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Abstract: In this paper, we investigate the entropy squeezing phenomenon. The considerable system consists of noninteracting two

two-level atoms, moving in the Kerr-like medium, interacting with two mode quantized Electromagnetic field through two photon

process. We will expose the effects of decay rates of the atoms and the field in addition to the coupling variation parameter on the atomic

inversion, the squeezing in the components of the atomic dipole moment, quadrature squeezing and the subpoissonian distribution. It is

shown that the suggested system contains some new parameters that can be used to control the system dynamics.

Keywords: Atomic squeezing, normal squeezing, sub-Poissonian distribution.

1 Introduction

The interaction of two-level atom with the cavity field is
one of the fundamental problem that engaged many of
authors. The (JCM), which is exactly solvable model, is
the simplest model describing this interaction [1], which
explains important nonclassical properties as collapse and
revival phenomenon in the atomic population inversion
[2,3]. Recently, open quantum systems, which described
mathematically by non-Hermitian Hamiltonian, attract
attention of many authors. The non-Hermitian
Hamiltonian has been used to describe dissipative process
[4,5,6] such as the radioactive phenomenon [7]. Over the
last few years, entropy squeezing has attracted more
attention of many authors because of its main
enforcement in high resolution spectroscopy [8], high
precision spin polarization measurement [9] and we
recently may observe that squeezed light is applied into
quantum information theory, for example, in cryptograph,
dense coding and teleporation. Authors in [8,10]
established the concept of squeezed components of atom,
Agarwal and Puri [11] pretested squeezing N two -level
atoms system damped by a broadband squeezed vacuum
space. It’s serious to note that all this studies of atomic
squeezing are based on Heisenberg uncertainty relation
(HUR).

Recently, and because of the failing of (HUR) for
supporting us by sufficient information about squeezing

in some cases, researchers oriented to another form in
terms of entropy, which so-called entropy uncertainty
relation (EUR)[12].

Authors in [13] studied entropy squeezing of an atom
with k-photons in the JC model. Entropy squeezing of a
two-level atom moving in Kerr medium is also discussed
[15]. In [14] authors studied the effect of detuning
parameter ∆ and the coupling parameter λ on entropic
uncertainty for two two-level atoms.
In this article, we will study some nonclassical properties
of the physical state such as the squeezing phenomena
and the sub-Poissonian distribution, we will discuss and
compare between variance and entropy squeezing of the
atom components, so we subdivided the paper as follow :
in section 2 we introduce the physical model and its
solution, sec.3 exhibits the atomic inversion for a single
atom, sec.4 is appropriated to exhibit the squeezing
phenomenon and discussion to effects of decay
parameters on squeezing, in sec.5 we introduce the
sub-Poissonian distribution. Finally, we present the
conclusion in sec.6.

2 The physical model and its solution

We suppose a system of two two-level atoms moving in
the Kerr medium and interacting with two mode
electromagnetic field through two photon process in a
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dissipative cavity, taking into account the time dependent
coupling function. The effective Hamiltonian of the
considered system under the rotating wave approximation
(RWA) can be read as(h̄ = 1)

Ĥe f f = ĤA+F + Ĥkerr + Ĥdamp + ĤI, (1)

where

ĤA+F =
2

∑
j=1

1

2
Ω j

ˆ
σ j

z +ω jâ j
†â j,

Ĥkerr =
2

∑
j=1

χ jâ j
†2â j

2
,

Ĥdamp =−
i

2

2

∑
j=1

(Γjâ j
†â j + γ jσ̂

j
z )

and

ĤI =
2

∑
j=1

λ j(t)(â j
2σ j

++ â j
†2σ j

−),

where ω j(Ω j); ( j = 1,2) is the frequency of the jth mode

(the atomic transition frequency for the jth atom ) which is
dissipating with the rate Γj(γ j), χ j is the kerr-like medium

parameter, â j(â j
†) is the annihilation (creation) operator

and λ j(t) =λ j cos(εt) is the coupling function between the
single atom and the field (where λ j is an arbitrary constant
and ε is the coupling variation parameter). The operators

σ̂+
j(σ̂−

j) and σ̂z
j are the raising (lowering) and the pauli

inversion operators.

