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Abstract: The periodic-review inventory process is a review of the level of stock for each item over a number of periods. The main
problem with an inventory model is determining the optimal number of periods, the optimal maximum inventory level, and the
minimum expected total inventory cost. This research deals with two different cases of relational function in periodic-review
probabilistic inventory models, where the holding cost is an increasing function of the number of periods under nonlinear and linear
constraints. The nonlinear constraint is the expected ordering cost and the linear constraint is storage space. The goal of this research
is to find the minimum expected total cost for the two different probabilistic inventory models based on two different relational
functions using a geometric programming approach. The classical inventory model without any constraints is derived as a special case.
A numerical example is analyzed for each model.
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1 Introduction

An inventory model is a mathematical model that aims to determine the optimal level of inventories that should be
maintained in a construction process to prevent the risk of stock running out. In the probabilistic inventory models, the
demand rate is considered as a random variable and follows a known probability distribution with a known average.
Multi-item probabilistic inventory models have been studied widely in the literature with and without constraints. An
unconstrained multi-item probabilistic inventory model was investigated by [1], [2], and [3]. [4] introduces deterministic
and probabilistic inventory models where classical optimization is used. [5] is the initial research into an optimized
inventory model using a geometric programming approach (GPA).

[6] introduced GPA to solve non-linear cases. An Economic Order Quantity (EOQ) inventory model, where the
production cost is independent of demand, was studied by [8] using GPA. [7] introduces a reliable production process
with a fixed order cost in the EOQ model. An unconstrained inventory model was investigated by [9], again using GPA.
[10] develops a periodic-review inventory model under the circumstances that demand in any periods is random. [11]
determines the inventory policy variable where the order cost is a continuous function of the order quantity, again using
GPA. [12] uses GPA to illustrate a multi-item EOQ inventory model where the holding cost is a continuous function of
the order quantity under two constraints. [13] considers the order cost as an increased function of the number of periods
with a constant relational function. [14] illustrates a mixed periodic-review inventory model. [15] introduces a
periodic-review probabilistic inventory model where the order cost is an increased function of the number of periods.

[16] uses GPA to show the periodic-review safety stock model where the holding cost varies under only one constraint.
[17] introduces an EOQ model with deteriorating items and time varying demand. [18] presents dynamic programming
for a single-item periodic-review inventory model with a fixed lead time in a fluctuating environment. [19] uses GPA to
solve a multi-item EOQ model where the holding cost is a decreasing continuous function of the production quantity. [20]
adopts GPA to present an EOQ single-item inventory model where the order cost is a linear function of the order quantity.
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More recently, [21] discusses, via GPA, different cases of relational function for multi-product inventory models where
the order cost is an increased function of the number of periods under three constraints.

In the literature of periodic-review inventory models consideration is mainly given to the varying order costs with
constraints. However, in this research the holding cost is considered as an increasing continuous function of the number of
periods, and the relational function can be either a constant or a rational function of the number of periods. This research is
organized as follows: Section 2 proposes the model notations, assumptions, and two probabilistic inventory models, each
model under two constraints. Model I considers the constant relational function, and a rational function of the number of
periods is discussed in model II. The classical inventory models [4] is derived in Section 4. Finally, the comparison of the
two models is illustrated by numerical examples in Section 5.

2 Model Assumptions

Let Cp;, Co;, and Cp;(N;) be the purchase cost, order cost, and holding cost for the i* item respectively. Let E(PC),
E(0C), and E(HC) be the expected purchase cost, expected order cost and the expected holding cost respectively. The
expected total cost is denoted by E(T'C') which is the sum of E(PC), E(OC), and E(HC) for each item. The demand
is a random variable denoted by x; for the i*" item during NV;, with f(z;) the probability density function of the demand,
and the expected value of demand is F(z;) = f;ﬁlz‘ x; f (x;)dx;, where x,,; is the maximum values of x;,and x;; is the
minimum values of z;. The annual demand rate for the i*" item per period is D;, with expected annual demand E(D;).
The expected level of inventory is I;, the maximum inventory level for the i*” item Q,,,;. Let k1 and ko be the limitation
of the order cost and the storage space by square meter m? respectively. The following assumptions are considered in
constructing the mathematical model:

—Consider that the maximum inventory level (maximum order quantity) Q,,; for the i*" item is associated with the
expected order quantity E(Q;) during the cycle by the relation function g(N;), so Qi = g(N;)E(Q;), where
E(Q;) = N;E(D;).

