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Abstract: The nonlinear convective acceleration term in fluids performs a strong obstacle against the analytical solutions 
of Navier-Stokes equations up to date. The obtained solutions are valid for long wave lengths only. In this paper, the 
nonlinear Navier-Stokes equations are converted to the linear diffusion equations based on the concept of linear velocity 
operator. The simplest analytical solutions of linear Navier-Stokes equations are obtained by using Picard method for a first 
time for different values of wave lengths and Reynolds number. As an application, the peristaltic incompressible viscous 
Newtonian fluid flow in a horizontal tube is described by the continuity and linear Navier-Stokes equations. The analytical 
solutions are obtained in terms of stream function and fluid velocity components. Moreover, the stream function is plotted 
in a laminar, transit and turbulent flows for different values of parameter δ. 
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1 Introduction  

There are many phenomena in physics which are described 
by Navier–Stokes equations [1-15]. The mathematical 
modeling of the weather, ocean currents, water flow in a 
pipes, channels and air flow around wings are described by 
Navier–Stokes equations. Many problems have been 
formulated in nonlinear partial differential equations, 
which face some difficulties in the way of analytical 
solutions [1-14]. Scientists turn to the numerical solutions 
according to the difficulty of the nonlinear terms in a 
described system of fluid flow [5]. Some scientists [8-10, 
12] turn to describe the physical problems in terms of 
nonlinear partial differential equations for special cases of 
fluid and flow properties. 
Recently, scientists turned to high tech programs (CFD) by 
using the numerical solutions for many problems in 
different cases of fluid and flow [6]. J. Leray proposed a 
backward self-similar solution of the Navier-Stokes 
equations as an example of the finite-time blow-up of the 
three-dimensional nonstationary Navier-Stokes equations 
[5]. A finite-difference method for solving the time-
dependent Navier-Stokes equations for an incompressible 
fluid is introduced by Alexandre Chorin [6]. An exact 
solution of the three-dimensional incompressible Navier-
Stokes equations with the continuity equation is produced 
by Gunawan Nugroho [7]. Mats et al. [8] derived a 

solution to the Navier–Stokes equation by considering 
vorticity generated at system boundaries. The 
transformation of the Navier-Stokes equations to the 
Schrödinger equation performed by application of the 
Riccati equation [9]. A particular class of solutions of 
nonlinear differential equations can be obtained by several 
procedures [7]. The linear partial differential equations 
(PDEns) are solved by the similarity parameters method 
[13]. The linear concentration distribution around a 
growing gas bubble in tissue is obtained [11,13]. The 
solution of Navier-Stokes equation and its application for a 
growth problem under the effect of magnetic field. is 
obtained [12]. The exact solutions of Euler equation and 
Navier–Stokes equation are proposed by using Lie 
symmetry analysis method and Bäcklund transformation 
respectively by using symmetry reduction method [15].  
The Cole-Hopf transformation is applicable to the Navier- 
Stokes equation for an incompressible flow and allows 
reducing the Navier-Stokes equation to the Einstein-
Kolmogorov equation [17]. 
The nonlinear Partial differential equations are 
transformed to the linear diffusion ones on the basis of a 
linear velocity operator concept [18]. The peristaltic 
motion of viscous fluid in different shapes of tubes and 
plates is obtained for long wavelength and low Reynolds 
number as given by [2-3,14]. 
          In this paper, the nonlinear Navier-Stokes equations 
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is converted to a linear diffusion equation based on a linear 
velocity operator [18]. The nonlinear convective term 
!v#. ∇&v  is transformed to a linear diffusion form −ν	∇*v 
on the basis of new treatment theory [18]. The Picard 
method [16] can be used for solving a linear system of 
Navier-Stokes equations. The analytical solutions of linear 
Navier-Stokes equations are obtained for different values 
of wave lengths 𝜆 and flow patterns (laminar, transit and 
turbulent flow). Moreover, the peristaltic flow of an 
incompressible Newtonian viscous fluid in a horizontal 
tube is studied as an illustrated example. The continuity 
and linear Navier-Stokes equations represent the 
mathematical model of fluid flow. The analytical solution 
in terms of stream function and fluid velocity components 
are obtained for laminar, transit and turbulent flows. 
 

