a mathematical method to handle uncertainty data,
reduce the attributes (feature selection), extract the rules,
and justify uncertainty. The classification analyses of data
tables are discussed [5,6]. The classification research is
discussed in the data tables. Measurements or human
experts can be used for obtaining the data. The rough set
analysis’s main goal is to synthesize the approximation of
the acquired data concepts and reduce the display of them
to a minimum [7,8,9,10,11]. Several rough set modes
were established in a rough set community in the recent
decades including VPRS and GRS [1,3,4,5,11,12,13,
14]. Some of them were implemented in industrial data
mining projects, such as patient symptoms diagnostics,
telemarket churner predictions, stock market predictions,
and client attrition analyses for financial banks to resolve
difficult business difficulties [8,9,10,15,16,17,18]. These
rough-set models are aimed at extending Pawlak’s
original model [1,2] and trying to meet its limits, like
statistical distribution or noisy data management. The
semi-correlation factor [19] is used in information system
tables for the reduction of attributes.

The approach we utilized depends on the positive region
between the characteristics of the condition and decision
or ”attributes” which classify the objects with regard to
all condition attributes as equivalence classes.” In the
positive region, we have a new definition of the
correlation factor that applies to all data (quantity,
qualitative, ordered, and unordered data). In this article,
we start with section 2 as an introduction to the
fundamental ideas of rough sets theory and coefficient of
correlation. Section 3 presents the new definitions of
correlation coefficient depending on the concepts of the
rough sets, and we end this work in the concluding
section.

2 Basic Concepts

2.1 Information System

A data set is portrayed as a table in which each row is
represented by a case, patient, incident, or simply an
object. Each column has an attribute for each item (a
variable, property, inspection, and so on) and a human
specialist or user may also give the attribute. This table is
called information system (IS) table [2] that can be
defined as IS=(U,A,ρ ,V), where U is a non-empty finite
set of objects called a universe and A is a non-empty
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finite set of attributes.

IS = (U,A,ρ ,V ) (1)

Any subset X ⊆U is termed a U category, each attribute
a ∈A is seen as mapping U elements into Va set, where
Va set is called a value set of an attribute a.

ρ : UxA →Va (2)

2.2 Mathematical Model in Information System

There are mathematical models that may be utilized to
extract knowledge by utilizing the provided data from
information systems.

2.2.1 Indiscernibility Relation

For any Q ⊆ A there is an equivalence relation IND(Q)
[2]:

IND(Q) = {(x,y) ∈U2 : ∀a ∈ Q,a(x) = a(y)} (3)

The partition of U, generated by IND(Q) is denoted
U/IND(Q) (or U/Q) and can be obtained as follows:

U/IND(Q) =⊗{a ∈ Q : U/IND({a})}, (4)

where

A⊗B = {X ∩Y : ∀X ∈ A,∀Y ∈ B,X ∩Y 6= Ø} (5)

If (x,y)∈IND(Q), then x and y are indiscernible by
attributes from Q. The equivalence classes of the
Q-indiscernibility relation are denoted [x]Q.

2.2.2 Lower and upper approximations

Let Y⊆U. Y can be approximated using only the
information contained within Q by constructing the
Q-lower and Q-upper approximations of Y [2]:

QY = {y : [y]Q ⊆ Y} (6)

QY = {y : [y]Q ∩Y 6= Ø} (7)

2.2.3 Positive, negative, and boundary regions

If C and D are equivalence relations over U, then the
positive, negative, and boundary regions are defined as
follows [2]:

POS(C,D) =
⋃

X∈U

QX (8)

NEG(C,D) =U −
⋃

X∈U

QX (9)

BND(C,D) =U −{POS(C,D)∪NEG(C,D)} (10)

The positive region includes all objects U categorized
by information in characteristics C in U/D classes.
BND(C,D) is a collection of items that could be
categorized in this way, but not surely. NEG(C,D) is the
negative region of items that cannot be categorized into
U/D classes.

2.3 Statistical correlation coefficient

In essence, the Pearson product-moment coefficient [20] is
only a particular example where the data are translated into
ranking before the coefficient is calculated. However, for
the sake of r calculations, a simpler technique is typically
employed. The raw scores are transformed to rankings, and
the differences d between ranks are calculated on each of
the two variables.

Correlation Coefficient of Spearman Rank [20].
Spearman proposes non-parametric (distribution-free)
rank statistics as a measure for the force of the linkages
between two variables in 1904. The coefficient of the
Spearman grade correlation might be used to produce an
R-estimate and is a measure of the monotone relationship
used to make the Pearson correlation coefficient
unwanted or deceptive by the distribution of data.

The correlation coefficient of Spearman rank is defined
by

r = 1−
6∑di

2

n(n2 − 1)
(11)

where d is the difference between each rank of
matching x and y values, and n is the number of pairs of
values.
The above formulation is a close approximation to the
precise correlation coefficient.

r =
∑i(xi − x)(yi − y)

√

∑i(xi − x)2 ∑i(yi − y)2
(12)

derived from the original data.The Spearman rank
correlation coefficient is significantly easier to compute
since it utilizes ranks.

Example 1.

