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Abstract: Analytical and numerical solutions are two basic tools in the study of photothermal interactions problems in 
 semiconductor medium. This paper is devoted to a study of the photothermal interaction in semiconductor media in the 
context of the coupled photo-thermal theory. The governing relations are expressed in Laplace transforms domain and 
solved in the domain by the eigenvalue scheme. The numerical solution is obtained by using the implicit finite difference 
method (IFDM), the studied fields are obtained numerically and presented graphically. A comparison between the 
numerical solutions and the analytical solution are obtained. It is found that the implicit finite difference method (IFDM) is 
applicable, simple and efficient for such problems. 
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Nomenclature 

𝑇 = 𝑇∗ − 𝑇", 𝑇∗ the variations of temperature 

𝑇"   the reference temperature 

𝑡  the time 

𝑢#  the displacement components 

𝜌  the density of material 

𝑐$  the specific heat at constant strain, 

𝜏  the lifetime of photo-generated carrier, 

𝑁 = 𝑛 − 𝑛", 𝑛"  the carrier concentration at equilibrium, 

𝛾% = (3𝜆 + 2𝜇)𝑑%, 

𝑑%  

the electronic deformation coefficient, 

𝑘 = &%!
&'

   the coupling parameter of thermal activation 

𝐾  the thermal conductivity 

𝛾( = (3𝜆 +

2𝜇)𝛼( , 𝛼(  

the linear thermal expansion coefficients 

𝜎#)  the components of stresses, 

𝐷$  the carrier diffusion coefficient, 

𝜆, 𝜇  the Lame's constants, 
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𝑇* the constant temperature 

𝑡+ the final value of time 

𝑥+ the final value of length 

𝑠,  the speed of recombination on the surface 

Ω	  the exponent of the decayed heat flux 

1 Introduction  

The models of bodies explained the properties of the 
internal structure of medium when used the secondly law of 
thermodynamic with the development of semi-conductor 
integrated circuit technology and solid-state sensors 
technology have been widely used in several fields. The 
significance of semiconductor material is due to its recent 
uses in several interesting application, essentially in modern 
technology upon new energy alternative. Previously, micro-
mechanical structures of the thermoelasticity and plasma 
field are analyzed theoretical and experimental as in 
Todorovic et al. [1-3]. In these investigates, the 
theoretically analysis to depict these two-phenomena that 
give information about the attributes of carriers 
recombination and transports in the semiconductors 
materials. Abd-Alla et al. [4] studied the solutions of the 
transient coupled thermoelastic of an annular fins by the 
implicit finite-difference technique. Mukhopadhyay and 
Kumar [5] applied the finite difference technique to study 
the generalized thermoelasticity problem of annular 
cylinders with variable material properties. Abd-Alla et al. 
[6] studied the effects of nonhomogeneous in an isotropic 
cylinder under magnetic field. Patra et al. [7] used the finite 
difference technique to study the computational model on 
thermoelastic analysis with the magnetic field in a rotating 
cylinder. Abd-Alla et al. [8] studied the effects in a 
thermoelastic annular cylinder using the finite difference 
method. Lotfy et al. [9] duscussed the responses of 
Thomson and electro-magnetic influnces of semi-conductor 
material casued by laser pulses under photo-thermoelastic 
excitation. Abbas et al. [10] presnted th solutions of photo-
thermal interaction in a semiconducting materials with 
cylindrical hole and variable thermal conductivity. 
Alzahrani [11] investigated the effects of variable thermal 
conductivity in semi-conductor materiale. Lotfy et al. [12] 
investigated the influences of variable thermal conductivity 
in semiconductors mediums with cavity under fractional-
order magneto-photothermal models. Lotfy et al. [13] 
studied the electro-magnetic and Thomson effects through 
the photo-thermal transport process of semiconductor 
material. Hobiny and Abbas [14] discussed the 
photothermoelasticity interaction in a two-dimension 
semiconducting plane under Green-Naghdi theory. 
Alzahrani and Abbas [15] discussed the 
photothermoelasticity interactions in a two-dimentionn 
semiconductors mediums without energy dissipation. 
Several authors [16-30] used the venous thermoelastic 
theories to get the solutions of several problems.  

