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Abstract: In this paper, concepts of knowledge entropy and knowledge entropy-based uncertainty measures are given in incomplete
information systems and decision systems, and some important properties of them are investigated. From these properties, it can be
shown that these measures provide important approaches to measure the uncertainty ability of different knowledge in incomplete
decision systems. Then the relationships among these knowledge entropies proposed are discussed as well. A new definition of reduct
is proposed and a heuristic algorithm with low computational complexity is constructed to improve computational efficiency of feature
selection in incomplete decision systems. Experimental results demonstrate that our algorithm can provide an efficient solution to find
a minimal subset of the features from incomplete data sets.
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1. Introduction

Due to the abundance of noisy, irrelevant or misleading
features in real world problems, handling imprecise and
inconsistent information for feature selection has become
one of the most important requirements [1]. In the past
two decades, successful applications of rough set model
as an effective method to feature selection in a variety of
problems have demonstrated its importance and versatil-
ity. Starzyk et al. [2] used strong equivalence to simpli-
fy discernibility functions. Obviously, this is an expensive
solution to the problem and is only practical for very sim-
ple data sets. Wroblewski used genetic algorithms to find
minimal reducts [3]. However, Wroblewski’s method us-
es time-consuming operations and cannot assure that the
resulting subset is really a reduct. Hu et al. [4] used the
concept of fuzzy equivalence relation matrix to compute
entropy and mutual information for feature selection of
real-valued data sets, but at the expense of increased com-
putational effort. In general, these feature selection meth-
ods above select the relevant features of a data set without
considering the redundancy among them.

It is known that classical rough set theory is unsuit-
able for feature selection in incomplete decision systems
[5]. To address this issue, several interesting and meaning-
ful extensions to equivalence relation have been proposed,
such as tolerance relations, neighborhood operators, oth-
ers [6]. To accomplish feature selection from incomplete
decision systems, the heuristic approaches can avoid the
exponential computation in exhaustive methods, but they
still suffer from intensive computation of tolerance class-
es induced by the condition features in an incomplete de-
cision system. This process largely affects computational
time of feature selection. Many researchers have attempted
to solve this problem, however, their time complexities are
no less than O(|C|2|U |2), where |C| and |U | respective-
ly denote the numbers of condition features and objects.
Thus, it is desirable to propose an efficient and effective
approach to feature selection in incomplete decision sys-
tems.

Heuristic search depends on the measures associated
with the features, by which we can analyze the significance
of every feature, and regard it as heuristic information in
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order to decrease search space. To evaluate uncertainty of a
system, the concept of entropy was introduced by Shannon
in [7]. The entropy and its variants are adapted for rough
set theory in [8,9]. Qian and Liang [10] proposed the con-
cepts of combination entropy and combination granulation
to measure the uncertainty of knowledge from a complete
information system. These measures include granulation
measure, information entropy, rough entropy and knowl-
edge granulation, and have become effective mechanisms
for evaluating uncertainty in rough set theory. All these s-
tudies are dedicated to evaluating uncertainty of a set in
terms of the partition ability of knowledge. However, s-
ince the equivalence classes are only regarded as the u-
nit of information granule of a complete information sys-
tem, these measures cannot be used to deal with an incom-
plete information system. Therefore, it is desirable to ex-
tend and hybridize these measures to deal with incomplete
data and solve many real world problems. In this paper,
we introduce concepts of some knowledge entropies and
uncertainty measures in incomplete information systems
and decision systems, and discuss some important prop-
erties of them. Furthermore, these measures can provide
important approaches to measure the uncertainty ability of
different knowledge in incomplete decision systems, and
then a heuristic feature selection algorithm with complex-
ity analysis is presented in incomplete decision systems.

2. Preliminaries

The following recalls necessary preliminaries that are rel-
evant to this paper. Detailed description of the theory can
be found in the source papers [11,12].

Formally, an information system (IS) is an ordered triple
IS = (U,A,F), where U is a nonempty finite set of objects
called the universe, and A is a nonempty finite set of fea-
tures, such that there exists a map fa: U →Va for any a∈A,
where Va is called the domain of the feature a, and then
F = { fa|a ∈ A}. With any P ⊆ A, an associated indistin-
guishable relation is denoted by IND(P) = {(u,v) ∈ U ×
U |∀a ∈ P, fa(u) = fa(v)}. The partition of U induced by
IND(P) is denoted by U/IND(P) = {[u]P|u ∈ U}, where
[u]P = {v ∈ U |(u,v) ∈ IND(P)}. U/IND(P) can be re-
placed by U/P.

It may happen that some of the feature values for an
object are missing. To indicate such a situation, a distin-
guished value, the so-called null value is usually assigned
to those features. If Va contains a null value for at least one
feature a ∈ A, then IS is called an incomplete information
system (IIS), otherwise it is a complete information sys-
tem (CIS). If A = C ∪D and C ∩D = /0, where C is the
condition feature set and D is the decision feature set, then
IIS is called an incomplete decision system (IDS), and CIS
is called a complete decision system (CDS). Further on,
the symbol ∗ denotes the missing value. If the value of a
feature a is missing, then the real value must be from the
set Va−{∗}. For any P ⊆ A, P determines a binary relation
SIM(P)= {(u,v)∈U×U |∀a∈P, fa(u)= fa(v) or fa(u)=

∗ or fa(v) = ∗}. In fact, SIM(P) is a tolerance relation on
U . SP(u) = {v ∈ U |(u,v) ∈ SIM(P)} is the maximal set
of objects which are possibly indistinguishable by P with
u. Let U/SIM(P) denote the family sets {SP(u)|u ∈ U},
the classification or the knowledge induced by P. A mem-
ber SP(u) from U/SIM(P) will be called a tolerance class.
If U/SIM(P) = ω = {SP(u) = {u}|u ∈ U}, it is called
an identity relation, and if U/SIM(P) = δ = {SP(u) =
{U}|u ∈U}, it is called a universal relation.

