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1 Introduction

The notion of partial metric space was introduced by
Matthews [18] as a part of the study of denotational
semantics of data flow networks. In fact, it is widely
recognized that partial metric spaces play an important
role in constructing models in the theory of computation
[4,6,14,20,19,24,25,26,27,28,31,32].

Matthews [18], Oltra and Valero [19], Romaguera
[24] and Altun, Sola and Simsek [6] proved fixed point
theorems in partial metric spaces for a single map.

In this paper, we obtain a common fixed point
theorem for four self mappings satisfying a generalized
(ψ-φ) contractive condition of integral type in ordered
partial metric spaces. First we recall some definitions and
lemmas in partial metric spaces.
Definition 1.1. A partial order set consists of a setX and
a binary relation≺ on X which satisfies the following
conditions:

(i) x � x (reflexive);
(ii) if x � y andy � x thenx = y (antisymmetry);
(iii) if x � y andy � z thenx � z (transitivity);
for all x,y andz in X . The relation� is called a partial

order for the setX .
A set with a partial order� is called partially ordered

set.

Definition 1.2. Any two elementsx and y of a setX ,
which is partially ordered by a binary relation� , are
either comparable or incomparable. Specifically, the
elementsx andy are comparable if and only ifx � y or
y � x. Otherwise,x andy are incomparable.

Definition 1.3. [18] A partial metric on a nonempty setX
is a functionp : X ×X →R

+ such that for allx,y,z ∈ X :
(p1) x = y ⇔ p(x,x) = p(x,y) = p(y,y),
(p2) p(x,x)≤ p(x,y), p(y,y)≤ p(x,y),
(p3) p(x,y) = p(y,x),
(p4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).
In this case(X , p) is called a partial metric space.
It is clear that|p(x,y)− p(y,z)| ≤ p(x,z) ∀x,y,z ∈ X .

Also clear thatp(x,y) = 0 implies x = y from (p1) and
(p2). But if x = y, p(x,y) may not be zero. A basic
example of a partial metric space is the pair(R+, p),
wherep(x,y) = max{x,y} for all x,y ∈ R

+. Each partial
metric p on X generatesτ0 topologyτp on X which has a
base the family of openp - balls{Bp(x,ε) | x ∈ X , ε > 0}
for all x ∈ X and ε > 0, where
Bp(x,ε) = {y ∈ X | p(x,y)< p(x,x)+ ε} for all x ∈ X and
ε > 0. If p is a partial metric onX , then the function
ps : X × X → R

+ given by
ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) is a metric onX .

Definition 1.4. [18] Let (X , p) be a partial metric space.
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(i) A sequence{xn} in (X , p) is said to converge to a
pointx ∈ X if and only if lim

n→∞
p(x,xn) = p(x,x).

(ii) A sequence{xn} in (X , p) is said to be Cauchy
sequence if lim

n,m→∞
p(xn,xm) exists and is finite .

(iii) (X , p) is said to be complete if every Cauchy
sequence{xn} in X converges, w.r.toτp, to a pointx ∈ X
such thatp(x,x) = lim

n,m→∞
p(xn,xm).

Lemma 1.5.[18] Let (X , p) be a partial metric space.
(a) {xn} is a Cauchy sequence in(X , p) if and only if

it is a Cauchy sequence in the metric space(X , ps).
(b) (X , p) is complete iff the metric space(X , ps) is

complete. Furthermore, lim
n→∞

ps(xn,x) = 0 iff

p(x,x) = lim
n→∞

p(xn,x) = lim
n,m→∞

p(xn,xm).

Lemma 1.6.[4] Let (X , p) be a partial metric space and
xn → z as n → ∞ in (X , p) such thatp(z,z) = 0. Then
limn→∞ p(xn,y) = p(z,y) for everyy ∈ X .

Definition 1.7.[15] Two self mapsF and f of a nonempty
set X are said to be weakly compatible iff Fx = F f x
wheneverf x = Fx for somex ∈ X .

In 1997, Alber and Guerre-Delabriere [5] introduced
the following concept of weakly contractive mapping in
Hilbert spaces.

Definition 1.8.[5] A mappingT : X → X is said to be a
weakly contractive mapping if

d(T x,Ty)≤ d(x,y)−φ(d(x,y)),

for all x,y ∈ X and someφ ∈ Ω , where

Ω = {φ | φ :R+ →R
+ is continuous, non-decreasing and

φ(t) = 0⇔ t = 0}

Rhoades [22] extended the results of Alber and Guerre-
Delabriere to complete metric spaces.