—To maintain @,,; for any cycle N; the safety stock is reviewed for every IV; which can help to prevent the risk of
stock-out.

—The holding cost is an increasing function of IV; which takes the form Cy;(N;) = C;“-Nf, Crhi >0, ,0<pB<1.
The holding cost C},;(IV;) is an increasing function in the number of periods V; for all values of 3, and can be reduced
to the constant value C}; if the value of S is equal to zero.

3 Probabilistic Inventory Model with Increasing Holding Cost under two constraints

The annual expected total cost consists of the sum of three components which are as follows
E(TC)=E(PC)+ E(OC)+ E(HC),

where E(PC) is defined as,

i=1
and E(OC) has the following form
— Coi
E(0C) = .
=1 Nl
E(HC) is given by
=~ Chi(N;)I
EHC) =" z(v )

The expected level of inventory I; = N [Qmi - @} ,then I; = E(D;)N? [%21)_1] and the expected holding cost is
given by

E(HC) = i Chi(Ni)E(Di)QNiDg(Ni) -1

=1
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According to the model assumption the expected total cost is

- L Coi , CulNT (D)
€)= 3o [nB(D) + Tt + FHE =0 Cu ) - ). M

Under non-linear and linear constraints:

Z? 1 ?\;n <k )
St SE(D;)N; < ks

As mentioned earlier the relational function g(N;) can takes either form constant or rational function.

3.1 Model I

In this model the constant case of the relational function is considered, where g(N;) = v, v > %, where v represents
the proportion of one period’s consumption that is held as safety stock. Substituting the value of g(NV;) in equation (1)
gives the expected total cost as follows

" cm« CrhiB(D;)N T (27 — 1)
E L .
z:zl [sz N’L + 2 ®)

The first term of the above equation Z?:l Cpi E(D;) can be removed without any effect on the solution to the optimization
problem, because it is not dependent on V;, but it has an effect on the calculation of expected total cost. Therefore, the
minimum expected total cost is

o ChiE(DZ—)N.ﬁ“(Qy —1)
E(T |22+ i | 4
min ) ; 5 @)
subject to
Yl wi <1 } -
n  SE(D;)N;
Yy R <1
Applying GPA to equation (4) and equation(5), the primal geometric function is obtained as follows:
n C.. wiirC _E(D_)NﬁJrl wai C. . ws; SE( )N W4
son =1 sl P [Fred T )
iy HViwg 2ws; Nikiws; kowai 7
713[ [@]wu[chiE(Di)(%fl)rﬂ[ Coi HSE( )}Wz
- Ly 2wz krwsid L kawa
% ]\7—wu-i-(ﬂ-i—l)wzi—1113.1'4-11141'7 (6)

where w = wj;, 0 < wj <forall¢ = 1,2,...,nand j = 1,2, 3,4 are the weights which satisfy the following
conditions ( the normal and the orthogonal situations)

w1 + wa; =1
and . @)
—wi; + (B + Dwz; — wai +wa =0

The problem is to find out the optimal solution of the weights w, for j = 1,2, 3, 4, solving equation (7) as follows:

14 B+2
W2i = 11163-1’_211141

wy; = BH1—wszitwa; } ®)
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Substituting the values of w;;, wa; in equation (8) into equation (6) in the dual functions we obtain the following form:

(8 +2)Cos } B {(6 +2)Chi B(D;) (27 — 1)} gy
B+1—ws +wy 2(1 + ws; — way)
[ Coi }wZ}B{SE?;i)}wM' W3; — Wy

kiws;

g(w3q, wa;) =[

)
kawa;

In order to calculate w}; and w}; which maximize g(ws;, w4, ), the logarithm for both sides in equation (9) can be applied,
and then the first partial derivative of In g(ws;, w4;) with respect to ws; and wy; taken respectively and each set to zero as
follows:

Oln g(ws;, wy;) -1 _ ) )
Ows; R + {111 (B+2)Coi = In(B +1 = wsi w‘“)} (10)
1 2)CriE(D;)(2y — 1
+ﬂ 2{11&(6—’— )Ch 2( )2 )—ln(l—i—wsi—wu)}