Let IIS be an incomplete information system. Q is coars-
er than P, denoted by P ≼ Q, if and only if SP(ui)⊆ SQ(ui)
for i ∈ {1,2, · · · , |U |}. If P ≼ Q and P ̸= Q, then we say
that Q is strictly coarser than P and denoted by P ≺ Q.
In fact, P ≺ Q ⇔ for i ∈ {1,2, · · · , |U |}, it follows that
SP(ui) ⊆ SQ(ui), and there exists j ∈ {1,2, · · · , |U |} such
that SP(u j)⊂ SQ(u j).

3. Knowledge entropy and feature selection

3.1. Incomplete rough entropy and incomplete
information entropy of knowledge

Let CIS be a complete information system and U/A =
{R1,R2, · · · ,Rm}. Rough entropy of knowledge A is denot-

ed by Er(A) = −
m
∑

i=1

|Ri|
|U | log2

1
|Ri| , and information entropy

of knowledge A is denoted by H(A) =−
m
∑

i=1

|Ri|
|U | log2

|Ri|
|U | .

Property 3.1. Let CIS be a complete information system
and P,Q ⊆ A. If P ≼ Q, then Er(P) ≤ Er(Q) and H(P) ≥
H(Q).

When we do not need to distinguish complete infor-
mation systems and incomplete information systems, an
information in IS can be represented as the vector K(A) =
{SA(u1),SA(u2), · · · ,SA(u|U |)} [13]. Let U/A = {X1, X2,
· · · , Xm} and U/SIM(A) = {SA(u1),SA(u2), · · · ,SA(u|U |)}.
If the set Xi = {ui1,ui2, · · · ,uisi}, where |Xi|= si and ∑m

i=1 si
= |U |, then the relationship between K(A) and U/A can
be established: Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi),
|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi)|, and |Xi|2 =
∑si

k=1 |SA(uik)| for i ∈ {1,2, · · · ,m}. We can obtain that

Er(A) = −
m

∑
i=1

(
1
|U |

log2
1

|SA(ui1)|
+

1
|U |

log2
1

|SA(ui2)|

+ · · ·+ 1
|U |

log2
1

|SA(uisi)|
)

= −
m

∑
i=1

Si

∑
k=1

1
|U |

log2
1

|SA(uik)|

= −
|U |

∑
i=1

1
|U |

log2
1

|SA(ui)|
. (1)

Similarly, H(A) =−
|U |
∑

i=1

1
|U | log2

|SA(ui)|
|U | .
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Definition 3.1. Let IIS be an incomplete information sys-
tem, P ⊆ A, U/SIM(P) = {SP(u1),SP(u2), · · · ,SP(u|U |)}.
Incomplete rough entropy of knowledge P is defined as

E(P) =−
|U |

∑
i=1

1
|U |

log2
1

|SP(ui)|
. (2)

Definition 3.2. Let IIS be an incomplete information sys-
tem and P ⊆ A. Incomplete information entropy of knowl-
edge P is defined as

H ′(P) =−
|U |

∑
i=1

1
|U |

log2
|SP(ui)|
|U |

. (3)

Then, from Definitions 3.1 and 3.2, the following prop-
erties can be obtained.
Property 3.2. If U/SIM(P) = ω , then E(P) achieves its
minimum value 0, and H ′(P) achieves its maximum value
log2|U |. If U/SIM(P) = δ , then E(P) achieves its maxi-
mum value log2|U |, and H ′(P) achieves its minimum val-
ue 0.
Property 3.3. Let IIS be an incomplete information sys-
tem and P,Q ⊆ A. If there exists a one-to-one, onto func-
tion h : U/SIM(P) → U/SIM(Q) such that |h(SP(ui))| =
|SP(ui)| for i∈ {1,2, · · · , |U |}, then E(P) = E(Q) or H ′(P)
= H ′(Q).
Property 3.4. Let IIS be an incomplete information sys-
tem and P,Q ⊆ A. If P ≺ Q, then E(P)< E(Q).
Proof. Since P ≺ Q, it follows that SP(ui) ⊆ SQ(ui) for
i ∈ {1,2, · · · , |U |}, then |SP(ui)| ≤ |SQ(ui)|. There exists
u0 ∈U such that SP(u0)⊂ SQ(u0), and |SP(u0)|< |SQ(u0)|.
Hence, we can obtain that

E(P) =
|U |

∑
i=1,ui ̸=u0

1
|U |

log2 |SP(ui)|+
1
|U |

log2 |SP(u0)|

<
|U |

∑
i=1,ui ̸=u0

1
|U |

log2|SQ(ui)| +
1
|U |

log2 |SQ(u0)|

= −
|U |

∑
i=1

1
|U |

log2
1

|SQ(ui)|
= E(Q). (4)

Property 3.5. Let IIS be an incomplete information sys-
tem and P,Q ⊆ A. If P ≺ Q, then H ′(P)> H ′(Q).
Proof. Similar to Property 3.4,

−
|U |

∑
i=1,ui ̸=u0

1
|U |

log2
|SP(ui)|
|U |

− 1
|U |

log2
|SP(u0)|
|U |

> −
|U |

∑
i=1,ui ̸=u0

1
|U |

log2
|SQ(ui)|
|U |

− 1
|U |

log2
|SQ(u0)|

|U |
, (5)

i.e., −
|U |
∑

i=1

1
|U | log2

|SP(ui)|
|U | >−

|U |
∑

i=1

1
|U | log2

|SQ(ui)|
|U | .