Theorem 1.9.[22] Let (X ,d) be a complete metric space
andT a weakly contractive mapping. ThenT has a unique
fixed point.

Dutta and Choudhury [13] introduced a new
generalization of contraction mapping and proved the
following theorem.

Theorem 1.10.[13] Let (X ,d) be a complete metric space
andT : X → X be a mapping satisfying

ψ(d(T x,Ty))≤ ψ(d(x,y))−φ(d(x,y))

for all x,y ∈ X , whereψ ,φ ∈ Ω . ThenT has a unique fixed
point.

Recently several authors are using the(ψ-φ)
contractive condition on maps to prove fixed and common
fixed point theorems (for example, see [1,2,12,33]).

In [8], Branciari obtained a fixed point result for a
single mapping an analogue of Banach’s contraction
principle for an integral type inequality. Later several
authors proved fixed and common fixed point theorems

for mappings satisfying integral type condition (for
instance, see [3,7,10,11,16,21,23,29,30]).

Recently Cai et.al [9] proved the following theorem
which is a generalization of theorem of Luong and Thuan
[17].

Theorem 1.11.[9] Let (X ,d) be a complete metric space
andT,S : X → X be mappings such that for allx,y ∈ X ,

ψ

(

d(Tx,Sy)
∫

0
ϕ(t)dt

)

≤ ψ

(

M(x,y)
∫

0
ϕ(t)dt

)

−φ

(

M(x,y)
∫

0
ϕ(t)dt

)

whereϕ : R+ → R
+ be a Lebesgue-integrable mapping

which is summable, non-negative and such that
ε
∫

0
ϕ(t)dt > 0 for eachε > 0, ψ ∈ Ω , φ : R+ → R

+ is

lower semicontinuous, non-decreasing and
φ(t) = 0⇔ t = 0 and

M(x,y) = max{d(x,y),d(T x,x),d(Sy,y), 1
2[d(y,T x)+ d(x,Sy)]}.

ThenT andS have a unique common fixed point inX .
Here afterwards, assume the following:
(i) ψ : R+ → R

+ be a continuous and non-decreasing
function.

(ii) φ : R+ → R
+ be a lower semi-continuous and

φ(t)> 0 for eacht > 0.
(iii) ϕ : R+ → R

+ be a Lebesgue-integrable mapping
which is summable, non-negative and such that
ε
∫

0
ϕ(t)dt > 0 for eachε > 0.

Remark 1.12.

If ψ
( ε
∫

0
ϕ(t)dt

)

≤ ψ
( ε
∫

0
ϕ(t)dt

)

− φ
( ε
∫

0
ϕ(t)dt

)

, then

ε = 0.
Now,we give our main result.

2 Main Result

Theorem 2.1.Let (X ,�, p) be an ordered partial metric
space and letF,G, f ,g : X → X be mappings satisfying

ψ

(

p(Fx,Gy)
∫

0
ϕ(t)dt

)

≤ ψ

(

M(x,y)
∫

0
ϕ(t)dt

)

−φ

(

M(x,y)
∫

0
ϕ(t)dt

)

,

(1)
for all comparable elementsx,y in X , where

M (x,y) = max

{

p( f x,gy), p( f x,Fx), p(gy,Gy),
1
2 [p( f x,Gy)+ p(gy,Fx)]

}

,

F(X)⊆ g(X),G(X)⊆ f (X), (2)

the pairs( f ,F) and(g,G) are weakly compatible, (3)

if Fx = gu thenx � u, if Gy = f v theny � v, (4)
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and one of the following:
(a) if f (X) is complete andyn =Gxn be such thatyn →

y = f v ∈ f (X), thenxn � v andxn � y for all n
(b) if g(X) is complete andyn = Fxn be such thatyn →

y = gv ∈ g(X), thenxn � v andxn � y for all n,
ThenF,G, f andg have a common fixed point inX .

Proof. Let x0 ∈ X . From (2), there exist sequences{xn}
and{yn} in X such that

y2n = Fx2n = gx2n+1,y2n+1 = Gx2n+1 = f x2n+2,n = 0,1,2, ....

From (4), it follows thatx0 � x1 � x2 � ....