 The present work is devoted to study the photothermal 
interaction in a semiconductor material by using the 
numerical and analytical methods. Numerical outcomes for 
the displacement, the temperature, the carrier density and 
the stress distributions are presented graphically. Finally, 
the accuracy of the finite difference method was validated 
by the comparing between the numerical and the analytical 
solutions for all physical fields. 
 

2 Basic Equations 

The basic equations in an isotropic semi-conductor material 
in the absence the thermal sources and the body force are 
taken as in [31-33]:  
 

𝜇𝑢#,)) + (𝜆 + 𝜇)𝑢),#) − 𝛾%𝑁,# − 𝛾(𝑇,# = 𝜌 &".#
&("

                   (1)                                                                                                 
 
 

𝐷$𝑁,)) −
/
0
+ 1

0
𝑇 = &/

&(
,                                                    (2) 

 

?𝐾𝑇,)@) +
2$
0
𝑁 − 𝛾(𝑇"

&.%,%
&(

= 𝜌𝑐$
&'
&(

.                             (3) 

 

𝜎#) = ?𝜆𝑢1,1 − 𝛾(𝑇 − 𝛾%𝑁@𝛿#) + 𝜇?𝑢#,) + 𝑢),#@,               (4) 

Let us consider an unbounded isotropic semiconductor 
medium, whose state can be expressed as a function of the 
spatial variable x and time t, hence the relations (1)-(4) can 
be given by: 
 
(𝜆 + 2𝜇) &

".
&3"

− 𝛾(
&'
&3
− 𝛾%

&/
&3
= 𝜌 &".

&("
,                              (5) 

                                                                                  
𝐷$

&"/
&3"

− /
0
+ 1

0
𝑇 = &/

&(
,                                                      (6) 

 

                                                                                                               
&"'
&3"

+ 2$
0
𝑁 − 𝛾(𝑇"

&".
&(&3

= 𝜌𝑐$
&4
&(

.                                      (7) 
                                                                                                                          

𝜎33 = (𝜆 + 2𝜇) &.
&3
− 𝛾(𝑇 − 𝛾%𝑁,                                     (8)    

 

3 Applications  
   The problem initial conditions are defined as  

𝑢(𝑥, 0) = 0, &.(3,6)
&(

= 0, 𝑇(𝑥, 0) = 0, &'(3,6)
&(

= 0,𝑁(𝑥, 0) =

0, &/(3,6)
&(

= 0,                                                   (9)  
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While the problem boundary conditions are given as 

𝑢(0, 𝑡) = 0,                                                                    (10) 

𝑇(0, 𝑡) = 𝑇*𝑒89:,                                                           (11) 

𝐷$
&/(3,()
&3

D
3;6

= 𝑠,𝑁(𝑥, 𝑡)		,                                           (12) 

Now, for appropriatenes, the dimensionaless physical fields 
can be given by 

𝑁< = /
%!
, 𝑇< = '

'!
, 𝜎33< = 	>''

?@AB
, (𝑥<, 𝑢<) = 𝜂𝑐(𝑥, 𝑢),(𝑡<, 𝜏<) =

𝜂𝑐A(𝑡, 𝜏), 𝑇*< =
'(
'!

, Ω< = 9
CD"

,                                            (13)  

where 𝑐A = ?@AB
E

 and 𝜂 = FD)
G

.  

By using the variables of nondimensional forms (13), the 

basic relations with the neglecting of the stares can be 

written by: 
&".
&3"

− 𝑟*
&/
&3
− 𝑟A

&'
&3
= &".