2.1 The solution

We devoted this subsection to introduce an approximate
solution of the evolution equation for the wave state, which
enable us to determine the density matrix, from which we
can study some statistical properties of the considerable
system. The wave state, represent the system under study,
can be written as:

|Ψ (t)〉=
+∞

∑
n1=0

+∞

∑
n2=0

qn1
qn2

[

B1(n1,n2, t)e
−iα1t |1,1,n1,n2〉

+B2(n1,n2, t)e
−iα2t |1,0,n1,n2 + 2〉

+B3(n1,n2, t)e
−iα3t |0,1,n1 + 2,n2〉

+B4(n1,n2, t)e
−iα4t |0,0,n1 + 2,n2 + 2〉

]

,

(2)

where |n j〉;( j = 1,2) is the fock state, the functions
B1,B2,B3 and B4 are the probability amplitudes and the

variables αm(m = 1,2,3,4) are given by :

α1 =
Ω1

2
+

Ω2

2
+ω1n1 +ω2n2,

α2 =
Ω1

2
−

Ω2

2
+ω1n1 +ω2 (n2 + 2) ,

α3 =−
Ω1

2
+

Ω2

2
+ω1 (n1 + 2)+ω2n2,

α4 =−
Ω1

2
−

Ω2

2
+ω1 (n1 + 2)+ω2 (n2 + 2) .

We assume that the atomic system is initially in the
superposition state and the field in the coherent state, so
the initial state of the system takes the form:

|Ψ (0)〉= (cos(θ )|1,1〉+ e−iφ sin(θ )|0,0〉)

⊗

∞

∑
n1=0

∞

∑
n2=0

qn1
qn2

|n1,n2〉,
(3)

where |1〉(|0〉) is the excited (ground) state for a single
atom and

qn j
= Exp[−

|α j|
2

2
]∑

n j

(α j)
n j

√

n j!
, j = 1,2.

To achieve our aim, we apply the time-dependent

Schrödinger equation Ĥ|Ψ (t)〉 = ih̄ ∂
∂ t
|Ψ(t)〉, then we

obtain the following system of differential equations:

iḂ1 = η1B1 +λ2(t)ν2ei∆ tB2 +λ1(t)ν1ei∆ tB3,

iḂ2 = η2B2 +λ2(t)ν2e−i∆ tB1 +λ1(t)ν1ei∆ tB4,

iḂ3 = η3B3 +λ1(t)ν1e−i∆ tB1 +λ2(t)ν2ei∆ tB4,

iḂ4 = η4B4 +λ1(t)ν1e−i∆ tB2 +λ2(t)ν2e−i∆ tB3,

where

η1 =
2

∑
j=0

χ jn j(n j − 1)−
i

2
(γ j +Γjn j),

η2 = χ1n1(n1 − 1)+ χ2(n2 + 1)(n2+ 2)

−
i

2
(γ1 − γ2)+Γ1n1 +Γ2(n2 + 2),

η3 = χ1(n1 + 1)(n1 + 2)+ χ2n2(n2 − 1)

−
i

2
(γ2 − γ1)+Γ1(n1 + 1)+Γ2n2,

η4 =
2

∑
j=1

χ j(n j + 1)(n j + 2)

−
i

2
(−γ j +Γj(n j + 2)),

ν j =
√

(n j + 1)(n j + 2), j = 1,2

and the detuning parameter ∆ given by

∆ = Ω1 − 2ω1 = Ω2 − 2ω2.
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We can represent the Cosine function in terms of
exponential function and substituting in λ j(t). After

substituting we obtain the exponential functions e±ı(∆+ε)t

and e±ı(∆−ε)t in the system of differential equations.

Approximately, the counter oscillating parts e±ı(∆+ε)t can
be defaulted (which accepted physically for aplenty
models [19]) as the approximation in the (RWA). Thus
the differential equations will become

iḂ1 = η1B1 + f2ei(∆−ε)tB2 + f1ei(∆−ε)tB3,

iḂ2 = η2B2 + f2e−i(∆−ε)tB1 + f1ei(∆−ε)tB4,

iḂ3 = η3B3 + f1e−i(∆−ε)tB1 + f2ei(∆−ε)tB4,

iḂ4 = η4B4 + f1e−i(∆−ε)tB2 + f2e−i(∆−ε)tB3,

where

f̄ j =
λ j

2
ν j, j = 1,2.