Case (i). Supposey2m = y2m+1 for somem. We have

M(x2m+2,x2m+1) = max











p(y2m+1,y2m), p(y2m+1,y2m+2),
p(y2m,y2m+1),

1
2

[

p(y2m+1,y2m+1)
+ p(y2m,y2m+2)

]











.

We have, from (p2)
p(y2m+1,y2m) = p(y2m+1,y2m+1) ≤ p(y2m+1,y2m+2) and
from (p4)

1
2

[

p(y2m+1,y2m+1)
+p(y2m,y2m+2)

]

≤
1
2
[p(y2m,y2m+1)+ p(y2m+1,y2m+2)]

≤ p(y2m+1,y2m+2)

hence we haveM(x2m+2,x2m+1) = p(y2m+1,y2m+2).
Therefore, from (1),we have

ψ
(

∫ p(y2m+2,y2m+1)

0
ϕ(t)dt

)

= ψ
(

∫ p(Fx2m+2,Gx2m+1)

0
ϕ(t)dt

)

≤ ψ
(

∫ p(y2m+2,y2m+1)

0
ϕ(t)dt

)

−φ
(

∫ p(y2m+2,y2m+1)

0
ϕ(t)dt

)

.

From Remark 1.12, we havey2m+1 = y2m+2. Continuing
in this way, we can conclude thatyn = yn+k for all k > 0.
Thus{yn} is a Cauchy sequence.

Case (ii) Assume thatyn 6= yn+1 for all n. Denote
pn = p(yn,yn+1). Now

ψ
(

∫ p2n

0
ϕ(t)dt

)

= ψ
(

∫ p(y2n,y2n+1)

0
ϕ(t)dt

)

= ψ
(

∫ p(Fx2n,Gx2n+1)

0
ϕ(t)dt

)

≤ ψ
(

∫ M(x2n,x2n+1)

0
ϕ(t)dt

)

−φ
(

∫ M(x2n,x2n+1)

0
ϕ(t)dt

)

where

M(x2n,x2n+1) = max











p(y2n−1,y2n), p(y2n−1,y2n),
p(y2n,y2n+1),

1
2

[

p(y2n−1,y2n+1)
+ p(y2n,y2n)

]











= max{p2n−1, p2n} .

If p2n is maximum, then

ψ
(

∫ p2n

0
ϕ(t)dt

)

≤ ψ
(

∫ p2n

0
ϕ(t)dt

)

−φ
(

∫ p2n

0
ϕ(t)dt

)

< ψ
(

∫ p2n

0
ϕ(t)dt

)

,

which is a contradiction. HenceM(x2n,x2n+1) = p2n−1 and
thus

ψ
(

∫ p2n

0
ϕ(t)dt

)

≤ ψ
(

∫ p2n−1

0
ϕ(t)dt

)

−φ
(

∫ p2n−1

0
ϕ(t)dt

)

≤ ψ
(

∫ p2n−1

0
ϕ(t)dt

)

. (5)

Sinceψ is non-decreasing, we have
∫ p2n

0
ϕ(t)dt ≤

∫ p2n−1

0
ϕ(t)dt.

Similarly we can show that
∫ p2n−1

0
ϕ(t)dt ≤

∫ p2n−2

0
ϕ(t)dt.

Thus
{
∫ pn

0 ϕ(t)dt
}

is a monotone decreasing sequence of
non-negative real numbers and must converge to a real
number, say,r ≥ 0. Taking lim sup on both sides of (5),
we have

ψ(r)≤ ψ(r)−φ(r),
which implies thatφ(r)≤ 0.By the property ofφ , we have
r = 0, that is,

lim
n→∞

(

∫ p(yn,yn+1)

0
ϕ(t)dt

)

= 0.

Hence
lim
n→∞

p(yn,yn+1) = 0. (6)

From (p2),
lim
n→∞

p(yn,yn) = 0. (7)

From (6) and (7) and from the definition ofps, we have

lim
n→∞

ps(yn,yn+1) = 0. (8)

Now we prove that{y2n} is a Cauchy sequence in(X , ps).
On contrary suppose that{y2n} is not Cauchy. Then there
exists anε > 0 and monotone increasing sequences of
natural numbers{2mk} and{2nk} such thatnk > mk,

ps(y2mk ,y2nk)≥ ε (9)

and

ps(y2mk ,y2nk−2)< ε. (10)

From (9) and (10), we have

ε ≤ ps(y2mk ,y2nk)

≤ ps(y2mk ,y2nk−2)+ ps(y2nk−2,y2nk−1)+ ps(y2nk−1,y2nk)