2 Analyses 
 

The incompressible and viscous Newtonian fluid   motion 
is formulated by continuity and Navier-Stokes equations. 
The third formulation of fluid mechanics is given in 
section 2.1. In the same way, the Navier-Stokes equations 
formulated in a linear form under the effect of surface and 
body forces. In section 2.2, the analytical solution is 
obtained in terms of fluid velocity components and stream 
function. The discussion of analytical solution and 
conclusions are introduced in section 3. In section 4, the 
unsteady incompressible and viscous Newtonian fluid flow 
in a horizontal tube for different wave lengths (𝜆 ≠
0	𝑎𝑛𝑑	𝛿 ≠ 0) are described by linear Navier-Stokes 
equations. In section 5, the results and graphs are 
discussed in detail. Finally, in section 5, the concluded 
remarks are tabulated. 
 

2.1 Third Formulation of Fluid Mechanics 
 
The fluid state is described by Lagrange and Euler [1] as a 
particle and point in space, respectively. Euler described the 
fluid flow in the nonlinear form of Navier-Stokes 
equations. The nonlinear convective acceleration !v#. ∇&v  
performs a strong obstacle against the analytical solutions 
of Navier-Stokes equations up to date. The linear velocity 
operator [18] is modified in terms of the physical parameter 
M* as follows  
          v#⏟

56789:	;85<=6>?	<@8:9><:

= −𝑀∗∇,                              (1) 

where	𝑀∗ is called Mohammadein parameter.  
The new definition of total operator D…

D>
  with local and 

linear diffusion terms in fluid mechanics becomes    
D…
D>F

><>95	G8:6;9>6;8		

= H…
H>⏟

5<=95	G8:6;9>6;8

− ν	∇* …IJK
G6LLMN6<7	G8:6;9>6;8

      (2)            

The nonlinear acceleration of fluid in the point of view of 
Euler has the form 

DO
D>⏟

><>95	9==858:9>6<7

= HO
H>⏟

5<=95	9==858:9>6<7

+ !v#. ∇&vIJK
=<7;8=>6;8	9==858:9>6<7

  

 
(3)            

can be converted to the linear acceleration on the basis of 
new treatment theory [18] in the form  
                         DO

D>
= HO

H>
− ν	∇*v.                                      (4) 

Its noted that the nonlinear convective acceleration term    
!v#. ∇&v	  is transformed to a linear diffusion term −ν	∇*v  
by using the linear velocity operator concept [18]. 
Equation (4) is called Mohammadein description of total 
linear acceleration with local and linear diffusion terms as 
in Ref. [18]. Moreover, it considered a key of third 
formulation of fluid mechanics for the acceleration 
parameter in the linear form. 
  
2.2 Linear Navier-Stokes Equations 
 
Consider an incompressible viscous Newtonian fluid flow 
under the effect of surface and body forces, which are 
described by continuity and nonlinear Navier-Stokes 
equations in the vector form  

	∇. v = 0,                                                           (5) 
𝜌 GR
G>
= −∇𝑃 + ∇. 𝜏6U + 𝜌𝑔	𝑛#,                           (6) 

where ∇𝑃 is the gradient of pressure, and 𝜏6U is the shearing 
stress for two different kinds of fluids (Newtonian and 
non-Newtonian fluids). The above equation (6) can be 
rewritten in the form 
   HR
H>
+ !v#. ∇&v = − W

X
∇𝑃 + W

X
∇. 𝜏6U + 𝑔	𝑛#,                   (7) 

 
 
where 

∇. 𝜏6U = Y
𝜂	∇*v										𝑓𝑜𝑟	Newtonian	fluids

∇. 𝜏6U											𝑓𝑜𝑟	Non	Newtonian	fluids
. 

 
                                                                               (8) 

Applying the new treatment theory [18] on the vector 
Navier-Stokes equations (7), for Newtonian fluids, then 

HO	
H>
= − W

X
∇𝑃 + 2𝜈∇*v + 	𝑔	𝑛#.                                (9) 

The Navier- Stokes equations in two dimensional cartesian 
coordinates has the form 

𝑢n + v? = 0 ,                                                       (10) 
HM
H>
= − W

X
Ho
Hn
+ 2	𝜈(𝑢nn + 𝑢??)+𝑔n,                      (11) 

HO
		H>

= − W
X
Ho
H?
+ 2	𝜈!vnn + v??& + 𝑔?,                   (12) 

The above linear system called linear Navier-Stokes 
equations and can be solved by analytical way under any 
physical proposed initial and boundary conditions. 
Moreover, the pressure field performs a real parameter for 
the fluid flow, and the gradient of pressure has the form 
                  ∇𝑃 = −𝜌!v#. ∇&v.                                      (13) 
The above formula of pressure gradient based on the theory 
[18] becomes  
                     ∇𝑃 = −𝜂	∇*v.                                       (14) 
On the basis of above equation (14), the linear Navier-
Stokes equation (9) for a viscous incompressible 
Newtonian fluid flow becomes  
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            HR
H>
= 3𝜈∇*v + 𝑔	𝑛#.                                           (15)   