Let U={1,2,3,4,5} be persons, A={a1,a2,a3} be
subjects which are: a1=Mathematics, a2=English,
a3=Chemistry, and the values E=excellent, VG=Very
Good, G=Good, P=Pass are grade of students as shown in
Table 1.
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Table 1: Grade of students in some subjects

U/A a1 a2 a3

1 VG VG E

2 VG VG E

3 G G VG

4 G G VG

5 P P G

Table 2: Rank between a1 and a2

U/A a1 a2 R(a1) R(a2) d d2

1 VG VG 4.5 4.5 0 0

2 VG VG 4.5 4.5 0 0

3 G G 2.5 2.5 0 0

4 G G 2.5 2.5 0 0

5 P P 1 1 0 0

Sum - - - - 0 0

Table 3: Rank between a2 and a3

U/A a2 a3 R(a1) R(a2) d d2

1 VG E 4.5 4.5 0 0

2 VG E 4.5 4.5 0 0

3 G VG 2.5 2.5 0 0

4 G VG 2.5 2.5 0 0

5 P G 1 1 0 0

Sum - - - - 0 0

By using the statistical definition of the correlation
coefficient (Spearman coefficient), see the following rank
tables Table 2 and Table 3:
From Table 2 and Table 3, we find that:
The statistical correlation coefficient between a1 and a2 is
1 or 100%, see Table 2:

r = 1−
6∑d2

i

n(n2 − 1)
= 1−

0

5(25− 1)
= 1

The statistical correlation coefficient between a2 and a3 is
1 or 100%, see Table 3:

r = 1−
6∑d2

i

n(n2 − 1)
= 1−

0

5(25− 1)
= 1

also, the statistical correlation coefficient between a1 and
a3 is 1 or 100%.

3 Rough Set Correlation Coefficient

Using rough sets theory approaches, this section
provides a new definition for the correlation coefficient.
This concept applies to quantitative, qualitative, ordered,
and unordered data. Statistical correlation definitions
cannot work with unordered data.

Definition 1. Let U be a universe and A be a set of
condition attributes, ai,a j ∈ A, then ri, jis a rough set

correlation coefficient between attributes ai and a j, and it
may be computed as follows:

ri, j =
||Pos({ai},{a j})||

||U ||
, (13)

where

POS({ai},{a j})=∪Yi∈U/IND({a j}){X ∈U/IND(ai),X ⊆Yi}

(14)

where ai,a j ∈ A, and i,j=1,2,3,....,‖C‖

Definition 2. In a decision information system tables, Let
U be a universe and A={C,D} be a set of attributes of
condition C and attribute of decision D, ci ∈C, then ri is a
rough set correlation coefficient between condition
attribute ci and decision attribute D, and it may be
computed as follows:

ri =
||Pos({ci},D)||

||U ||
, (15)

where

POS({ci},D) = ∪Yi∈U/IND(D){X ∈U/IND(ci),X ⊆ Yi}
(16)

where ci ∈C, and i=1,2,3,....,‖C‖
See the following examples.

Example 2.

Continue from Table 1 in Example 1, and by using the
concepts of rough sets theory, and rough set correlation
coefficient, we get the following:

U/IND({a1}) = {{1,2}, {3,4}, {5}}
U/IND({a2}) = {{1,2}, {3,4}, {5}}
U/IND({a3}) = {{1,2}, {3,4}, {5}}
Then, U/IND({a1}) = U/IND({a2}) = U/IND({a3})

ra1,a2 =
||Pos({a1},{a2})||

||U|| = ||{1,2,3,4,5}||
||{1,2,3,4,5}|| =

5
5 = 1

also :
ra1,a3 = 1, ra2,a3 = 1

This means that: The correlation coefficients between a1,
a2 and a3 are equivalent and equal to 1.

Example 3.

Let U={x1,x2,x3,x4,x5,x6} be the universe, A={C,D} be
the attributes, where C={c1,c2,c3} is the condition
attributes, and D is the decision attribute. The values of
these condition attributes are symbols which can’t be
ordered as α , β , γ , S, R, H, M, and L as shown in Table 4.
Using rough sets techniques, we get;
U/IND({c1})={{x1,x3,x6},{x2,x5},{x4}}
U/IND({c2})={{x1,x2,x4},{x3,x5,x6}}
U/IND({c3})={{x1,x2,x5},{x3,x6},{x4}}
and
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Table 4: Qualitative information system

U/A c1 c2 c3 D

x1 α S H H

x2 β S H H

x3 α R L L

x4 γ S M L

x5 β R H H

x6 α R L L

U/IND(D)={{x1,x2,x5},{x3,x4,x6}}
Then, the rough sets correlation coefficient between c1 and
D is

r1 =
||Pos({c1},D)||

||U|| = ||{x2,x4,x5||
||{x1,x2,x3,x4,x5,x6}||

= 3
6 = 0.5

The rough sets correlation coefficient between c2 and D is

r2 =
||Pos({c2},D)||

||U||

= 0
6 = 0

The rough sets correlation coefficient between c3 and D is

r3 =
||Pos({c3},D)||

||U||

= 6
6 = 1

4 Conclusion

The statistical correlation coefficients can’t deal with all
data such as unordered data. So, we can use the
definitions of rough set correlation coefficient. These
definitions are used for all data (qualitative, quantity,
ordered and unordered data).
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