Assuming

B̄1(t) = B1(t)e
−i(∆−ε)t

,

B̄4(t) = B4(t)e
+i(∆−ε)t

.

By using the method in [20], we obtain

i
d

dt







B̄1(t)
B2(t)
B3(t)
B̄4(t)






=







η1 + k f2 f1 0
f2 η2 0 f1

f1 0 η3 f2

0 f1 f2 η4 − k













B̄1(t)
B2(t)
B3(t)
B̄4(t)






. (4)

The solution of this system is given by

M(n1,n2, t) = M(n1,n2,0)e
−iC(n1,n2)t ,

where

C(n1,n2) =







η1 + k1 f2 f1 0
f2 η2 0 f1

f1 0 η3 f2

0 f1 f2 η4 − k2






.

The matrix exponential in eq.(4) calculated by many
analytical ways[21,22].

2.2 The density matrix

After obtaining the wave vector, it becomes easy to obtain
the time dependent density matrix which determined by

ρ̂(t) = |Ψ(t)〉〈Ψ (t)|

=
+∞

∑
n1=0

+∞

∑
n2=0

qn1
qn2

[B1(n1,n2, t)e
−iα1t |1,1,n1,n2〉

+B2(n1,n2, t)e
−iα2t |1,0,n1,n2 + 2〉

+B3(n1,n2, t)e
−iα3t |0,1,n1 + 2,n2〉

+B4(n1,n2, t)e
−iα4t |0,0,n1 + 2,n2 + 2〉]

⊗

+∞

∑
m1=0

+∞

∑
m2=0

q∗m1
q∗m2

[B∗
1(m1,m2, t)e

iα1t〈1,1,m1,m2|

+B∗
2(m1,m2, t)e

iα2t〈1,0,m1,m2 + 2|

+B∗
3(m1,m2, t)e

iα3t〈0,1,m1 + 2,m2|

+B∗
4(m1,m2, t)e

iα4t〈0,0,m1 + 2,m2 + 2|].

(5)

We can calculate the atomic reduced density operator by
taking the trace over the field.

ρ̂A1A2
(t) = TrF1F2

|Ψ(t)〉 〈Ψ(t)|. (6)

The reduced density operator for one atom obtained by
taking the trace over the other one and given by

ρ̂A1
= TrA2

ρ̂A1A2
(t) =

[

ρ11 ρ12

ρ21 ρ22

]

, (7)

where

ρ11 = ∑
n1,n2

|qn1
|2|qn2

|2(|B1(n1,n2, t)|
2 + |B2(n1,n2, t)|

2),

ρ12 = ∑
n1,n2

qn1+2 q∗n1
|qn2

|2
(

B1(n1 + 2,n2, t)B
∗
3(n1,n2, t)

× e−iα1(n1+2,n2)teiα3(n1,n2)t

+B2(n1 + 2,n2, t)B
∗
4(n1,n2, t)× e−iα2(n1+2,n2)teiα4(n1,n2)t

)

,

ρ21 = ρ∗
12

and

ρ22 = ∑
n1,n2

|qn1
|2|qn2

|2(|B3(n1,n2, t)|
2 + |B4(n1,n2, t)|

2).

The reduced density matrix for the field can be obtained
from eq.(5) by taking the trace over the atoms.

ρ̂F1F2
(t) = TrA1A2

|Ψ(t)〉 〈Ψ(t)|. (8)

And thus, the reduced density matrix for the first mode can
be obtained after taking the trace over the second mode.

ρ̂F1
(t) = TrF2

ρ̂F1F2
(t) =

|D〉〈D|+ |T〉〈T |+ |G〉〈G|+ |R〉〈R|,
(9)
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where

|D〉= ∑
n1,n2

qn1
qn2

B1(n1,n2, t)e
−iα1(n1,n2)t |n1〉,

|T 〉= ∑
n1,n2

qn1
qn2

B2(n1,n2, t)e
−iα2(n1,n2)t |n1〉,

|G〉= ∑
n1,n2

qn1
qn2

B3(n1,n2, t)e
−iα3(n1,n2)t |n

1
+ 2〉,

|R〉= ∑
n1,n2

qn1
qn2

B4(n1,n2, t)e
−iα4(n1,n2)t |n1 + 2〉.