+ {hl i‘;z *1Hw3i:| —1=0

Olng(ws;, wy) — —1 _ _ _
Ows; BETH {111 2C0i = In(B +1 — wsi + w‘“)} (v
1 (B+2)Chi E(D;)(2y — 1) , ,
- B+2 {m 2 ~ In(l _wm)}
SE(D;) .
+|:1DT_lnw4ii|_1_0

Simplifying equations (10) and (11) we get

{54—1—“}31‘+w4i}ﬁ{chiE(Di)(2’7—1)}ﬁ[ Coi } _1 (12)
14+ w3y — wy 2C; kiews; o
[ 14+ w3z — wyy }ﬁ{ 2C,; ]ﬁ{SE(Di)} -1 (13)
B+1—ws; + wy CrniE(D;)(2v — 1) 2koewy;
multiplying these equations, we obtain
CoiSE(D;)
g = |2 14
Waitoa |: k1k262 i| ( )
then we obtain:
Flwss) = wh™ + wh? — AwlT? + Byw2; — (8 +1)ByAws; — B1A =0 (15)
f(w4z) = wfi+4 + (ﬂ + 1)wfi+3 — Awf;rQ =+ ngil — ng4i — BQA = 0 (16)
B+2 B+2
_ | CoiSE(Dy) _ | CniEWDi)(2y=1) | | Coi _ 2C,; SE(Dy)
where A = [W}’ B = [%} [m} ,and By = CME(D)@V%)} { T } . Because

£;(0) < 0,and f;(1) > 0, Vj = 3,4, there must exist roots w;; € (0,1), J = 3,4, and to calculate these roots a
numerical method can be used. To clarify that any wj,;, j = 3,4 are calculated from equations (15) and (16) maximize
g(w};, w;), the following conditions can be applied ( negative Hessian matrix) as follows

0?g(wsi, wa;) 1 1 1 1
—L T + =<0
ows; [5"’2} [(5+1—w3i+w4i) (14 wa; _w4i):| ws;

02g(wsi, wa;) 1 1 1 1
0 AL — 0
ow; [5+2} [(ﬂ+1*w3i+w4i) * (1+w3¢*w4¢)} W5 <
0% g(wsi, wa;) 1 1 1
Ows;Owy; {5 + 2} [(5 + 1 — ws; + wy;) + (1+ws; — w4i)} >0

@© 2021 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 10, No. 3, 913-922 (2021) / www.naturalspublishing.com/Journals.asp %N ===\ 917

Hence

10%g(wss, w4i)r  9Pg(wsi, wai) 9 g(wsi, way)
8w3i8w41- 8w§l awiz

[ﬁ-li-Q} [(ﬁ—i—l —:Usi+w4i) + (1+w31i —’w4i):|‘| N

r 1 1 1 1 1
l( 5‘*‘2} [(5+1—w3i+w4i) * (14 ws; _w4i)} a wSi) <{m}
K

1 1
+ } - <0.
(B4+1—ws +wa) (14 ws —way) w4z‘>]

This confirms that the roots w3, and w}; which are calculated from equations (15) and (16) maximize the dual function
g(ws;, wy;). To find wi; and w3, substitute the value of w3; and wj; in expression (8).

The following relation as a result of Duffin and Peterson’s theorem ([22]) of GPA can be used to find the optimal
number of periods as follows:

COi * * *
N, = wi;g(w3;, wi;),
and
5 = w3;9(w3;, wi;).
Solving the above equations leads to obtaining the IV as follows:
N = [ 2001'(1+w§i—wzi)* i }ﬁ (17)
ChiE(D;)(2y —1)(B+ 1 —wi, +w})
If the maximum inventory level as defined earlier is Q7,; = g(N;)E(D;)N}, then
2C5i(1 + w3, — w},) 7z
O, yED[ 3i — Wai) } . (18)
(Ds) CrhiE(D;)(2y = 1)(B + 1 — w3, +wi;)
The minimum expected total cost can be achieved by substituting IV into equation (3) as follows,
- CriE(Di)(2y = 1)(B+1 — w3, +wy;) 70
E(TC) = [CiE D, c[ 30 T Wai } 19
(T€) =2 [CuBD) + 20 {1+ wj, — i) (1
L OwE(D)(2y = 1) { 2Coi(1 +wj; — wj;) } %}
2 ChiE(D;)(2v — 1)(B+ 1 — w}, + w};) '
3.2 Model 11
This model considers a rational function of the number of periods, so the relational function takes the form g(N;) = %,
and the expected total cost in equation (1) becomes:
= Coi . ChiE(D;)NT!
E(TC) = ; [CpiE(Di) toy T+ CuB(Dial. (20)