< ε + ps(y2nk−2,y2nk−1)+ ps(y2nk−1,y2nk).
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Letting k → ∞ and using (8), we have

lim
k→∞

ps(y2mk ,y2nk) = ε. (11)

Hence from definition ofps and from (7),we have

lim
k→∞

p(y2mk ,y2nk) =
ε
2
. (12)

Letting k → ∞ and using (11) and (8) in

|ps(y2nk+1,y2mk)− ps(y2mk ,y2nk)| ≤ ps(y2nk+1,y2nk)

we get
lim
k→∞

ps(y2nk+1,y2mk) = ε. (13)

Hence we have

lim
k→∞

p(y2nk+1,y2mk) =
ε
2
. (14)

Letting k → ∞ and using (11) and (8) in

|ps(y2nk ,y2mk−1)− ps(y2nk ,y2mk )| ≤ ps(y2mk−1,y2mk)

we get
lim
k→∞

ps(y2nk ,y2mk−1) = ε. (15)

Hence we have

lim
k→∞

p(y2nk ,y2mk−1) =
ε
2
. (16)

Letting k → ∞ and using (15) and (8) in

|ps(y2mk−1,y2nk+1)− ps(y2mk−1,y2nk)| ≤ ps(y2nk+1,y2nk)

we get
lim
k→∞

ps(y2mk−1,y2nk+1) = ε. (17)

Hence we have

lim
k→∞

p(y2mk−1,y2nk+1) =
ε
2
. (18)

From (6), (12), (16) and (18) we have

M (x2mk ,x2nk+1) = max















p(y2mk−1,y2nk ), p(y2mk−1,y2mk),
p(y2nk ,y2nk+1),

1
2

[

p(y2mk−1,y2nk+1)
+ p(y2nk ,y2mk )

]















→
ε
2

ask → ∞.

Now from (1), we have

ψ
(

∫ p(y2mk
,y2nk+1)

0
ϕ(t)dt

)

= ψ
(

∫ p(Fx2mk
,Gx2nk+1)

0
ϕ(t)dt

)

≤ ψ

(

∫ M(x2mk
,x2nk+1)

0
ϕ(t)dt

)

−φ

(

∫ M(x2mk
,x2nk+1)

0
ϕ(t)dt

)

and lettingk → ∞, we get

ψ
(

∫ ε
2

0
ϕ(t)dt

)

≤ ψ
(

∫ ε
2

0
ϕ(t)dt

)

−φ
(

∫ ε
2

0
ϕ(t)dt

)

.

From Remark 1.12, we haveε = 0. It is a contradiction.
Hence {y2n} is Cauchy. Letting n,m → ∞ in
|ps(y2n+1,y2m+1)− ps(y2n,y2m)| ≤

ps(y2n+1,y2n)+ ps(y2m,y2m+1)
we get lim

m,n→∞
ps(y2n+1,y2m+1) = 0. Hence {y2n+1} is

Cauchy. Thus{yn} is a Cauchy sequence in(X , ps).
Hence, we have lim

m,n→∞
ps(yn,ym) = 0. Now, from the

definition of ps and from (7), we have

lim
n,m→∞

p(yn,ym) = 0. (19)

Suppose (a) holds. Since{y2n+1} = { f x2n} ⊆ f (X) is a
Cauchy sequence in the complete metric space( f (X), ps),
it follows that {y2n+1} converges in( f (X), ps). Thus
lim
n→∞

ps(y2n+1,v) = 0 for some v ∈ f (X). There exists

t ∈ X such thatv = f (t). From (a), it is clear that
x2n+1 � t andx2n+1 � v for all n. Since{yn} is Cauchy in
X and {y2n+1} → v, it follows that {y2n} → v. From
Lemma 1.5, we have

p(v,v)= lim
n→∞

p(y2n+1,v)= lim
n→∞

p(y2n,v)= lim
n,m→∞

p(yn,ym).

(20)
From (19) and (20), we have

p(v,v) = lim
n→∞

p(y2n+1,v) = lim
n→∞

p(y2n,v) = 0. (21)

Considering Lemma 1.6 we have
lim
n→∞

p(Ft,y2n) = p(Ft,v) and

lim
n→∞

p(Ft,y2n+1) = p(Ft,v). From (7) and (21) we have

M(t,x2n+1) = max







p(v,y2n), p(v,Ft), p(y2n,y2n+1),

1
2[p(v,y2n+1)+ p(y2n,Ft)]







→ p(Ft,v) asn → ∞.