On contrary, for the non-Newtonian viscous 
incompressible fluid, the linear Navier-Stokes equations in 
the vector form become 
      HO

H>
= 2𝜈∇*v + W

X
∇. 𝜏6U + 𝑔	𝑛#.                            (16) 

The continuity and linear Navier-Stokes equations for 
Newtonian viscous incompressible fluid in a two-
dimensional cartesian coordinate become 
                       𝑢n + v? = 0,                                     (17) 
              HM

H>
= 3	𝜈(𝑢nn + 𝑢??) + 𝑔n,                        (18) 

              HO
H>
= 3	𝜈!vnn + v??& + 𝑔?.                        (19) 

The stream function  Ψ(x, y, t)   is obtained   by using both 
relations               	𝑢 = Hu

H?
					𝑎𝑛𝑑			v = −Hu

Hn
. 

Body forces 
There are two cases of body forces: First, when 𝑔n 

and 𝑔? ignored, the analytical solution by using Picard 
method of the above linear system (17-19) of continuity 
and linear Navier-Stokes equations in terms of stream 
function Ψ(𝑥, 𝑦, 𝑡) become 
         Ψ(𝑥, 𝑦, 𝑡) = −y!

="
𝑒{|!=!"}=""&>~(=!n}="?).          (20) 

Second, when 𝑔n and 𝑔? are considered, the solution of the 
same system (17-19) becomes 
       Ψ(𝑥, 𝑦, 𝑡) = −y!

="
𝑒{|!=!"}=""&>~(=!n}="?) − 𝑔𝑡,   (21) 

where 𝑐W,𝑐*, and 𝐴Ware constants. The obtained analytical 
solution (21) in terms of stream function and fluid velocity 
components are satisfied by continuity and linear Navier-
Stokes equations (17-19).  

3 Discussion and Conclusions of Analytical 
Solution of Linear System of Navier-Stokes 
Equations 
 

The nonlinear system of Navier-Stokes equations (7) for 
Newtonian fluid is transformed to the linear diffusion 
equations (15) on basis of New treatment theory [18]. The 
system of linear Navier-Stokes equations (17-19) is 
formulated in two dimensional cartesian coordinates, 
which represent the linear diffusion equations. The 
analytical solutions (20-21) are satisfied the continuity and 
linear system of Navier-Stokes equations in case of two-
dimensional flow.  
The discussion of results concluded the following points: 
1. The original nonlinear Navier-Stokes equations are 
converted to the linear system based on the linear velocity 
operator concept [18]. 
2.The analytical solution of linear Navier-Stokes equations 
is obtained.   
3.The parameter M*represents the kinematic viscosity 𝜈 of 
nanofluid state in case of Navier-Stokes equations. 
4. When fluid acceleration equal to zero, the fluid velocity 
has a constant value in the point of view of Lagrange and 

Euler description. On contrary, in this treatment [18], the 
fluid flow velocity still existed in unsteady states, in both 
cases of motion and rest.  
5.The fluid velocity components and stream function 
behave the same order of magnitude in plane (x, y) with   
constant difference between their values.  
       In the next section, the problem of unsteady 
incompressible and viscous Newtonian fluid flow in a 
horizontal tube is described by continuity, linear Navier-
Stokes equations and are solved analytically as an 
application. 

4 Unsteady Incompressible and Viscous 
Newtonian Fluid Flow in a Horizontal Tube 
for different wave lengths (𝛌 ≠ 𝟎	𝐚𝐧𝐝	𝛅 ≠ 𝟎) 
described by linear Navier-Stokes equations 
 

4.1 Introduction 
 

In the previous efforts, scientists studied many problems of 
peristaltic fluid flow in several shapes under suitable 
boundary conditions. Most of the previous problems are 
described by the nonlinear Navier-Stokes equations, which 
are approximately solved for long wavelength 𝛿 = 0 and 
low Reynolds number [2-15]. In the present example the 
proposed problem is solved analytically. Moreover, the 
stream function and fluid velocity components are obtained 
for different values of wave lengths 𝜆 and Reynolds number 
values. 
 
4.2 The Physical and Mathematical Description 
 

The peristaltic motion of fluid flow is described by many 
authors [2, 3, 14] in case of long wave lengths. In the 
follows, we consider the peristaltic flow of an 
incompressible Newtonian viscous fluid in a horizontal 
tube (see Fig. 1). The flow is caused by infinite sinusoidal 
wave train moving ahead with constant velocity c along the 
walls of the tube. The gravity force is ignored in our case. 
The peristaltic boundary condition has the form 
             𝐻 = 𝑎 + 𝑏	sin	(*�

�
	(𝑥 − 𝑐𝑡)),                       (21)   

where		𝑎 is the tube half width, 𝑏 is the wave amplitude, 𝜆 
is the wave length and t is the time. 
 