Thus, H ′(P)> H ′(Q). This completes the proof.
From Properties 3.4 and 3.5, the following property

can be obtained immediately.

Property 3.6. Let IIS be an incomplete information sys-
tem, P⊆A. U/SIM(P) =U/SIM(A) if and only if E(P) =
E(A) or H ′(P) = H ′(A).

For any P ⊆ A and r ∈ P, we say that r is dispensable if
U/SIM(P) = U/SIM(P−{r}), otherwise it is indispens-
able in P. P is independent if each r ∈ P is indispensable
in P, otherwise P is dependent. Thus, the following propo-
sition can be obtained immediately.

Proposition 3.1. Let IIS be an incomplete information sys-
tem. A set P ⊆ A is a reduct of A if and only if P is inde-
pendent and E(P) = E(A) or H ′(P) = H ′(A).

Thus, it is concluded that the reduct definition based
on tolerance relation and the reduct definition based on in-
complete rough (or information) entropy are equivalent in
incomplete information systems.

Example 3.1. Consider the descriptions of several cars
employed in Table 1 [13], in which U = {u1,u2, · · · ,u6},
A = {P,M,S,X}, and P, M, S, X stand for Price, Mileage,
Size, and Max−Speed.
Assumed that B = {P,S,X}, it follows that U/SIM(A) =
{SA(u1), SA(u2), SA(u3), SA(u4), SA(u5), SA(u6)}= {{u1},
{u2,u6}, {u3}, {u4,u5}, {u4,u5,u6}, {u2,u5,u6}}, and U/
SIM(B)= {SB(u1), SB(u2), SB(u3), SB(u4), SB(u5), SB(u6)}
= {{u1}, {u2,u6}, {u3}, {u4,u5}, {u4,u5,u6}, {u2,u5,u6}}.
It is easily computed that U/SIM(B) = U/SIM(A), and
E(B) = E(A) = 0.862. Furthermore, the others are not e-
qual to U/SIM(A). Therefore, {P,S,X} is a reduct of {P,M,
S,X}.

Proposition 3.2. Let IIS be an incomplete information sys-
tem and P ⊆ A. Then E(P)+H ′(P) = log2|U |.
Proof. It follows from Definitions 3.1 and 3.2 that

E(P)+H ′(P)

= −
|U |

∑
i=1

1
|U |

log2
1

|SP(ui)|
−

|U |

∑
i=1

1
|U |

log2
|SP(ui)|
|U |

= − 1
|U |

|U |

∑
i=1

(log2
1

|SP(ui)|
+ log2

|SP(ui)|
|U |

)

= log2 |U |. (6)

In what follows, we investigate the incomplete rough
(or information) entropy of new knowledge composed of
two given knowledge with the same universe in incomplete
information systems.

Lemma 3.1. Let IIS be an incomplete information sys-
tem and P,Q ⊆ A. SIM(P)∩ SIM(Q) = SIM(P∪Q) and
SP(u)∩SQ(u) = SIMP∪Q(u) hold.

Lemma 3.2. Let IIS be an incomplete information system
and P,Q⊆A. Then U/SIM(P)∩U/SIM(Q)=U/SIM(P∪
Q).
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Definition 3.3. Let IIS be an incomplete information sys-
tem and P,Q ⊆ A. Incomplete rough entropy of knowledge
P∪Q is defined as

E(P∪Q) = −
|U |

∑
i=1

|U |

∑
j=1

1
|U |

log2
1

|SP(ui)∩SQ(u j)|

= −
|U |

∑
i=1

1
|U |

log2
1

|SP(ui)∩SQ(ui)|
. (7)

Definition 3.4. Let IIS be an incomplete information sys-
tem and P,Q⊆A. Incomplete information entropy of knowl-
edge P∪Q is defined as

H ′(P∪Q) = −
|U |

∑
i=1

|U |

∑
j=1

1
|U |

log2
|SP(ui)∩SQ(u j)|

|U |

= −
|U |

∑
i=1

1
|U |

log2
|SP(ui)∩SQ(ui)|

|U |
. (8)

From Definitions 3.3 and 3.4, the following properties
can be obtained.
Proposition 3.3. Let IIS be an incomplete information sys-
tem and P,Q ⊆ A. Then the following properties hold
(1) E(P∪Q)≤ E(P) and E(P∪Q)≤ E(Q).
(2) H ′(P∪Q)≥ H ′(P) and H ′(P∪Q)≥ H ′(Q).
(3) If P≺Q, then E(P∪Q)=E(Q), and H ′(P∪Q)=H ′(Q).
(4) E(P∪Q)+H ′(P∪Q) = log2|U |.

