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type in ordered partial metric spaces.
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1 Introduction Definition 1.2. Any two elementsx andy of a setX,
) ] ] ) which is partially ordered by a binary relatiod , are
The notion of partial metric space was introduced by gjther comparable or incomparable. Specifically, the

Matthews g as a part of the study of denotational glementsx andy are comparable if and only i <y or
semantics of data flow networks. In fact, it is widely y < Otherwisex andy are incomparable.

recognized that partial metric spaces play an importan

role in constructing models in the theory of computation D€finition 1.3.[18] A partial metric on a nonempty s&t

[4,6,14,20,19,24,25,26,27,28,31,32). is a functionp : X x X — R* such that for alk,y,z € X:
Matthews [L8], Oltra and Valero 19], Romaguera (1) Xx=Yy < p(x,x) = p(xy) = (YY),

[24] and Altun, Sola and Simseks] proved fixed point (P2) P(X%,X) < P(x.Y), P(Y,Y) < P(X,Y),

theorems in partial metric spaces for a single map. (P3) P(X,Y) = P(Y,X),

In this paper, we obtain a common fixed point (pa) P(x.y) < p(X,2) + p(zy) — p(z 2).
theorem for four self mappings satisfying a generalized I this casgX, p) is called a partial metric space.
(y-@) contractive condition of integral type in ordered Itis clear that/p(x,y) — p(y,2)| < p(x,2) ¥x,y,z € X.
partial metric spaces. First we recall some definitions andAlso clear thatp(x,y) = 0 impliesx =y from (p1) and
lemmas in partial metric spaces. (p2). But if x =1y, p(x,y) may not be zero. A basic

Definition 1.1. A partial order set consists of a sétand ~ €x@mple of a partial metric space is thhe péR’", p),
a binary relation< on X which satisfies the following Wherep(x.y) = max{x,y} for all x,y € R™. Each partial

conditions: metric p on X generatesy topologytp on X which has a
(i) x < x (reflexive); base the family of opep - balls {Bp(x,€) | x € X, £ > 0}
(ii) if x<yandy =< x thenx =y (antisymmetry); for al x € X ~and ¢ > 0  where

Bp(x,&) ={ye X | p(x,y) < p(x,x) + ¢} forall x e X and

iii) if x <y andy < zthenx < z (transitivity); : ) ; .
(ii if x < yandy = z XS 2( tivity) € > 0. If pis a partial metric onX, then the function

for all x,y andzin X. The relation< is called a partial

order for the seX. pz X x X = R given by
A set with a partial ordex is called partially ordered  P(X.¥) = 2P(X.y) — p(X,X) — p(y.y) is & metric orX.
set. Definition 1.4.[18] Let (X, p) be a partial metric space.
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(i) A sequence{xy} in (X, p) is said to converge to a for mappings satisfying integral type condition (for
pointx € X if and only if lim p(x,%,) = p(X,X). instance, se€d[7,10,11,16,21,23,29,30)).

. e © cai Recently Cai et.alq] proved the following theorem

A X t h = e
Seq(Lllli)El’lCP:S ﬁqlﬁﬁ:]g?i: njm;neiis’ts )a,lqsd ?Sa Ifcijnitc; be Cauchy which is a generalization of theorem of Luong and Thuan
nm—eo ' [17].

Theorem 1.11[9] Let (X,d) be a complete metric space
andT,S: X — X be mappings such that for adly € X,

(i) (X,p) is said to be complete if every Cauchy
sequencgx,} in X converges, w.r.tap, to a pointx € X
such thatp(x, x) = nmm P(Xn, Xm)-

L 1.5.[18] Let (X, p) b tial metri e M) MEY
emma 1.5.[18] Let (X, p) be a partial metric space. wl [ omdt)<w| [ o®)dt] -9 [ ot)dt
(@) {xn} is a Cauchy sequence {X, p) if and only if 0 0 0
it is a Cauchy sequence in the metric speXep®).
(b) (X, p) is complete iff the metric spacgX,p®) is  where¢ : Rt — R" be a Lebesgue-integrable mapping

complete.  Furthermore, lip3(xp,x) = 0 iff ~ which is summable, non-negative and such that
n—o0 £
p(X,X) = r!mo P(Xn, X) = nlrmw P(Xn, Xm)- Jé(t)dt >0 for eache >0, g € Q, ¢ : RT — R* is
: 0
Lemma 1.6[4] Let (X, p) be a partial metric space and lower semicontinuous, non-decreasing and

X — z asn— o in (X,p) such thatp(z,z) = 0. Then ¢(t) =0«<t=0and
limn—e P(Xn,y) = P(zy) for everyy € X. .
Definition 1.7.[15] Two self maps andf of a nonempty M(xy) = mex{d(xy),d(Txx),d(Sy,y), 3[d(y, TX) +d(x H)l}-
set X are said to be weakly compatible ffFx = F fx
wheneverfx = Fx for somex € X.