The last term of the above equation, 2?21 Chi E(D;)a, can be seen as the cost of safety stock insurance, a cost incurred to
hold an amount in excess of the expected demand as insurance against the danger of stock running out. However, equation
(20) includes two terms that are not dependent on N;. These are Y. | C,; E(D;) and Y.~ | Cy; E(D;)cv, and these terms
can be ignored, so the expected total cost can be written as

n

Coi  CpiE(D;)N’H?
BE(TC) =Y [T ¥ % , @1)
i=1 v
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subject to the constraints which are in equation (5). Applying the geometric programming approach to equations (21) and
(5) we obtain

G(w)fl {Coi}wu[CmE(Di)}w%[ Coi }WSZ[SE( )}“f‘“

- Lwg 2wa; k1ws; kawa;
« N.—w1i+(ﬂ+1)w2i_w3i+w4i (22)
p .
where w = wj; where 0 < wy; < 1forj = 1,2,3,4and 7 = 1,2,3,...,n,( satisfying the orthogonal and natural

conditions defined earlier), substituting the values of wi; and ws; from (8) to equation (22), we obtain the following for
the dual function:

n 14wz —wy;

(w34, w H{ (B+2)C }w (B +2)ChiE(Dy) Ptz
319 4’L 1l B + 1— ws; + Wy 2(1 + w3z — w4i)

™ (20

k1ws; kowy;

(23)

To calculate w3, and w}, that maximize g(ws3,., w}, ), the logarithm of both sides in equation (23) is applied and then the
first partial derivative of log g(ws;, w4;) with respect to ws; and wy; is taken and set to zero as follows:

Flwsi) = wiH + wi™ — AwlT? 4 Baw?, — (8 + 1) Bsws; — BsA = 0. (24)

Flwa) = wi™ + (B + Dwlit® — Awl ™ + Byw?;, — Bywy; — B4A = 0. (25)

B+2 B+2
A as defined earlier, B3 = [%(D)] {%} ,and By = [Cfgi’b)] {Siggi)} . As we see in model I, f;(0) < 0

and f;(1) > 0 for j = 3,4, which means there are roots w; € (0,1) for j = 3, 4. To check that w3, and w}, maximize
g(w3;, wj;), the second derivative with respect to ws, and wy, is applied to obtain the Hessian matrix as follows:

9 g(wss, w4i)r  9Pg(wsi, wai) 9 g(wsi, wai)
8w3i8w4i awgz awi

A:[ <0,

This confirms that the roots wj; and wj; from equation (24) and (25) maximize the dual function g(w3;, w};). The results
of the Duffin and Peterson theorem ([22]) of GPA is adopted to find IV, as follows:

. { 200 (1 + w3; — wa;) }ﬁ 26)
" LCWmE(Dy) (B4 1 — wsi + was) -
The maximum inventory level Q. is
QCOZ-(1+w*- 710*-) L%+2
— E(D; [ 5i — Wi } + E(D; @7
Qi ( )Cm E(D)(B+1 — w3, +wj,) (DiJe
The minimum expected total cost can be found by replacing the value of N in equation (20) as follows:
" CriE(D)(B + 1 —ws; +wj,) 75
B(TC) =Y [CpB(Dy) + Cui| ]| 2
(TC) ; CpiE(D;) +C, TR (28)
ChTE(D ) 2001(1+1U§ —’LUZ) %
+ |: L L i| + C zE Dz Oéi| .
2 CriE(D;)(B + 1 — w3, + w};) mE(Ds)

4 Special Case

Let 8 = 0,i = 1 = Cy;(N;) = C), = constant and ki, ks — 00 so w};, wj; = 0 and wi; = wj; = 1. Assume that
v=1, « =0, this will lead to a probabilistic single-item inventory model, where all the cost components are constant
and without any constraints. This leads to the classical inventory model of [4]. Therefore, N;*, Q7,,;, and minE(T'C') for
model I and model II become:

2C,

Nt =, | =2
ChE(D)’
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minE(TC) = CLE(D) + \/CorCrE(D).