3.2. Incomplete conditional entropy of
knowledge in incomplete decision systems

Definition 3.5. Let IDS be an incomplete decision system,
P ⊆ C. Incomplete conditional rough entropy of D with
reference to P is defined as

E(D|P) =− 1
|U |

|U |

∑
i=1

log2
|SP(ui)∩SD(ui)|

|SP(ui)|
. (9)

Definition 3.6. Let IDS be an incomplete decision system,
P ⊆ C. Incomplete conditional information entropy of D
with reference to P is defined as

H ′(D|P) =−
|U |

∑
i=1

1
|U |

log2
|SP(ui)∩SD(ui)|

|SP(ui)|
. (10)

Then, from Definitions 3.5 and 3.6, the following prop-
erty can be obtained immediately.
Property 3.7. Let IDS be an incomplete decision system,
P ⊆C. Then E(D|P) = H ′(D|P).
Proposition 3.4. Let IDS be an incomplete decision sys-
tem, P⊆C. Then E(D|P) =E(P)−E(P∪D) and H ′(D|P)
= H ′(P∪D)−H ′(P).

Proof. From Definitions 3.1, 3.3 and 3.5, we have

E(D|P)

= − 1
|U |

|U |

∑
i=1

(log2|SP(ui)∩SD(ui)|− log2 |SP(ui)|)

= −
|U |

∑
i=1

1
|U |

log2
1

|SP(ui)|
+

|U |

∑
i=1

1
|U |

log2
1

|SP(ui)∩SD(ui)|
= E(P)−E(P∪D). (11)

Similarly, from Definitions 3.2, 3.4 and 3.6, we obtain

H ′(D|P)

= −
|U |

∑
i=1

1
|U |

(log2
|SP(ui)∩SD(ui)|

|U |
− log2

|SP(ui)|
|U |

)

= −
|U |

∑
i=1

1
|U |

log2
|SP(ui)∩SD(ui)|

|U |
+

|U |

∑
i=1

1
|U |

log2
|SP(ui)|
|U |

= H ′(P∪D)−H ′(P). (12)

Definition 3.7. Let IDS be an incomplete decision system,
P ⊆C. Mutual information between P and D is defined as

E(P;D) = E(D)−E(P)+E(P∪D), (13)

H ′(P;D) = H ′(P)+H ′(D)−H ′(P∪D). (14)

Note that the relationships among information entropy,
conditional information entropy and mutual information
can satisfy an identical equation in a complete information
system [7,9]. However, so far the above relationships have
not been reported in incomplete decision systems, thus, we
further investigate the relationships among these measures
above as follows.
Proposition 3.5. Let IDS be an incomplete decision sys-
tem and P ⊆C. Then
(1) E(P;D) = E(D)−E(D|P).
(2) H ′(P;D) = H ′(D)−H ′(D|P).
(3) E(D)−E(P;D) = H ′(D)−H ′(P;D).
Proof. (1) From Definition 3.7 and Proposition 3.4, we
have that E(P;D) = E(D)−E(P)+E(P∪D) = E(D)−
(E(P)−E(P∪D)) = E(D)−E(D|P).
(2) Similar to (1), the equation H ′(P;D)=H ′(D)−H ′(D|P)
can be proved.
(3) From Property 3.7, (1) and (2), E(D)−E(P;D)=H ′(D)
−H ′(P;D) is straightforward.
Remark. Propositions 3.4 and 3.5 establish the relation-
ships among the incomplete rough entropy, the incomplete
conditional rough entropy, the incomplete information en-
tropy, the incomplete conditional information entropy and
the mutual information in incomplete decision systems. In
fact, these equations cannot be satisfied by some existing
measures in incomplete information systems and incom-
plete decision systems. These relationships will be helpful
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for understanding the essence of the knowledge content
and the uncertainty in an incomplete decision system. Sev-
eral authors have applied Shannon’s entropy and its vari-
ants for measuring the uncertainty in the context of com-
plete information systems [8]. However, these entropies
cannot be used in incomplete information systems. Thus,
to overcome the shortcomings of some existing uncertain-
ty measures, the knowledge entropies above can measure
the uncertainty in incomplete information systems and in-
complete decision systems. Note that the incomplete con-
ditional rough (or information) entropy can measure both
the uncertainty in incomplete decision systems and that
in complete decision systems. To this end, we investigate
some properties of conditional rough (or information) en-
tropy in complete decision systems. It is known that equiv-
alence relation is a kind of special tolerance relation [5].
Thus, some relevant definitions and propositions of condi-
tional entropy in complete decision systems are proposed
as follows.
Definition 3.8. Let CDS be a complete decision system,
P ⊆ C, U/P = {X1,X2, · · · ,Xm}, and U/D = {Y1, Y2, · · · ,
Yn}. Conditional rough entropy of D with reference to P
on U is defined as

Er(D|P) =
m

∑
i=1

|Xi|
|U |

n

∑
j=1

|Yj ∩Xi|
|Xi|

log2
|Xi|

|Yj ∩Xi|
. (15)

For any P ⊆ C, conditional information entropy of D
with reference to P on U is denoted by

H(D|P) =−
m

∑
i=1

|Xi|
|U |

n

∑
j=1

|Yj ∩Xi|
|Xi|

log2
|Yj ∩Xi|
|Xi|

. (16)