Therefore, we obtain

ψ
(

∫ p(Ft,y2n+1)

0
ϕ(t)dt

)

= ψ
(

∫ p(Ft,Gx2n+1)

0
ϕ(t)dt

)

≤ ψ
(

∫ M(t,x2n+1)

0
ϕ(t)dt

)

−φ
(

∫ M(t,x2n+1)

0
ϕ(t)dt

)

and lettingn → ∞, we get

ψ
(

∫ p(Ft,v)
0 ϕ(t)dt

)

≤ ψ
(

∫ p(Ft,v)
0 ϕ(t)dt

)

−φ
(

∫ p(Ft,v)
0 ϕ(t)dt

)

.

From Remark 1.12, we havep(Ft,v) = 0 so thatv = Ft.
Thus f t = v = Ft. Since the pair( f ,F) is weakly
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compatible, we havef v = Fv. Again using Lemma 1.6
we have

lim
n→∞

p(Fv,y2n) = lim
n→∞

p(Fv,y2n+1) = p(Fv,v).

From (p2) we have

lim
n→∞

M(v,x2n+1) = lim
n→∞

max







p(Fv,y2n), p(Fv,Fv),
p(y2n,y2n+1),
1
2 [p(Fv,y2n+1)+ p(y2n,Fv)]







= max

{

p(Fv,v), p(Fv,Fv),0,
1
2 [p(Fv,v)+ p(v,Fv)]

}

= p(Fv,v)

Therefore,

ψ
(

∫ p(Fv,y2n+1)

0
ϕ(t)dt

)

= ψ
(

∫ p(Fv,Gx2n+1)

0
ϕ(t)dt

)

≤ ψ
(

∫ M(v,x2n+1)

0
ϕ(t)dt

)

−φ
(

∫ M(v,x2n+1)

0
ϕ(t)dt

)

and so lettingn → ∞, we get

ψ
(

∫ p(Fv,v)
0 ϕ(t)dt

)

≤ ψ
(

∫ p(Fv,v)
0 ϕ(t)dt

)

−φ
(

∫ p(Fv,v)
0 ϕ(t)dt

)

.

From Remark 1.12, we haveFv = v. Thus

f v = Fv = v. (22)

SinceF(X)⊆ g(X), there existsw ∈ X such thatv = Fv =
gw. From (4), it is clear thatv � w,

M(v,w) = max

{

p(v,v), p(v,v), p(v,Gw),
1
2[p(v,Gw)+ p(v,v)]

}

= p(v,Gw)

and so

ψ
(

∫ p(v,Gw)

0
ϕ(t)dt

)

= ψ
(

∫ p(Fv,Gw)

0
ϕ(t)dt

)

≤ ψ
(

∫ M(v,w)

0
ϕ(t)dt

)

−φ
(

∫ M(v,w)

0
ϕ(t)dt

)

= ψ
(

∫ p(v,Gw)

0
ϕ(t)dt

)

−φ
(

∫ p(v,Gw)

0
ϕ(t)dt

)

.

From Remark 1.12, we havep(v,Gw) = 0 so thatv = Gw.
Thusgw= v=Gw. Since(g,G) is weakly compatible pair,
we havegv = Gv. Thus

M(v,v) = max

{

p(v,Gv), p(v,v), p(Gv,Gv),
1
2[p(v,Gv)+ p(Gv,v)]

}

= p(v,Gv)

and so

ψ
(

∫ p(v,Gv)

0
ϕ(t)dt

)

= ψ
(

∫ p(Fv,Gv)

0
ϕ(t)dt

)

≤ ψ
(

∫ M(v,v)

0
ϕ(t)dt

)

−φ
(

∫ M(v,v)

0
ϕ(t)dt

)

= ψ
(

∫ p(v,Gv)

0
ϕ(t)dt

)

−φ
(

∫ p(v,Gv)

0
ϕ(t)dt

)

.

From Remark 1.12, we havep(v,Gv) = 0 so thatGv = v.
Thus

gv = Gv = v. (23)

From (22) and (23) it follows that v is a common fixed
point ofF,G, f andg. Similarly, we can prove the theorem
if (b) holds.
Remark 2.2. Theorem 2.1 is a generalization and
improvement of Theorem 2.3 of [17] ,Theorem 2.1 of [9]
and Theorem 5 of [4].
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