 
Fig. 1: Sketch of the problem. 

𝑥 
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Method of solution 
 
The mathematical model for the fluid flow can be written 
in the form 
Continuity equation   
                          HM

Hn
+ HO

H?
= 0,                                          (22)  

 
Navier-Stokes equations    
    x:  HM

H>
+ 𝑢 HM

Hn
+ v HM

H?
= − W

X
H@
Hn
+ 𝜈(H

"M
Hn"

+ H"M
H?"
),           (23) 

        y:   HO
H>
+ 𝑢 HO

Hn
+ v HO

H?
= − W

X
H@
H?
+ 𝜈(H

"O
Hn"

+ H"O
H?"
),       (24) 

where ∇𝑃 = −𝜌!v#. ∇&v. 
 
Applying the new treatment theory [18] for the above 
system (22-24), in the frame (𝑥, 𝑦), then  
       HM

Hn
+ HO

H?
= 0,                                                            (25) 

      HM
H>
= 3	𝜈(H

"M
Hn"

+ H"M
H?"
),                                                (26) 

    HO
H>
= 3	𝜈 �H

"O
Hn"

+ H"O
H?"
�,                                                 (27) 

 
where 𝑢 =	 H�

H?
 and v = −	H�

Hn
. 

 
The nondimensional parameters in terms of dimensional 
ones have the form 
𝑥 = 𝜆𝑥, 𝑦 = 𝑎𝑦,			𝑢 = 𝑐𝑢,				v = 𝑐𝛿v,			𝛿 = 9

�
,		𝑡 = �

=
t,  

 𝜓 = 𝑎	𝑐𝜓	,	𝑒 = �
9
 

     ℎ = �
9
                                                                        (28) 

 
The above equations (25-27) by using the above 
transformations (28) in frame (x, y) introduces a linear 
partial differential equation in terms of stream function 𝜓 
in the form  
      𝑅8	𝛿	𝜓> = 3(𝛿*𝜓nn + 𝜓??).                                    (29) 
 
The analytical solution by using Picard method [16] of 
above linear partial differential equation (29) has the form 

              𝜓(𝑥, 𝑦, 𝑡) = 𝐴W𝑒
.

/0	1
!=!"	�"}=""&>	~(=!n}="?).                      

                                                                                     (30) 
 

under the effect of initial and boundary conditions  
                     𝜓(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) = 𝑒~(=!	n}	="	?)	 
                     𝜓(0, 𝑦, 𝑡) = 2,								𝜓(𝐿W, 𝑦, 𝑡) =1,                            

                                                                                      (31) 
                     𝜓(𝑥, 0, 𝑡) = 3,        𝜓(𝑥, ℎW, 𝑡) =1, 
where 𝑐W, 𝑐* and 𝐴W are constants can be estimated from 
 the boundary conditions (31) as follow: 
𝑐W = 	

W
�!
ln 2,				𝑐* = 	

W
�!
ln 3, 𝐴W = 1,  

  ℎW = 1 + 𝑒	sin	(2𝜋(𝑥 − 𝑡)),𝐿W = 3                         (32) 
 
  
 

4.3 Discussion of Results 
 

The peristaltic flow of an incompressible Newtonian 
fluid in a horizontal tube is studied as an application of linear 
Navier-stokes equations. The nonlinear system of Navier-
Stokes equations (22-24) is transformed to a linear system of 
Navier-Stokes equations (25-27) on the basis of New 
treatment theory [18]. The system of linear partial differential 
equations (25-27) is transformed to the non-dimensional 
linear equation (29). The analytical solution is obtained by 
Picard method [16] in terms of stream function 𝝍. The stream 
function (30) is obtained graphically for three different values 
of wave lengths 𝝀 as a function of the physical parameters. 

 
Here we are going to display, few but valuably 

different cases of flow patterns at 𝑒	 = 0.01, Re = 5, 𝐿W =
3	and	ℎW = 1 + 0.01	sin	(2𝜋(𝑥 − 𝑡)), as shown in Figs. 2-4 
such that each group of alphabetically lettered figures are put 
in one row so that all parameters are fixed except one 
parameter ( t or δ). 