Thus, one has that H(D|P) = H(P∪D)−H(P) [9].
Property 3.8. Let CDS be a complete decision system,
P ⊆ C. Then Er(D|P) = H(D|P) and Er(D|P) = Er(P)−
Er(P∪D).
Proposition 3.6. Let CDS be a complete decision system.
U/A1 = {X1,X2, · · · ,Xn} is a partition of U induced by
A1. U/A2 = {X1,X2, · · · ,Xp−1,Xp+1, · · · ,Xq−1,Xq+1, · · · ,
Xn, Xp ∪Xq} is another partition generated through com-
bining equivalence blocks Xp and Xq to Xp ∪Xq. Then we
have that Er(D|A1)≤ Er(D|A2).
Proof. The proof is similar to Lemma 4.1 [9].
Corollary 3.1. Let CDS be a complete decision system
and A1,A2 ⊆ C. Then Er(D|A1) ≤ Er(D|A2) if and only
if H(D|A1)≤ H(D|A2).
Corollary 3.2. Let CDS be a complete decision system
and P ⊂ Q ⊆C. Then Er(D|Q)< Er(D|P) and H(D|Q)<
H(D|P).
Proposition 3.7. Let IDS be an incomplete decision sys-
tem and P ⊂ Q ⊆C. Then E(D|Q)< E(D|P) does not al-
ways hold.
Proof. For any P ⊂ Q, then Q ≺ P. It follows that SQ(ui)⊆
SP(ui) for i∈ {1,2, · · · , |U |}, and there exists j ∈ {1,2, · · · ,
|U |} such that SQ(u j)⊂ SP(u j). Then, suppose i∈{1,2, · · · ,

t}, there exists SQ(ui)⊆ SP(ui) such that for j ∈ {t+1, t+
2, · · · , |U |}, SQ(u j) ⊂ SP(u j), where 0 ≤ t < |U |. Case1:
Suppose i ∈ {1,2, · · · , t}, it follows that SQ(ui) ⊆ SP(ui)
and SD(ui)∩SQ(ui)⊆ SD(ui)∩SP(ui). That is, |SQ(ui)| ≤
|SP(ui)| and |SD(ui)∩ SQ(ui)| ≤ |SD(ui)∩ SP(ui)|. Thus,
|SQ(ui)|
|SP(ui)| ≤ 1 and |SP(ui)∩SD(ui)|

|SQ(ui)∩SD(ui)| ≥ 1 for i ∈ {1,2, · · · , t}. Ob-
viously, there exists only SQ(ui) = SP(ui) for i ∈ {1,2, · · · ,
t}, then the equality above holds. Case2: Suppose j ∈ {t +
1, t+2, · · · , |U |}, then SQ(u j)⊂ SP(u j) and SD(u j)∩SQ(u j)
⊂ SD(u j)∩SP(u j). That is, |SQ(u j)|< |SP(u j)| and |SD(u j)
∩SQ(u j)|< |SD(u j)∩SP(u j)|. Hence, we have that

E(D|Q)−E(D|P)

=
t

∑
i=1

1
|U |

log2
|SQ(ui)||SP(ui)∩SD(ui)|
|SP(ui)||SQ(ui)∩SD(ui)|

+
|U |

∑
j=t+1

1
|U |

log2
|SQ(u j)||SP(u j)∩SD(u j)|
|SP(u j)||SQ(u j)∩SD(u j)|

. (17)

Therefore, it follows from Q≺P that there exist |SQ(uk)|
|SP(uk)|

< 1 and |SP(uk)∩SD(uk)|
|SQ(uk)∩SD(uk)|

> 1 for any uk ∈U such that E(D|Q)

> E(D|P) or E(D|Q)< E(D|P). Then, E(D|Q)< E(D|P)
does not always hold.
Remark. Proposition 3.7 states that incomplete condition-
al rough entropy of knowledge does not decrease mono-
tonically with increases of features in knowledge through
finer classification, which means that adding a new feature
into the existing subset of condition features will change
the value of incomplete conditional rough entropy.
Corollary 3.3. Let IDS be an incomplete decision system
and P⊂Q⊆C. Then H ′(D|Q)<H ′(D|P) does not always
hold.
Proposition 3.8. Let CDS be a complete decision system,
P ⊆C. Then E(D|P) = Er(D|P) = H(D|P) = H ′(D|P).
Proof. Let Xi ∈U/P, Xi = {ui1,ui2, · · · ,uisi}, |Xi|= si, and
∑m

i=1 si = |U |. The relationships among the elements in
U/SIM(P) and the elements in U/P are as follows: Xi =
SP(ui1) = SP(ui2) = · · · = SP(uisi), i.e., |Xi| = |SP(ui1)| =
|SP(ui2)|= · · ·= |SP(uisi)|. Similarly, let Yj ∈U/D, |Yj|=
{u j1,u j2, · · · ,u jt j}, and ∑n

j=1 t j = |U |. The relationships a-
mong the elements in U/SIM(D) and the elements in U/D
are as follows: Yj = SD(u j1) = SD(u j2) = · · · = SD(u jt j).
Thus, we can obtain that

E(D|P) =
m

∑
i=1

n

∑
j=1

∑
uk∈Y j∩Xi

1
|U |

log2
|SP(uk)|

|SP(uk)∩SD(uk)|

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|
|U |

log2
|Xi|

|Yj ∩Xi|

=
m

∑
i=1

|Xi|
|U |

n

∑
j=1

|Yj ∩Xi|
|Xi|

log2
|Xi|

|Yj ∩Xi|

= Er(D|P). (18)
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From Properties 3.7 and 3.8, H ′(D|P) = E(D|P) = Er(D|P)
= H(D|P) hold. This completes the proof.