In the following we employ this results to discuss some
statistical properties of our system.

3 The atomic inversion of a single atom

The atomic inversion is defined as the difference between
the population of the excited and ground atomic states, it
can be used to determine if the atom is in its excited,
ground or maximum state (the atom reaches the
maximum state if the probabilities of finding it in the
excited and ground states are equal). And for the
considerable system, the atomic inversion of a single
atom is determined from eq.(7) by

w(t) = ρ11 −ρ22.

Now, we will discuss the time evolution of the atomic
inversion behavior related to the present system and study
the effect of the damping parameters of the atoms and the
field on it. We have prepared the field initially in the
coherent state with the average photon number n̄ = 25
and the atoms in the superposition state given by (eq.3)
where we chose θ = 0 and φ = π

2
.
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Fig. 1: the time evolution of the atomic inversion at fixed

parameters ∆ = 5 ,χ = 0.0001 and (a) Γ = γ = 0 and ε = 7π
(b) Γ = 0.001,γ = 0 and ε = 7π (c) Γ = 0,γ = 0.008 and ε = 7π

Fig.(1) shows the effect of the decay rates Γ ,γ on the
behavior of the atomic inversion where we considered
Γ1 = Γ2 = Γ ,γ1 = γ2 = γ and χ1 = χ2 = χ . In (a) we can
see that the atom oscillates in the excited state around
w ≃ 0.67, this excitation is due to the time variation
parameter ε . The effect of the decay rate of the field is
clear, by increasing the parameter Γ the function w(t)
shifts down and the amplitude of the revival period
decreased (as expected), which means that the interaction
is weak, see (1b). While the atomic decay parameter γ
makes the oscillation base line of w(t) to shift down with
the same amplitude, see (1c).

4 The squeezing phenomenon

More attention has been paid for the squeezing
phenomenon over the last few years, the squeezing in the
atomic quadratures has been manipulated in the frame
work of (HUR) which is stated in terms of the variance
(which is containing only second-order correlation
function), but in some cases (HUR) cannot purvey
sufficient information on squeezing, for instance: for a
state in which 〈σz〉 = 0 the definition of variance
squeezing becomes trivial and has no information about
atomic squeezing, while entropy squeezing relation [16,
17,18] is not. Besides the atomic quadrature, we consider
another type of squeezing that depends on the field
quadratures.

4.1 Normal squeezing

It is well known that the coherent and vacuum states are
the minimum uncertainty states of the E.M field
amplitudes i.e. the quantum fluctuations of the field in the
coherent or vacuum states are equal to the zero point
fluctuations and are randomly distributed in phase. The
zero point fluctuations is considered the standard
quantum limit to the reduction of noise in a signal. The
squeezing occurs if one of the field quadratures has less
noise than the coherent or the vacuum states and the noise
in the other quadrature gets increase such that
the Hiesenberg uncertainty principle is not violated.
Therefore, we define two quadratures Ê1

x and Ê1
y for the

first mode where Ê1
x =

â1+
ˆ

a
†
1

2
and Ê1

y =
â1−

ˆ
a

†
1

2i
. The

quadrature (∆ Ê1
α)

2; (α = x,y) is said to be squeezed if

(∆ Ê1
α)

2 − 1
4
< 0. In Fig.2 we show the quadrature

squeezing against the scaled time λ t. In Fig.2a, we note
that the squeezing occurs in the E1

X component, but no

squeezing in E1
y component. When we take into account

the time variation parameter ε to be non zero, the
squeezing still in the same direction, but the interval of
squeezing decreases, see (2b). Fig.2c shows the effect of
the damping parameter Γ on the quadrature squeezing.
We can see that the squeezing in E1

X component is
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Fig. 2: the time evolution of the normal squeezing in Ex and Ey

component vs the scaled time λ t where the blue curve represent

Ex and the red represent Ey, at fixed parameters ∆ = 5λ ,χ =
0.0001λ and (a) Γ = γ = 0 and ε = 0 (b) Γ = 0,γ = 0 and ε =
7πλ (c) Γ = 0.003λ and γ = ε = 0 (d)Γ = 0,γ = 0.003λ and

ε = 0

negatively effected, also we can see that the direction of
squeezing changes in the end of the considered interval
and begins to appear in the E1

y component. The atomic
damping parameter γ has no effect on squeezing
phenomena in both quadratures for the considered
system, see (2d).