E(D) 2C,

ChE(D)

Harris’s results ([23]) can be obtained in the case of a deterministic inventory model without constraints if E(D) = D,

v=1,and o = 0.

5 An illustrative example

The following table represents the inventory parameters of the probabilistic inventory model for 3 items. The holding cost
is a continuous increasing function and the lead time is equal to zero as we assumed earlier in the model assumptions. Let
the expected order cost limitation be k; = 1500, the storage space limitation S = 80m?, ko = 6000,y = 1.2, and o = 3.

parameter item 1 item2 item 3
E(D) 34 23 16
Chr 0.40 0.42 0.44
Cor 130 160 180
Cpr 80 100 120

The roots wz,. and wy,. calculated in equations (15), and (16) for model I, and equations (24), and (25) for model II,
so N} in model I can be calculated in equation (17), and in equation (26) for model II. Similarly, the optimal maximum
inventory levels for models I and II are calculated from equations (18), and (27) respectively. Finally, minE(7T'C') which
is equal to the sum of the minE(T'C') for each item is calculated from equations (19); and (28) for models I and II
respectively. All these results are presented in Table (1).

Table 1: The optimal solution for model I and model II.

B N Ny N3 Q1 Qs Q3 minE(T'C)
Model 1
0.00 3.01 4.00 5.05 12266 11048 96.87 7058.89
0.10 2.78 3.66 456 113.61 101.02 87.63 7069.84
0.20 2.60 338 4.17 10603 93.17 80.01 7080.62
030 244 314 384 99.61 86.56 73.65 7091.19
040 231 293 356 94.12 80.96 68.29 7101.51
050 219 276 332 89.39 76.16 63.73 7111.55
0.60 2.09 261 312 8528 72.01 59.82 7121.30
070 2.00 248 294 81.68 68.40 56.43 7130.74
0.80 192 236 279 17851 65.24 53.48 7139.87
090 186 226 2.65 7570 62.45 50.89 7148.69
1.00 1.79 2.17 253 73.20 59.98 48.61 7157.19
Model 11
0.00 350 466 587 17321 15582 136.33 7042.23
0.10 322 423 528 16388 14550 125.90 7052.30
0.20 299 388 479 156.03 136.86 117.23 7062.28
0.30 279 359 439 149.37 129.55 109.94 7072.12
040 2.63 334 4.05 143.65 12331 103.75 7081.79
0.50 248 3.13 3.77 138.71 11794 98.45 7091.27
0.60 236 295 352 13442 113.28 93.87 7100.52
0.70 225 279 331 130.67 109.22 89.89 7109.54
0.80 2.16 265 3.12 12736 105.64 86.41 7118.31
090 2.07 253 296 12444 10248 83.34 7126.81
1.00 2.00 242 2.82 121.85 99.67 80.62 7135.06
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Fig. 1: The optimal number of periods for different values of j3.
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Fig. 2: The optimal maximum inventory level for different values of (3.

The results show a decrease in NV and @), as the values of 3 increases. This is clear from Figure (1) and Figure (2),
whereas value of minE (T'C') increases as the value of 3 increases as shown in Figure (3). Comparing the minE(T'C) of
model I with model II, we can see that the minimum expected total cost in model II is less than in model I. This means that
model II is better than model I because it achieves the goal which is the lowest expected total cost. Furthermore, when the
value of 3 is equal to zero, this means models I and II become crisp models (without varying holding costs), the values
of minE(T'C') of crisp model I and crisp model II are 7058.89 and 7042.23 respectively. This confirms that model II is
better than model I. However, increasing the values of a and «y will increase minE(7'C') for both models.

6 Conclusion

This paper has investigated which relational function form can lead to minimum expected total costs for a periodic-
review probabilistic inventory model under two constraints, where the relational function can be either constant or a
rational function, and the constraints are the expected ordering cost and the limit of the storage space. The holding cost
is a continuously increasing function of the number of periods. The geometric programming approach is considered for
finding the optimal solutions of N}, Q¥ . and minE(T'C) for the i*” item in the two probabilistic inventory models. The
classical inventory model of [4] is derived as a special case. The results show that the rational function form achieved

minE (T'C') for all values of 5 compared to the constant form.
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Fig. 3: The minimum annual expected total cost for different values of /3.
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