
Inf. Sci. Lett. 10, No. 2, 263-266 (2021) 263

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/100210

Implementation of a Reducing Algorithm for

Differential-Algebraic Systems in Maple

Srinivasarao Thota

Department of Applied Mathematics, School of Applied Natural Sciences, Adama Science and Technology University,Post Box No.

1888, Adama, Ethiopia

Received: 2 Feb. 2021, Revised: 2 Mar. 2021, Accepted: 17 Apr. 2021

Published online: 1 May 2021

Abstract: This paper discusses the implementation of a reduction algorithm for differential-algebraic systems in Maple. Using the

proposed Maple package, the given system of differential-algebraic equations can be transformed into another simpler system having the

same properties. Sample computations are presented to illustrate the proposed algorithm. This algorithm will be helpful to implement

this in commercial software packages such as Mathematica, Matlab, Singular, SCIlab etc.
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1 Introduction

A first-order matrix differential system can be represented
as

A (z)Du(z)+B(z)u(z) = f (z), (1)

where z is a complex variable, A (z),B(z) are m × n

matrices of analytic functions, f (z) is an m-dimensional
vector of analytic functions, u(z) is an n-dimensional

unknown vector to be determined and D = d
dz

is a
differential operator. In operator notations, the first-order
matrix differential system (1) can be represented by an
equation of the form

Lu = f ,

where L = A D+B is a matrix differential operator. If
m = n and A is regular (i.e., det(A ) 6= 0), then the
system (1) is called a system of linear ordinary

differential equations or linear differential system
(LDS) [5–10, 12, 14–16]. If A ≡ 0, then the system (1)
becomes a purely algebraic system and there are several
methods available in the literature to find all possible
solutions. If m 6= n or A is singular matrix, then the
system (1) turns out to be a system of

differential-algebraic equations or simply,
differential-algebraic system (DAS).
Differential-algebraic system is a composed system of
ordinary differential equations coupled with purely

algebraic equations, hence DAS differ from LDS in many
aspects [1–4,11]. This paper mainly focused on DAS with
some necessary conditions. In the literature, there are
many algorithms available for solving DAS as well as
BVPs with maple implementations, for example
see, [1, 2, 4–10, 12–18].

The aim of this paper is to discuss about the
implementation of a reduction algorithm. More details
about the proposed reduction algorithm for DAS are
available in [12] and a part of this work has been
presented in [19, 20]. In the proposed algorithm, the given
DAS reduces into another simpler and equivalent system
where we can easily apply the classical theory of
differential equations.

2 Maple Package, DAS Reduction, for

System of DAEs

Now the Maple implementation of the proposed
algorithm is presented by creating different data types.
The implemented Maple package, DAS Reduction, of
the proposed algorithm is provided with Maple worksheet
at www.srinivasaraothota.webs.com/research. Using the
Maple package, one can obtain the two unimodular
matrices S,T and the reduced DAS of the given system.
In Maple implementation, x is complex variable and
D = d

dz
is the differential operator.
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2.1 Pseudo-Code [12]

• Input: Coefficient Matrices A, B of a given DAS.
• Output: Two unimodular Matrices S, T and the
reduced DAS.

1: A,B← coe f f icient matricies

2: n← size o f A

3: LNS A← le f t null space o f A

4: Sa← identity matrix with LNS A

5: Aa← Sa.A, Ba← Sa.B

6: LNS Ba← le f t null space o f Ba

7: Sb← identity matrix with LNS Ba

8: A1← Sb.Aa, B1← Sb.Ba, S1← Sb.Sa

9: RNS A1← right null space o f A1
10: Ta← identity matrix with RNS A1
11: A1a← A1.Ta, B1a← B1.Ta

12: RNS B1a← right null space o f B1a

13: T b← identity matrix with LNS B1a

14: A2← A1a.Tb, B2← B1a.Tb, T 1← Ta.T b

15: P← le f t elementary matrix

16: Q← right elementary matrix

17: S← P.S1, T ← T 1.Q

2.2 Maple Code

with(MatrixPolynomialAlgebra):

with(LinearAlgebra):

DAS_Reduction:=proc(A,B)

local n, L, r, k, Id, transpose_A,

NS_A, Id_part1, NS_part1, Sa, La, Aa,

transpose_Ba, NS_Ba, Id_part2, NS_part2,

Sb, L1, A1, B1, S1, NS_A1, Id_part3,

NS_part3, Ta, L1a, A1a, B1a, NS_B1a,

Id_part4, NS_part4, Tb, L2, A2, B2,

T1, P_A, Q_A, S, T, Ba, L_reduced;

n := LinearAlgebra:-RowDimension(A);