Proposition 3.8 states that the incomplete condition-
al rough (or information) entropy under tolerance relation
is the extended formulation of the complete conditional
rough (or information) entropy under equivalence relation.
Proposition 3.9. Let CIS be a complete information sys-
tem, P ⊆ A. Then E(P) = Er(P) and H ′(P) = H(P).
Proof. Similar to Proposition 3.8,

E(P) = −
m

∑
i=1

si

∑
k=1

1
|U |

log2
1

|SP(uik)|

= −
m

∑
i=1

|Xi|
|U |

log2
1
|Xi|

= Er(P). (19)
Similarly, the equation H ′(P) = H(P) can be proved. This
completes the proof.

Propositions 3.8 and 3.9 state that the four uncertain-
ty measures above, named as the incomplete conditional
rough (or information) entropy and the incomplete rough
(or information) entropy, are unified in both incomplete
and complete decision systems and both incomplete and
complete information systems respectively. Unlike all ex-
isting measures for the uncertainty in incomplete informa-
tion systems, incomplete and complete decision systems,
the relationships among them can be established, which
are formally expressed as follows: (a) E(P) + H ′(P) =
log2 |U | in incomplete information systems; (b) E(P) =
Er(P) and H ′(P) = H(P) in complete information system-
s; (c) E(D|P) = E(P)−E(P∪D), H ′(D|P) = H ′(P∪D)−
H ′(P), E(D|P) = H ′(D|P), E(P;D) = E(D)−E(D|P), H ′

(P;D)=H ′(D)−H ′(D|P), and E(D)−E(P;D) =H ′(D)−
H ′(P;D) in incomplete decision systems; (d) Er(D|P) =
Er(P)− Er(P∪D) and E(D|P) = Er(D|P) = H(D|P) =
H ′(D|P) in complete decision systems. These relationship-
s are very significant for reasonably applying an uncertain-
ty measure to incomplete information systems and incom-
plete decision systems. So far, however, the relationships
above have not been reported in incomplete decision sys-
tems, which would hinder further research and application
of knowledge entropy. Furthermore, all existing knowl-
edge entropies and their extensions in incomplete informa-
tion systems and in incomplete decision systems cannot
establish the above relationships. Therefore, the incom-
plete conditional rough (or information) entropy may be
a much better uncertainty measure to evaluate the knowl-
edge of an incomplete decision system.

3.3. Incomplete conditional entropy-based
reduct in incomplete decision systems

From Property 3.7, the incomplete conditional rough (or
information) entropy is named as the incomplete condi-
tional entropy in short. Let CDS be a complete decision
system and P ⊆C. Then,

E(D|P) =
m

∑
i=1

(
1
|U |

n

∑
j=1

|Yj ∩SP(ui1)|
|SP(ui1)|

log2
|SP(ui1)|

|Yj ∩SP(ui1)|

+
1
|U |

n

∑
j=1

|Yj ∩SP(ui2)|
|SP(ui2)|

log2
|SP(ui2)|

|Yj ∩SP(ui2)|
+ · · ·

+
1
|U |

n

∑
j=1

|Yj ∩SP(uisi)|
|SP(uisi)|

log2
|SP(uisi)|

|Yj ∩SP(uisi)|
)

=
m

∑
i=1

si

∑
k=1

1
|U |

n

∑
j=1

|Yj ∩SP(uik)|
|SP(uik)|

log2
|SP(uik)|

|Yj ∩SP(uik)|

=
1
|U |

|U |

∑
i=1

n

∑
j=1

|Yj ∩SP(ui)|
|SP(ui)|

log2
|SP(ui)|

|Yj ∩SP(ui)|
. (20)

Thus, the incomplete conditional entropy of D with refer-
ence to P on U in incomplete decision systems is reformu-
lated as follows:

CE(D|P) = 1
|U |

|U |

∑
i=1

n

∑
j=1

|Yj ∩SP(ui)|
|SP(ui)|

log2
|SP(ui)|

|Yj ∩SP(ui)|
.

(21)
Without loss of generality, one can obtain that U/D =

{Y1,Y2, · · · ,Yn} in an incomplete decision system, then the
relationship between U/D and U/SIM(D) can be estab-
lished as follows: Yj = SD(u j1) = SD(u j2) = · · ·= SD(u jt j)

for j ∈ {1,2, · · · ,n}. Thus, the transformed formula of the
incomplete conditional entropy is equivalent to that of Def-
inition 5.
Definition 3.9. Let IDS be an incomplete decision system,
P⊆C. Incomplete conditional entropy of D with reference
to P on ui ∈U for i ∈ {1,2, · · · , |U |} is defined as

CE(D|P)ui =
1
|U |

n

∑
j=1

|Yj ∩SP(ui)|
|SP(ui)|

log2
|SP(ui)|

|Yj ∩SP(ui)|
.

(22)
Definition 3.10. Let IDS be an incomplete decision sys-
tem. A set P ⊆ C is called a reduct of the IDS if and only
if CE(D|C)ui ≤ CE(D|P)ui for i ∈ {1,2, · · · , |U |}, and for
any Q ⊂ P, there exists u j ∈ U such that CE(D|Q)u j >

CE(D|C)u j .
Proposition 3.10. Let IDS be an incomplete decision sys-
tem, P ⊆C. If P is a reduct of C with reference to D, then
CE(D|C)≤CE(D|P) on ui ∈U for i ∈ {1,2, · · · , |U |}.
Proof. Since P ⊆C and P is a reduct of C with reference to
D, it follows from Definition 3.10 that for any ui ∈U , then
CE(D|C)ui < CE(D|P)ui . Thus, one has that CE(D|C) =

∑|U |
i=1 CE(D|C)ui ≤∑|U |

i=1 CE(D|P)ui =CE(D|P). This com-
pletes the proof.