4.2 Squeezing in the atomic quadratures

In this subsection, we study and compare between
variance and entropy squeezing of the atom components
for the system under discussion.
It is well known for any two-level atom, the information
entropy satisfies the inequality:

0 ≤ H(σi)≤ ln2, i = x, y or z, (10)

where

H(σi) =−
2

∑
j=1

p j(σi) ln[p j(σi)], (11)

where p j(σi) = 〈ψi j|ρ |ψi j〉; ( j = 1,2) represent the
probability distribution for the two possible outcomes of
measurements of the pauli operators σi, and |ψi j〉 is an
eigenvector of σi. And hence

H(σx)+H(σy)+H(σz)≥ 2ln2. (12)

If we consider δH(σi) = Exp[H(σi)], eq.(12) can be
written as

δH(σx)δH(σy)≥
4

δH(σz)
. (13)

The fluctuations in the pauli component σi(i = x,y,z) of a
two-level atom are said to be entropy squeezed if the
Shannon information entropy H(σi) satisfies the
condition:

E(σi) = δH(σi)−
2

√

δH(σz)
< 0, i = x or y (14)

and said to be squeezed in variance if σi satisfies the
condition :

V (σi) = ∆σi −
√

|〈σz〉|< 0, i = x or y,

where

∆σi =
√

〈σ2
i 〉− 〈σi〉2.

The information entropy of the operators σx,σy and σz can
be obtained by using the reduced density matrix (7) as

H(σx) =−
1

2
[(ρ11 +ρ22 + 2Re[ρ12])

ln[
1

2
(ρ11 +ρ22 + 2Re[ρ12])]−

1

2
(ρ11 +ρ22− 2Re[ρ12])

ln[
1

2
(ρ11 +ρ22 − 2Re[ρ12])],

H(σy) =−
1

2
[(ρ11 +ρ22 + 2Im[ρ12])

ln[
1

2
(ρ11 +ρ22 + 2Im[ρ12])]−

1

2
(ρ11 +ρ22 − 2Im[ρ12])

ln[
1

2
(ρ11 +ρ22 − 2Im[ρ12])],

and
H(σz) =−ρ11 lnρ11 −ρ22 lnρ22.

Now, we are in a position to discuss the variance and
entropy squeezing of the atomic dipole quadratures for
the first atome.
Fig.(3) illustrates the variance and entropy squeezing in
σx component. In (3a) we can see that the squeezing
occurs at several short intervals during the considered
period of time, the amount of squeezing begins small and
increases as the time developed, also one can see that the
squeezing in variance is almost non-exist. In (3b), where
we put ε = 2π

3
λ , we observe that the amount of squeezing

increases with more oscillation and higher maximum. The
effect of the parameter Γ on squeezing is negative, the
curves shifted upwardes to display no squeezing niether
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Fig. 3: The variance and entropy squeezing in σx component vs

the scaled time λ t, where the black curve represent the variance

and the red represent entropy squeezing, at fixed parameters ∆ =
5λ ,χ = 0.0001λ and (a) Γ = γ = 0 and ε = 0 (b) Γ = 0,γ = 0

and ε = 2π
3 λ (c) Γ = 0.001λ ,γ = 0 and ε = 0 (d)Γ = 0,γ =

0.0001λ and ε = 0

in the entropy nor in the variance, see (3c). In Fig.(3d) we
note the atomic damping parameter γ almost has no effect
on the squeezing.
Fig.(4) is devoted to show the squeezing in the σy

component, the situation is not more different. In Fig.(4a)
we can see that the squeezing also occurs at several short
intervals but the maximum of squeezing is begining
greater and decreasing gradually over the time and then
vanish in the end of the considered interval. For the case
of ε = 2π

3
λ the squeezing in entropy occurs apparently in

many periods of the considered time; see Fig.(4b). After
taking many values of the damping parameter Γ , we
noted that it also effects negativelly on the squeezing in
the σy component while the effect of the atomic decay
rate γ is almost not exist; see Fig.(4c) and (4d). Finally,
we can note that there exist no squeezing in the variance
at the considered cases.