&("
,                                        (14) 

&"/
&3"

− H*
0
𝑁 + I

0
𝑇 = 𝑟J

&/
&(

,                                                (15) 

&"'
&3"

+ H+
0
𝑁 − 𝑟K

&".
&(&3

= &'
&(

.                                               (16) 

𝜎33 =
&.
&3
− 𝑟*𝑁 − 𝑟A𝑇,                                                    (17) 

𝑢(0, 𝑡) = 0, &/(3,()
&3

D
3;6

= 𝑥L𝑁(0, 𝑡), 𝑇(0, 𝑡) = 𝑇*𝑒89:,     
                                                                                         (18) 
 
where 𝑟* =

%!M,
?@AB

	, 𝑟A =
'!M-
?@AB

		, 𝑟J =
*
CN)

, 𝛽 = 1'!
%!C"D"N)

 , 𝑟O =
%!2$
FD)'!

 , 𝑟K =
M-
FD)

 and 𝑟L =
P!
CDN)

. 

4 Numerical Method 

The basic relations obtained are linear partial differential 
equations. For the solutions problem, the implicit finite 
difference method (IFDM) is used. The solutions domain 
0 ≤ 𝑥 ≤ 𝑥+, 0 ≤ 𝑡 ≤ 𝑡+, are replaced by grids described by 
the set of nodes points (𝑥Q, 𝑡P), in which 𝑥Q = 𝑚ℎ, 𝑚 =
0,1,2, … . . ,𝑀 and 𝑡P = 𝑠𝑘, 𝑠 = 0,1,2, … . . , 𝑆. Therefore, 
𝑘 = (.

R
, ℎ = 3.

S
 are taken as the time step and mess width 

respectively. For the time derivatives and the space 
derivatives, the derivatives are replaced the central 
differences. Thus, the approximations of finite difference 
method for the system of partial differential equations with 
respect to the independent variables: 
  
 &+
&(
= +/01(8+/02(

A1
+ 𝑜(𝑘A), &

"+
&("

= +/01(8A+/0 @+/02(

1"
+ 𝑜(𝑘A), 

 

                     (19) 

&+
&3
= +/1(

01( 8+/2(
01(

AT
+ 𝑜(ℎA), &

"+
&3"

= +/1(
01( 8A+/01(@+/2(

01(

T"
+ 𝑜(ℎA), 

 

                      (20) 
 
The equations (14), (15), (16) and (17) are then replaced by  
the implicit finite difference equations by 
./1(
01( 8A./01(@./2(

01(

T"
− 𝑟*

//1(
01( 8//2(

01(

AT
− 𝑟A

'/1(
01( 8'/2(

01(

AT
−

./01(8A./0 @./02(

1"
= 0,                       (21) 

//1(
01( 8A//01(@//2(

01(

T"
− H*

0
𝑁QP@* +

I
0
𝑇QP@* − 𝑟J

//01(8//02(

A1
= 0,  

                                                                                         (22) 
'/1(
01( 8A'/01(@'/2(

01(

T"
+ H+

0
𝑁QP@* − 𝑟K

+/1(
01( 8+/1(

02( @+/2(
01( 8+/2(

02(

OT1
−

'/01(8'/02(

A1
= 0.                                                                  (23) 

𝜎33 =
./1(
0 8./2(

0

AT
− 𝑟*𝑁QP − 𝑟A𝑇QP .                                  (24) 

                                                                                                                

5  Analytical Method 

Applying the Laplace transforms for relations (14)-(18) are 
defined by the formula 

𝑓̅(𝑥, 𝑝) = 𝐿[𝑓(𝑥, 𝑡)] = ∫ 𝑓(𝑥, 𝑡)𝑒8U(𝑑𝑡V
6 , 𝑝 > 0.            