Proposition 3.10 provides an approach to judge mono-
tonicity of the incomplete conditional entropy under re-
duction. In fact, Propositions 3.8 and 3.10 present the the-
oretical foundation to construct our reduct algorithm, and
provide an effective way of determining whether or not
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a feature should be contained in a reduct. Moreover, it is
concluded that the judgement propositions of reduct above
are suitable for both incomplete and complete decision
systems.

3.4. Feature selection algorithm

To improve computational efficiency of the heuristic fea-
ture selection algorithm in incomplete data sets, we con-
struct the input sequence by sorting the features in ascend-
ing order via their incomplete conditional entropy. The
optimal reduct can be found by repeatedly deleting the
head node (feature) of the input sequence. Then we intro-
duce the idea of radix sorting in [14] to calculate tolerance
blocks effectively. In fact, there may be multiple reducts
for a given decision system. In most applications, it is e-
nough to find a single optimal reduct. Based on the ideas
above, we present a fast heuristic incomplete conditional
entropy-based feature selection algorithm (called FSICE)
as follows.
Algorithm FSICE
Input: An incomplete decision system IDS, in which C =
{c1,c2, · · · ,cp}, D = {d}, and p = |C|
Output: reduct, a reduct of the IDS
(1) Calculate U/D and SC(ui) based on radix sorting to
obtain CE(D|C)ui for any ui ∈U , i ∈ {1,2, · · · , |U |}
(2) Construct an ascending input sequence which is or-
dered by CE(D|{ci}), where ci ∈C, i ∈ {1,2, · · · , p}, and
denote the result by ⟨a1,a2, · · · ,ap⟩
(3) Let R = {a1,a2, · · · ,ap}
(4) For (i = 1; i ≤ p; i++)

(4.1) Let R = R−{ai}
(4.2) Calculate CE(D|R)u j , where j ∈ {1,2, · · · , |U |}
(4.3) If CE(D|C)u j ≤CE(D|R)u j for j ∈ {1,2, · · · , |U |},

break
(5) Construct a descending input sequence and denote the
result by R = {a1,a2, · · · ,at}, where t < p
(6) For (i = 1; i ≤ t; i++)

(6.1) Let Q = R−{ai}
(6.2) Calculate CE(D|Q)u j , where j ∈ {1,2, · · · , |U |}
(6.3) If CE(D|Q)u j ≤CE(D|C)u j for j ∈ {1,2, · · · , |U |},

then R = Q
(7) reduct = R

We first give a fast computing for acquiring tolerance
blocks based on the idea of radix sorting algorithm [14],
and its complexity is cut down to O(|C||U |). Then the
complexity of computing incomplete conditional entropy
is O(|U |log|U |). Thus, the time complexity of (2) in F-
SICE is no more than O(|C||U |log|U |). Here, we construct
an input sequence (the complexity is O(|C||U |)), so that
the corresponding tolerance blocks are easily obtained by
scanning only the data sets one time. Then, the complex-
ity from (2) to (5) in FSICE is no more than O(|C||U |
log |U |+ |U |), and the complexity of (6) in FSICE is also
no more than O(|R||U |log|U |+ |U |). Therefore, obvious-
ly, the time complexity of Algorithm FSICE is O(|C||U |

log |U |)+O(|R||U |log|U |+ |U |). For the large data sets, in
especial gene expressing data sets, since |U | << |C|, the
whole time complexity of Algorithm FSICE is O(|C||U |
log|U |), which is less than that in [9,11], and its space
complexity is O(|C||U |).

4. Experimental results

In this section, we apply the proposed approach and oth-
er feature selection approaches to several data sets from
UCI databases, so as to evaluate the performances of our
approach on a personal computer equipped with Intel Pen-
tium (R) dual-core CPU 2.8GHz and 2GB Memory.

Example 4.1. Consider an incomplete decision system about
several cars employed in Table 1, where C = {Price,Mileage,
Size,Max−Speed}= {P,M,S,X} and D= {Acceleration}.

Table 1 An incomplete decision system about cars

car P M S X D
1 High Low Full Low Good
2 Low * Full Low Good
3 * * Compact Low Poor
4 High * Full High Good
5 * * Full High Excellent
6 Low High Full * Good

(1) By computing, it follows that U/D = {Y1,Y2,Y3} =
{{1,2,4,6},{3},{5}}, U/SIM(C) = {SC(1), SC(2), SC(3),
SC(4), SC(5), SC(6)} = {{1}, {2,6}, {3}, {4,5}, {4,5,6},
{2,5,6}}. Then, CE(D|C)u1 =CE(D|C)u2 =CE(D|C)u3 =
0,CE(D|C)u4 = 0.167, and CE(D|C)u5 = CE(D|C)u6 =
0.153.
(2) U/SIM({P})= {{1,3,4,5},{2,3,5,6},{1,2,3,4,5,6}},
then CE(D|{P})= 10.503. U/SIM({M}) = {{1,2,3,4,5},
{1,2,3,4,5,6},{2,3,4,5,6}}, then CE(D|{M}) = 7.614.
U/SIM({S}) = {{1,2,4,5,6}, {3}}, then CE(D|{S}) =
6.533. U/SIM({X})= {{1,2,3,6},{4,5,6}}, then we have
CE(D|{X})= 6.190. Hence, the input sequence is {X ,S,M,
P}.
(3) Let R = {X ,S,M,P}.
(4) When i = 1, R=R−{X}= {S,M,P}, then CE(D|R)u1 =
CE(D|R)u2 =CE(D|R)u4 =CE(D|R)u6 = 0.153,CE(D|R)u3
=0, and CE(D|R)u5 = 0.120. So, we find that CE(D|C)u4
>CE(D|R)u4 and CE(D|C)u5 >CE(D|R)u5 .
(5) When i = 2, R=R−{S}= {X ,M,P}, then CE(D|R)u1 =
CE(D|R)u4 = 0.167,CE(D|R)u2 =CE(D|R)u3 =CE(D|R)u5
= 0.153, and CE(D|R)u6 = 0.250. We obtain that CE(D|C)u j