L := A*delta+B;

n := LinearAlgebra:-RowDimension(A);

r := MTM:-rank(A);

k := MTM:-rank(B);

Id := LinearAlgebra:-IdentityMatrix(n);

transpose_A:=LinearAlgebra:-

Transpose(A);

NS_A:=LinearAlgebra:-

NullSpace(transpose_A);

Id_part1:=LinearAlgebra:-Transpose

(Matrix (LinearAlgebra: Transpose˜

(convert˜([seq(Id[i],

i=1..n-nops(NS_A))], Matrix))));

NS_part1:=LinearAlgebra:-Transpose

(Matrix(convert˜([seq(NS_A[i],

i=1..nops(NS_A))],Matrix)));

Sa:=convert(linalg:-blockmatrix

(2,1,[Id_part1,NS_part1]), Matrix);

La := simplify˜(Sa.L);

Aa:=seq(Coeff(La, delta,i),i=0..1)[2];

Ba:=seq(Coeff(La, delta,i),i=0..1)[1];

transpose_Ba:=LinearAlgebra:-

Transpose(Ba);

NS_Ba:=LinearAlgebra:-NullSpace

(transpose_Ba);

Id_part2:=LinearAlgebra:-Transpose

(Matrix(‘˜‘[LinearAlgebra:

Transpose](‘˜‘[convert]

([seq(Id[i],i=nops(NS_Ba)..n-1)],

Matrix))));

NS_part2:=LinearAlgebra:-Transpose

(Matrix(‘˜‘[convert]([seq

(NS_Ba[i],i=1..nops(NS_Ba))],

Matrix)));

Sb:=convert(linalg:-blockmatrix

(2,1,[NS_part2,Id_part2]), Matrix);

L1 := simplify˜(Sb.La);

A1:=seq(Coeff(L1,delta, i),i=0..1)[2];

B1:=seq(Coeff(L1, delta,i),i=0..1)[1];

S1 := simplify˜(Sb.Sa);

NS_A1 := simplify˜(LinearAlgebra:-

NullSpace(A1));

Id_part3:=Matrix(‘˜‘[LinearAlgebra:-

Transpose](‘˜‘[convert]

([seq(Id[i],i=1..n-nops(NS_A1))],

Matrix)));

NS_part3:=Matrix(‘˜‘[convert]

([seq(NS_A1[i],i=1..nops(NS_A1))],

Matrix));

Ta:=convert(linalg:-blockmatrix

(1,2,[Id_part3,NS_part3]), Matrix);

L1a := simplify˜(L1.Ta);

A1a:=seq(Coeff(L1a,delta,i),i=0..1)[2];

B1a:=seq(Coeff(L1a,delta,i),i=0..1)[1];

NS_B1a := simplify˜(LinearAlgebra:-

NullSpace(B1a));

Id_part4:=Matrix(‘˜‘[LinearAlgebra:-

Transpose](‘˜‘[convert] ([seq(Id[i],

i = nops(NS_B1a) .. n-1)], Matrix)));

NS_part4:=Matrix(‘˜‘[convert]

([seq(NS_B1a[i],i=1..nops(NS_B1a))],

Matrix));

Tb:=convert(linalg:-blockmatrix

(1,2,[NS_part4,Id_part4]), Matrix);

L2 := simplify˜(L1a.Tb);

A2:=seq(Coeff(L2,delta,i),i=0..1)[2];

B2:=seq(Coeff(L2,delta,i),i=0..1)[1];

T1 := simplify˜(Ta.Tb);

P_A:=convert(linalg:-submatrix

(Student[LinearAlgebra]:-

ReducedRowEchelonForm

(<A2|Id>), 1 .. n, n+1 .. 2*n),
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Matrix);

Q_A:=LinearAlgebra:-Transpose(convert

(linalg:-submatrix(Student

[LinearAlgebra]:-

ReducedRowEchelonForm

(<LinearAlgebra:-

Transpose(A2)|Id>),

1..n,n+1..2*n),Matrix));

S := simplify˜(P_A.S1);

T := simplify˜(T1.Q_A);

L_reduced:=simplify˜(S.L.T);

return S,T,L_reduced;

end proc:

3 Sample Computations

Example 1Consider a matrix differential operator of

DAS

L = A D+B

=




D+ z 0 D−1 (2− z)D+1 D

0 zD+2 D+1 0 1

2D+ z zD−2 3D−2 (4−2z)D+1 2D−1

D+ z
2 −2zD+ z −D+ 1

2 (2− z)D+ 1
2 D+1

3D+2z zD+2 4D−1 (6−3z)D+2 3D+1


 ,

where A =




1 0 1 2− z 1
0 z 1 0 0
2 z 3 4− 2z 2
1 −2z −1 2− z 1
3 z 4 6− 3z 3


, and

B =




z 0 −1 1 0
0 2 1 0 1
z −2 −2 1 −1
z
2

2 1
2

1
2

1
2z 2 −1 2 1


.