5 Sub-Poissonian distribution

In this section, we discuss another nonclassical effect, that
is the sub-Poissonian distribution. To discuss such a kind

(a)

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

λt

(b)

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

λt

(c)

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

0.8

λt

(d)

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

λt

Fig. 4: The variance and entropy squeezing in σy component vs

the scaled time λ t with the same deta of Fig.(3)

of distribution we have to study the second order
correlation function g2(t). A light field displays a
sub-Poissonian distribution if g2(t) < 1 which is a non
classical effect, super-Poissonian distribution if g2(t) > 1
which is a classical effect and Poissonian distribution if
g2(t) = 1 which means that the probability of detecting an
incident pair of photons is equal to it would be for a
coherent field. In the mean time the system has thermal
statistical behavior if g2(t) = 2 and super-thermal when
g2(t) > 2. The second order correlation function g2(t) is
given by[23]:

g2
j(t) =

< â j
†2(t)â j

2(t)>

< â j
†(t) ˆa j(t)>2

, j = 1,2, (15)

where the subscript j relates to jth mode.
To study the sub-Poissonian distribution for the
considered system, we plot the second order correlation
function for the first mode g2

1(t). In Fig.(5) we exhibit the
effect of the decay rates Γ and γ on the correlation
function where we considered the atoms initially in the
superposition coherent state such that θ = π

4
and ϕ = π

2
,

the field in the coherent state where α = 5 and we chose
the Kerr parameter χ = 0.0001λ , we devoted the
sub-figures a, b and c to illustrate the effect of Γ
parameter, we find that when Γ = 0.00015λ and 0.0002λ
the system displays a full sub-Poissonian distribution
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Fig. 5: The second order correlation function vs λ t at fixed

parameters ∆ = 5λ , ε = 0, (a) Γ = 0.00015λ , (b) Γ = 0.0002λ ,

(c) Γ = 0.00025λ , (d) γ = 0.0005λ , (e) γ = 0.005λ and (f)

γ = 0.05λ

(g2
1 < 1) which is a non classical behavior. At

Γ = 0.00025λ the function begins as a Poissonian
distribution (g2

1(0) = 1) then the function displays full
super-Poissonian distribution and approximately reaches
the thermal distribution in the end of the considered
interval. After taking various values of γ exhibited in
Fig.(5)d, e and f, we find that at γ = 0.0005λ the
oscillation base curve approximately become around
g2

1 = 1.004 which means that the function gives
super-Poissonian distribution. For a higher value of γ
(γ = 0.005λ ) the oscillation base curve is shifted down to
give sub-Poissonian distribution, as observed in (5e). At
γ = 0.05λ the function starts super-Poissonian
distribution until λ t = 30 then the system displays a
sub-Poissonian distribution; see (5f).

6 Conclusion

In this paper, we studied the problem of the interaction of
two two-level atoms and two mode electromagnetic field
in a dissipative cavity. Under some consideration, we
studied the effect of the decay rates Γ and γ on some
nonclassical aspects such as the atomic inversion,
squeezing phenomenon and the sub-Poissonian
distribution. We noted that by increasing the damping
parameter Γ , the atomic inversion shifted down as the
time developed, also the amplitude of the revival interval
reduced. By taking various values for the atomic damping
parameter γ we noted the oscillation base line shifted
downwards with the same revival amplitude. We also
considered the variance and the entropy squeezing of the
atomic components σx and σy for the first atom. We noted
that the effect of the damping parameter of the field on the
entropy squeezing is negative, and the atomic damping

parameter almost has no effect on squeezing in entropy.
The variance displays no squeezing neither in σx nor in
σy for the considered cases. Also we considered the
quadrature squeezing for the first mode and we observed
that the damping parameter of the field has negative effect
on squeezing in E1

X component, we noted that the atomic
damping parameter also has no effect on the quadrature
squeezing. Finally, we discussed the sub-Poissonian
distribution, we observed that the system displays
sub-Poissonian distribution if the damping parameter of
the field is less than 0.00022λ the higher the value of the
damping parameter of the field, the more classic
characteristics the system will display. And we noted that
the atomic damping parameter has random effect on the
correlation function.
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