(25) 
Hence, the following system are obtained 

W".X
W3"

= 𝑝A𝑢Y + 𝑟*
W/X

W3
+ 𝑟A

W'Y

W3
,                                              (26) 

                                                                                                                 
 

W"/X

W3"
= 𝑟J Z𝑝 +

*
0
[𝑁\ − I

0
𝑇Y,                                              (27) 

                                                                                                             
W"'Y

W3"
= 𝑝𝑇 − 3+

0
𝑁\ + 𝑟K𝑝

W.X
W3

.                                              (28) 
 

                                                                                                           
𝜎Y33 =

W.X
W3
− 𝑟*𝑁\ − 𝑟A𝑇Y,                                                    (29)                                                                                                            

𝑢Y(0, 𝑡) = 0, W/
X(3,()
W3

D
3;6

= 𝑟L𝑁\(0, 𝑡), 𝑇Y(0, 𝑡) =
*

U@9
,     (30)       

Now, we can use the eigenvalues method proposed [34-39] 
to get the solution of coupled differential equations (26), 
(27) and (28) with the boundary conditions (30). Hence, the 
matrices-vectors can be expressed as 
WZ
	W3
= 𝐴𝑉,                                                                        (31) 

 
 

where 𝑉 = _𝑢Y 𝑁\ 𝑇Y W.X
W3

W/X

W3
W'Y

W3
`
'
and  
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𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝑎O* 0 0 0 𝑎OK 𝑎OL
0 𝑎KA 𝑎KJ 0 0 0
0 𝑎LA 𝑎LJ 𝑎LO 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 ,  

 
with 
 𝑎O* = 𝑝A, 𝑎OK = 𝑟*, 𝑎OL = 𝑟A, 𝑎KA = 𝑟J Z𝑝 +

*
0
[,	𝑎KJ =

− I
0
, 𝑎LA = − H+

0
, 𝑎LJ = 𝑝, 𝑎LO = 𝑝𝑟K. 

The characteristic relation of matrix 𝐴 can be given by 
 
	𝜉L − 𝑥J𝜉O + 𝑥A𝜉A + 𝑥* = 0,                                       (32)                                                                                                          

 

where  
𝑥* = 𝑎LA𝑎KJ𝑎O* − 𝑎O*𝑎LJ𝑎KA, 
𝑥A = 𝑎OL𝑎KA𝑎LO + 𝑎O*𝑎KA − 𝑎OK𝑎KJ𝑎LO + 𝑎O*𝑎LJ −
𝑎KJ𝑎LA + 𝑎KA𝑎LJ, 
𝑥J = 𝑎OL𝑎LO + 𝑎KA + 𝑎O* + 𝑎LJ. 
The matrix eigenvalues of 𝐴 are the three roots of equation 
(32) which define by the forms	±𝜉*, ±𝜉A, ±𝜉J. Thus, the 
eigenvectors	𝑋 are computed as: 

𝑋* = 𝑎OL(𝑎KA − 𝜉A)𝜉 − 𝜉𝑎KJ𝑎OK, 

𝑋A = (𝑎O* − 𝜉A)𝑎KJ, 

𝑋J = −(𝑎O* − 𝜉A)(𝑎KA − 𝜉A), 
𝑋O = 𝜉𝑋*	, 	𝑋K = 𝜉𝑋A	, 	𝑋L = 𝜉𝑋J.                               (33)      
                     (33) 
Thus, the equations (31) have the solutions in the following 
from: 
 

    V(𝑥, 𝑝) = ∑ ?𝐵#𝑋#𝑒8[#3 + 𝐵#@*𝑋#@*𝑒[#3@J
#;* ,              (34)  

Due to the regularity conditions of the solution, the 
exponential increasing nature in the spatial variable 𝑥 has 
been removed to infinity, therefore the final solutions of 
equation (31) can be written as   

         V(𝑥, 𝑝) = ∑ 𝐵#𝑋#𝑒8[#3J
#;* ,                                     (35)                                                                                                          

where 𝐵*, 𝐵A and 𝐵J are constants which can be computed 
by the problem boundary conditions. Hence, the solutions 
of all variables can be presented the following forms: 
 
𝑢Y(𝑥, 𝑝) = ∑ 𝐵#𝑈#𝑒8[#3J

#;* ,                                             (36)                                                                                                             

𝑁\(𝑥, 𝑝) = ∑ 𝐵#𝑁#𝑒8[#3J
#;* ,                                             (37) 