In 1997, Alber and Guerre-Delabrierg] [introduced
th.e following concept of weakly contractive mapping in function.
Hilbert spaces. (i) @ :R* — R* be a lower semi-continuous and
Definition 1.8[5] A mappingT : X — X is said to be a  ¢(t) > 0 for eacht > 0.
weakly contractive mapping if (i) ¢ : Rt — R* be a Lebesgue-integrable mapping

which is summable, non-negative and such that
d(Tvay) < d(X,y) - (p(d(xay))a

&
J¢(t)dt > 0 for eache > 0.
for all x,y € X and somep € Q, where 0

ThenT andShave a unique common fixed pointi
Here afterwards, assume the following:
() ¢ : RT — R* be a continuous and non-decreasing

Remarb 1.12. . .
Q={¢|@:R" —R" is continuous, non-decreasing and ¢ w (fd)(t)dt) <y <f¢(t)dt) 0 <f¢(t)dt), then
0 0 0

p(t)=0<1t=0} £=0.
Now,we give our main result.
Rhoades22] extended the results of Alber and Guerre-
Delabriere to complete metric spaces.
Theorem 1.9[27] Let (X,d) be a complete metric space 2 Main Result
andT a weakly contractive mapping. Th@&nhas a unique

fixed point. Theorem 2.1.Let (X, =, p) be an ordered partial metric

Dutta and Choudhury 1§ introduced a new  gpace and Ief, G, f,g: X — X be mappings satisfying
generalization of contraction mapping and proved the

following theorem. p(Fx,Gy) M(xy) M(xy)
Theorem 1.10[13] Let (X,d) be a complete metric space 4’( Of ¢(t)dt> sy ( Of ¢(t)dt> - ‘P< Of ‘l’(t)dt) ’
andT : X — X be a mapping satisfying

WA(TXTy)) < w(d(xy)) — o(d(xy)) for all comparable elementsy in X, where

I fx,gy), p(fx, Fx), p(gy, Gy), }
forallx,y € X, wherey, ¢ € Q. ThenT has a unique fixed M (X,y) = max bl ,
Y v q () {%[p(fx,GyH p(gy, Fx)]

point.
Recently several authors are using the-¢)
contractive condition on maps to prove fixed and common F(X) Cg(X),G(X) C f(X), (2)

fixed point theorems (for example, s€gZ,12,33)).

In [8], Branciari obtained a fixed point result for a
single mapping an analogue of Banach’s contraction
principle for an integral type inequality. Later several
authors proved fixed and common fixed point theorems if Fx=guthenx <u, if Gy= fvtheny<v, (4)

the pairg(f,F) and(g,G) are weakly compatible, (3)
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and one of the following:

(a) if f(X) is complete angh, = Gx, be such thayn —
y= fve f(X), thenx, < vandx, <yforalln

(b) if g(X) is complete angl, = Fxn be such thag, —
y=gv € g(X), thenx, < vandx, <y forall n,
ThenF, G, f andg have a common fixed point K.

Proof. Let xo € X. From @), there exist sequencesn}
and{yn} in X such that

Yon = FXon = O%ont1,Yont1 = GXong1 = fXoni2,n=0,1,2,....

From (@), it follows thatxg < x; <xo < ....
Case (i). Supposgm = Yom+1 for somem. We have

p(Y2m+17y2m)» p(Y2m+1: YZm+2)a
p(y2m7y2m+1)a

1| P(Yami1,Yoms1)

2 + p(Yam, Yomi-2)

M (Xomy-2, Xom4-1) = Max

We have, from (p)

P(Yomt1,Yom) = P(Yomi1,Yome1) < P(Yams1,Yomy2) and
from (ps)

1 { P(Yom1, Yom+1) }
2 | +p(Yom, Yom2)

IN

1
> [P(Y2m, Yom+1) + P(Y2me1,Yom2)]

< p(Yamy1,Yomi2)

hence we haveM(Xomi2,%mi1) = P(Yomit,Yomi2)-
Therefore, from1),we have

~P(Yamy2,Y2mi1) ~P(F Xam2,GXomy 1)
w( [ swa) < ([ o))
<y (/Op<YZm+2ay2m+1) ¢(t)dt)
P(Yams2,Y2mi1)
o/ o) ).