≤CE(D|R)u j , where j = 1,2, · · · ,6.
(6) Let R = {P,M,X}.
(7) When i = 1, Q=R−{P}= {M,X}, then CE(D|Q)u1 =
CE(D|Q)u2 = CE(D|Q)u3 = CE(D|Q)u4 = CE(D|Q)u5 =
0.153, and CE(D|Q)u6 = 0.228. Thus, we have CE(D|C)u4
>CE(D|Q)u4 .
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(8) When i = 2, Q = R −{M} = {P,X}, it follows that
CE(D|Q)u1 =CE(D|Q)u4 = 0.167,CE(D|Q)u2 =CE(D|Q)u3
= CE(D|Q)u5 = 0.153, and CE(D|Q)u6 = 0.250. We find
that CE(D|C)u j ≤CE(D|Q)u j , where j = 1,2, · · · ,6.
(9) reduct = R = {X ,P}.

As a result, {X ,P} is a minimal reduct of the incom-
plete decision system, while the searching result of the fea-
ture selection algorithms in [5,11] is {X ,P,S}. Therefore,
its length of {X ,P,S} is greater than that of the minimal
reduct {X ,P}.

Next is the second part of our experiments. The ap-
proach [11] has something of a head start in solving the
problem of feature selection for incomplete information
systems. Then, we have used principles from ref. [11] to
design Alg a for feature selection in decision systems. Meng
and Shi [5] proposed a fast positive region-based approach
to feature selection. For convenience, this section refers to
Algorithm 7 in [5] as Alg b. Thus, we compare Algorithm
FSICE with Alg a and Alg b on eight data sets from UCI
database, outlined in Table 2. There are two data sets with
missing values: Soybean and Vote. To construct incom-
plete decision systems, we randomly change some feature
values from each data set into missing values. The feature
selection results of three algorithms on different data sets
are summarized in Table 2, in which the minimal cardinal-
ity each algorithm finds is given. Here, we always present
the optimal solution. From Table 2, it can be seen that the
performances of FSICE and Alg b are very close, though
FSICE performs a little better than Alg a and Alg b.

Table 2 Number of selected features for each algorithm

Data sets Samples Features Alg a Alg b FSICE
Zoo 101 17 6 5 5

Balance 200 5 4 4 4
Led24 200 25 12 12 11
Spect 267 23 15 14 14

Soybean 307 36 11 9 9
Vote 435 17 14 9 8

DNAstalog 2000 61 12 10 10
Mushroom 8142 23 6 5 4

As is suggested by Jensen and Shen [12], each data set
is tested 20 times. The running time of each algorithm is
the average CPU time, shown in Fig.1. It can be seen from
Fig.1 that although both running times of Alg a and Alg b
increase with size of data sets, the former increases much
more rapidly than the latter. This difference can be illus-
trated by plotting the ratios of their running times (Fig.
2). From Fig. 2, we find that the slope of the two curves,
shown by Alg a/FSICE and Alg b/FSICE, also tends to in-
crease with size of data sets, and the performances of Al-
g a and Alg b are very close, shown by Alg a/Alg b. This
relationship is not strictly monotonic, and the curve fluc-
tuates distinctly. In fact, the main reason is that the feature
number of data sets is different. For example, the DNAsta-
log has 61 features while the Balance has only 5. Thus,

one could envision that this situation must have occurred
because of different numbers of features selected. There-
fore, FSICE can provide the best running times, and the
results show that the proposed method is more suitable to
find minimal reducts from incomplete large data sets.
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5. Conclusions

Feature selection method, processing the features in the
large sample, high-dimension, and complex data set, is an
active research field in recent years. Rough sets as a fea-
ture selection method can handle imprecision, uncertain-
ty and vagueness [12,13]. Until now, many methods have
been proposed to solve the uncertainty measure by using
rough set [15,16]; however, each method has some lim-
itation itself and they are unsuitable for incomplete de-
cision systems. So, in this paper, the concepts of knowl-
edge entropies and mutual information are introduced to
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measure the uncertainty of knowledge in incomplete in-
formation systems and decision systems. Then some im-
portant properties of these measures are investigated. Fur-
thermore, these measures overcome some disadvantages of
classical methods of uncertainty measure, and provide im-
portant approaches to measure the uncertainty ability of d-
ifferent knowledge in incomplete decision systems. More-
over, the relationships among the knowledge entropies pro-
posed are established as well. A fast heuristic feature se-
lection algorithm for both incomplete and complete deci-
sion systems is developed. Finally, experiments from an
example given and eight UCI data sets illustrate that the
proposed algorithm is effective and efficient, and the ex-
periment results are consistent with our theoretical analy-
sis.
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