Applying the proposed algorithm, one can obtain the
reduced matrix operator as follows

L̃

=




− 1
12 (3z−5+ 1

z
)D − 1

6 (z−3− 1
z
)D 0 0 0

1
12 (1+3z)D 1

6 (z−1)D 0 0 0

0 0 0 0 0

0 0 0 z −z2 +2z−1

0 0 0 z
2 +3 − 1

2 z2 + z− 1
2



.

Now we apply the Maple implementation to the given
system of DAS (1).

> A := Matrix([[1,0,1,2-x,1],[0,x,1,0,0],

[2,x,3,4-2*x,2],[1,-2*x,-1,2-x,1],

[3,x,4,6-3*x,3]]);

> B := Matrix([[x,0,-1,1,0],[0,2,1,0,1],

[x,-2,-2,1,-1],[(1/2)*x,2,1/2,1/2,1],

[2*x,2,-1,2,1]]);

A :=




1 0 1 2−x 1

0 x 1 0 0

2 x 3 4−2x 2

1 −2x −1 2−x 1

3 x 4 6−3x 3




B :=




x 0 −1 1 0

0 2 1 0 1

x −2 −2 1 −1
x
2 2 1

2
1
2 1

2x 2 −1 2 1




> S, T, Lreduced := DAS_Reduction(A,B);




1
9

6x2−11x+1
x

1
9

3x2−7x−1
x 0 2

9
x+1

x − 1
9

3x2−5x+1
x

− 1
9 −

2
3 x 1

9 −
1
3 x 0 − 2

9
1
9 +

1
3 x

4
3

5
3 1 2

3 − 4
3

−3 −1 0 0 1

−1 2 0 1 0







1
4

2x−3
(x2−3x+2)(x−1)

1
2

2x−5
x3−4x2+5x−2

− x2−2x−2
x3−4x2+5x−2

−1 x−2
1

8(x−2) − 1
4(x−2)

1
x−2 0 0

− 1
4(x−2)

1
2(x−2) − x

x−2 0 0

− 1
4

3x2−5x+1
(x2−3x+2)(x−1)

− 1
2

x2−3x−1
x3−4x2+5x−2

− 3x
x3−4x2+5x−2

0 1

0 0 1 1 0







− 1
12

(
3x−5+ 1

x

)
δ − 1

6

(
x−3− 1

x

)
δ 0 0 0

1
12 (1+3x)δ 1

6 (x−1)δ 0 0 0

0 0 0 0 0

0 0 0 x −x2 +2x−1

0 0 0 1
2 x+3 − 1

2 x2 +x− 1
2




From Maple implementation, we have two unimodular

matrices S,T ∈ GLn(K[[z]]),

S =




1
9

6z2−11z+1
z

1
9

3z2−7z−1
z

0 2
9

z+1
z
− 1

9
3z2−5z+1

z

− 1
9
− 2

3
z 1

9
− 1

3
z 0 − 2

9
1
9
+ 1

3
x

4
3

5
3

1 2
3

− 4
3

−3 −1 0 0 1
−1 2 0 1 0




T =




1
4

2z−3

(z2−3z+2)(z−1)
1
2

2z−5

z3−4z2+5z−2
− z2−2z−2

z3−4z2+5z−2
−1 z−2

1
8(z−2) − 1

4(z−2)
1

z−2
0 0

− 1
4(z−2)

1
2(z−2) − z

z−2
0 0

− 1
4

3z2−5z+1

(z2−3z+2)(z−1)
− 1

2
z2−3z−1

z3−4z2+5z−2
− 3z

z3−4z2+5z−2
0 1

0 0 1 1 0




and the reduced matrix differential operator is

L̃ =




− 1
12

(
3z−5+ 1

z

)
D − 1

6

(
z−3− 1

z

)
D 0 0 0

1
12
(1+3z)D 1

6
(z−1)D 0 0 0

0 0 0 0 0

0 0 0 z −z2 +2z−1

0 0 0 1
2

z+3 − 1
2

z2 + z− 1
2



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4 Conclusion

In this paper, we discussed the Maple implementation of a
reduction algorithm for differential-algebraic systems,
DAS Reduction. Sample computations are presented
to illustrate the proposed algorithm. This algorithm will
be helpful to implement this in commercial software
packages such as Mathematica, Matlab, Singular, SCIlab
etc. Some numerical examples are presented to
demonstrate the proposed algorithm. This package is
provided at https://srinivasaraothota.webs.com/research
with example worksheets.
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