From Remark 1.12, we hawem:1 = Yamt2. Continuing
in this way, we can conclude thgt = y,.« for all k > 0.
Thus{yn} is a Cauchy sequence.

Case (ii) Assume thak # yn+1 for all n. Denote

Pn = P(Yn,Yn+1). Now
P(Y2n,Y2n+1)
w( [ o)

o( [ owa) -
" </OP(Fin,Gin+1) ¢(t)dt>

M (Xzn,X2n+1)
w( [ sa)
M (Xzn,X2n+1)
o[ otar)

P(Y2n-1,Y2n); P(Y2n—1,Y2n)-

P(Yzn,Y2ni1)s
M =
(Xzn Xon 1) = max l[ P(Y2n-1,Y2n+1) }

2 + p(Yan, Y2n)
= max{pPzn—1,Pan} -

IN

where

If pon is maximum, then

w([Towe) <u( [T ews)-o( [T owe)
<w(4%¢amﬁ,

which is a contradiction. Hendd (Xon, Xon+1) = Pan—1 and
thus
w([Towa) <l [ o) o [ pwa)
*Pon-1
<u( [T o). 5)

Sincey is non-decreasing, we have

[T owds [T g

Similarly we can show that

/O 5 ()t < /O P 5 ().

Thus{ /3" ¢(t)dt} is a monotone decreasing sequence of
non-negative real numbers and must converge to a real
number, sayr > 0. Taking lim sup on both sides 05}

we have
W) < () — (),

which implies thatp(r) < 0. By the property ofp, we have
r =0, thatis,

i P(Yn,Yn+1) d 0
fm (" o) =

lim p(Yn,Yn+1) = 0. (6)

Hence

From (p), '
lim p(yn,yn) = 0. (7

From 6) and (7) and from the definition op®, we have
r!mo P°(Yn, Yn+1) = 0. (8)

Now we prove tha{y.n} is a Cauchy sequence (X, p%).

On contrary suppose th@y.,} is not Cauchy. Then there
exists ane > 0 and monotone increasing sequences of
natural number$2my} and{2ny} such than, > my,

P°(Yamy, Yan,) > € 9)
and
ps(erTkayZFkaZ) <E&. (10)

From Q) and (L0), we have

£< ps(y2m<ay2nk)
S pS(YZm(aYan—Z) + ps(Yan—ZaYan—l) + pS(Yan—laYan)
<&+ pS(Yan—Zv)/an—l) + pS(Yan—LYan)-
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Lettingk — o and using §), we have
L B
lim p*(Yam; Yan,) = € (11)

Hence from definition op® and from {),we have

. €
lim p(yamc,yen) = 5 (12)
Lettingk — o and using {1) and @) in

|pS(Yan+1aYZm<) - ps(erTkayZFIk” < ps(YanJrla)’an)

we get
llm P(Yany+1: Yom,) = €. (13)

Hence we have

. £

llm P(Yan+1,Yom) = > (14)
Lettingk — o and using {1) and @) in

IP°(Yane: Yome—1) — P°(Yane, Yom )| < P°(Yom—1, Yom,)

we get
llmo pS(Yana)’erkfl) =E. (15)
Hence we have
. £
lim p(yan, yom-1) = 5. (16)

Lettingk — o0 and using 15) and @) in

IP%(Yom—1, Yo +1) — P2 (Yome—1,Yon )| < P°(Yan+1: Yon,)

we get
M}o P (Yom—1,Yon+1) = E. (17)

Hence we have

. &
lim P(Yom—1,Yon+1) = > (18)

From (), (12), (16) and (L8) we have

p(YZm(fLyanL p(Yan(—l7y2w)>
P(Yan; Yan+1),
M (Xom, , X: = max 7 etk
(Xeme Xen1) 1 {p(ermeYanJrl)
2 + p(Yan7y2w)

€
— 3 ask — oo,

Now from (1), we have

" (/Op<y2n‘(yy2nk+l>¢(t)dt) _y (/Op<Fxm,Gx2nk+1>¢(t)dt)
sw(AMw“&%”¢mm)

"M (Xamy Xan 1)
—w(% ¢am§

and lettingk — oo, we get

v (/fdb(t)dt) < (/o o)) —w(/f o)t ).