     𝑇Y(𝑥, 𝑝) = ∑ 𝐵#𝑇#𝑒8[#3J
#;* ,                                         (38)                                                                                                         

6 Numerical Results and Discussions 
For numerical example, magnesium material was selected 
for numerical estimation purposes. The values of 
parameters for silicon (Si) material are taken as in [40]: 

𝑇" = 300(𝑘), 𝜇 = 5.46 × 10*6(𝑁)(𝑚8A), 𝑑% =
−9 × 108J*(𝑚J), 𝜆 = 3.64 × 10*6(𝑁)(𝑚8A),  
𝛼( = 3 × 108L(𝑘8*), 𝐸\ = 1.11	(𝑒𝑉), 𝑐$ =
695(𝐽)(𝑘𝑔8*)(𝑘8*), 𝜌 = 2330(𝑘𝑔)(𝑚8J)𝑥, 
𝑇* = 1, 𝜏 = 5 × 108K(𝑠), 𝐷$ = 2.5 × 108J(𝑚A)(𝑠8*), 𝑠" =
2	(𝑚)(𝑠8*), 𝑛" = 10A6(𝑚8J).	 
The numerical inversion method adopted the final solutions 
of the temperature, the displacement, the carrier density and 
the stress distributions. The Stehfest approach [41] can be 
gven by  
 

𝑓(𝑥, 𝑡) = ]%(A)
(
∑ 𝑉%𝑓̅ Z𝑥, 𝑛

]%(A)
(
[^

%;* ,                          (39) 
             
With 

𝑉% = (−1)_
3
"@*`∑ (AU)!U4

3
"1(5

U!(%8U)!_3"8U`!(A%8*)!

Q#%_%,3"`

U;,1("
, 

 

where 𝐺 is the term numbers. The field quantities, carrier 
density, displacement, temperature and stress depend not 
only on the time 𝑡 and space 𝑥, but also depend on the 
exponent of the decayed heat flux Ω. The numerical 
calculations are carried out for the time	𝑡 = 0.4 and 𝑇* = 1. 
Based on the above data, the variations of physical 
quantities along the distance 𝑥 under the coupled model of 
thermoelastic and plasma waves are presented in figures 1–
4. Figures 1 show the carrier density variation with respect 
to the distances	𝑥. It is observed that the carrier density 
begins with its maximum value on the surface 𝑥 = 0.0 then 
the carrier density decreases gradually with the increasing 
of the distance 	𝑥	till it reach to zero value. Figures 2 
display the temperature variations along the distances	𝑥. It 
is observed that the temperature has maximum values on 
the surface  𝑥 = 0.0 then the temperature decreases with 
the increasing of the distance	𝑥	till it closes to zero. 
 Figures 3 depict the displacement variations with respect to 
the distances 𝑥. It is observed that the displacement start 
from the zeros values which satisfy the problem boundary 
condition of on the surface 𝑥 = 0.0 after that it 
progressively increases up to peak values then decreases 
progressively with the rising of the distance 	𝑥	till it reach 
to zeros values. Figures 4 show the stress variations with 
respect to the distance	𝑥. It is observed that it attains some 
negative values then the magnitudes of stress gradually 
increase up to peak negative values after thhat the stress 
gradually increases to zeros values. The compressions 
between the solutions, one can conclude that considering 
the coupled photo-thermal model have major effects on the 
physical quantities distributions. The increasing of the 
exponent of the decayed heat flux Ω reduces to the physical 
quantities magnitudes. Otherwise, figures 1-4 illustrates the 
solutions obtained numerically by the implicit finite 
difference method (IFDM) overlaid onto the solutions 
obtained analytically. The accuracy of the implicit finite. 
Difference method (IFDM) formulation was validated by 
comparing the analytical and numerical solutions for the 
field quantities. 
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Fig. 1: The carrier density variations along the distance. 

 

Fig. 2: The temperature variation along the distance. 
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Fig. 3 The displacement variation along the distances. 

 

Fig. 4: the stress variations with respect to the distance. 
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