From Remark 1.12, we hawe= 0. It is a contradiction.
Hence {y»n} is Cauchy. Letting nm — o in

|P%(Yant1, Yom+1) — P2 (Yan, Yom)| <
. P°(Yani1,Y2n) + P(Yom, Yoms)
we get lim p*(yani1,¥ami1) = 0. Hence {yxn1} is

Cauchy. Thus{y,} is a Cauchy sequence ifX, p®).
Hence, we havemnﬂmps(yn,ym) = 0. Now, from the

definition of p* and from ), we have
n,lrianoo P(Yn,Ym) = 0. (19)

Suppose (a) holds. Sindg/ani1} = {fxen} C f(X) is a
Cauchy sequence in the complete metric sgacX), p°),

it follows that {y»n:1} converges in(f(X),p®). Thus
Aiinw P°(Yant1,V) = 0 for somev € f(X). There exists

t € X such thatv = f(t). From (a), it is clear that
Xont1 =<t andxzn1 < v for all n. Since{yn} is Cauchy in

X and {yan:1} — v, it follows that {y»;,} — v. From

Lemma 1.5, we have

P(V;v) = lim P(Yzn+1,V) = lim plyzn,v) = lim_p(Yn,Ym).
(20)

From (19) and Q0), we have
P(V,v) = lim p(yan:1,v) = liM p(yzn,v) =0.  (21)

Considering Lemma 1.6 we have
lim p(Ft,yzn) = p(Ft,v) and
rI&n p(Ft,y2n+1) = p(Ft,v). From (7) and @1) we have

3[P(V,Y2n41) + P(Yan, Ft)]
— p(Ft,v) asn — oo.

p(V7 YZn)a p(va Ft)7 p(YZmYZnJrl)a
M(t,Xon+1) = max

Therefore, we obtain

P(Ft.yon+1) P(Ft,Gxan+1)
o([ owa) —u ([T s0ar)
M(txan+1)
w( [ owar)
M(t,Xon11)
o[ ewer)
and lettingn — o, we get

w (fop(Ft,V) ¢(t)dt) <y (fop(Ft,v) ¢(t)dt)

~o (Y g (et
From Remark 1.12, we haygFt,v) = 0 so thatv = Ft.
Thus ft = v = Ft. Since the pair(f,F) is weakly

IN
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compatible, we havdv = Fv. Again using Lemma 1.6
we have

im p(F:Yon) = lim p(FV.yon 1) = P(FV.Y).

n—

From () we have

p(FV,y2n), p(FVv,Fv),
lim M(vxni1) = lim max (y2n7y2n+1)
3[P(FV.y2nt1) + P(Yan, FV)]

_ p(Fv,v), p(Fv,Fv),0,
- m""x{ 1[P(FWV) + p(v,FV)] }

= p(Fv,v)
Therefore,

w (/Op(Fv,yan) ¢(t)dt> _y (/Op(Fv,GinH) ¢(t)dt)
<y ( /O e ¢(t)dt>
0 ( /0 Miwena) (t)dt)

and so lettingh — o, we get
(8™ dt) < v (JE g 0)at)

—o (5T g (t)et)
From Remark 1.12, we hawev = v. Thus

fv=Fv=v (22)

SinceF (X) C g(X), there existsv € X such tha = Fv=
gw. From @), itis clear thaty < w,

P(V,V), p(V, V), p(v, Gw),
Mww) = max{ 1 [p(v.GW) + p(w,V)] }
= p(v,Gw)
and so

o(["owa) <o ([ s0a)
)

i ( /O pruew ¢(t)dt>
i (/OD(V’GW) ¢(t)dt> .

From Remark 1.12, we hay#v, Gw) = 0 so thatv = Gw.
Thusgw = v = Gw. Since(g, G) is weakly compatible pair,
we havegv = Gv. Thus

P(Vv, Gv), p(V,v), p(Gv, Gv),
Mwy) = m""x{ 1p(v,Gv) -+ p(GWV)] }
= p(v,Gv)

and so

o

I/\

) w(/o’:Fva) ) M
o) A0
( e ) (/:w wd)(t)dt).

From Remark 1.12, we hay&v,Gv) = 0 so thatGv = v.
Thus

gv=Gv=\V. (23)

From 22) and @3) it follows thatv is a common fixed
point of F, G, f andg. Similarly, we can prove the theorem
if (b) holds.

Remark 2.2. Theorem 2.1 is a generalization and
improvement of Theorem.2 of [17] ,Theorem 21 of [9]
and Theorem 5 0f4].
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