 
In Figs. 2a-g, the streamlines are plotted for δ = 0.1 for time 
intervals 𝑡 = 0.0001, 1, 3, 7.5, 9, 16	and	25 respectively. 
In Fig. 2a, the streamlines are straight and uniform at time𝑡 =
0.0001. This means that, the streamlines are laminar flow. By 
increasing the time 𝑡 = 1, in Fig. 2b, the streamlines are 
transitional flow at 𝑡 = 3. In Fig. 2c, the streamlines 
transformed to a turbulent case at 𝑡 = 7.5. Moreover, the 
trapped bolus appears for large value of time where the 
formation of internally circulating bolus of fluid by the closed 
streamlines is known as trapping. By increasing the time, the 
amplitude of wave becomes much more widely spaced at time 
𝑡 = 	9, 16	and	25.  
 
In Fig. 3, the streamlines are plotted for 𝛿 = 0.5 at various 
values of time 𝑡 = 0.0001, 1, 3, 7.5, 9, 16	and	25 respectively 
As shown in the Figs. 3a-b, the streamlines are straight and 
uniform at time 𝑡 = 0.0001	and 𝑡 = 1 i.e. the streamlines are 
laminar flow. At time 𝑡 = 3, the streamlines look like a laminar 
flow as shown in Fig. 3c. But by increasing the time at 𝑡 = 7.5,  
the streamlines are beginning transformed to transitional fluid 
flow as in Fig. 3d. In Figs. 3e-g, the streamlines are transitional 
fluid flow at 𝑡 = 9, 16	and	25. The fluid flow in this case 
transformed to a turbulent flow at time 𝑡 = 35. Also, it is 
observed that, by increasing the time, the amplitude of the 
wave becomes much more widely spaced.  
 

In Fig. 4, the streamlines are plotted for  𝛿 = 0.9 at 
various values of time 𝑡 = 0.0001, 1, 3, 7.5, 9, 16	and	25 
respectively. The fluid flow represents a laminar flow as in 
Figs 4a-e for time 𝑡 = 0.0001 to 𝑡 = 9. On contrary, when 𝑡 =
16 the fluid flow is transitional flow as in Figs. 4f-g. Moreover, 
the streamlines are beginning transformed to a turbulent fluid 
flow at time 𝑡 = 64.  
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(2-a)                                                (2-b) 

 
        (2-c)                                                   (2-d)                            

 
                         (2-e)                                              (2-f)                              

																																			 	
																																																								(2-g) 
Fig. 2: The streamlines for 𝛿 = 0.1 at various times.	

	
(3-a)                                             

		

	
(3-b) 

	
                          (3-c)                                            (3-d)                   

	
																											 (3-e)                                           (3-f) 

	
																																																		(3-g) 
																																																							 

Fig. 3: The streamlines for 𝛿 = 0.5 at various times. 

     
      (4-a)                                             (4-b) 

      
                 (4-c)                                             (4-d) 

     
                  (4-e)                                           (4-f)      
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(4-g) 
    Fig. 4. The streamlines for 𝛿 = 0.9 at various times. 

5 Conclusions 
The peristaltic flow of an incompressible and Newtonian 
viscous fluid in a horizontal tube is studied as application 
of linear Navier-Stokes equations. The linear system of 
Navier-Stokes equations (25-27) is obtained based on New 
treatment theory [18]. The stream function 𝜓 and fluid 
velocity components u and v are obtained as an analytical 
solution of equation (30). The discussion of results and 
figures concluded the following remarks: 
1. The peristaltic motion of Newtonian fluid flow in 
horizontal tube is obtained.  
2. The analytical solution in terms of stream function and 
velocity components is obtained for laminar, transit and 
turbulent flows.  
3. The stream function and fluid velocity components are 
obtained for different values of wave lengths 𝜆  and 
Reynolds number Re. 
4. The time of transformation of flow patterns stages 
(laminar, transit and turbulent) is proportional directly with 
the different values of parameter  𝛿; which 𝑡(𝛿 = 0.1) <
	𝑡(𝛿 = 0.5) < 𝑡(𝛿 = 0.9).Moreover, the radii 𝑎(𝛿 =
0.1) < 	𝑎(𝛿 = 0.5) <		a (𝛿 =0.9). 
5. The boundary layer is wholly laminar and when the 
thickness of the boundary layer increases with distance from 
the leading edge as more and more fluid is slowed down by 
the viscous boundary, becomes unstable and breaks into 
turbulent boundary layer over a transition region and finally 
tends to separate layers. 
6. The fluid velocity components are similar to the stream 
function in plane (x, y) with small difference between them 
in calculation values. 
7. The fluid flow takes more time to transformed from 
laminar to turbulent flow when parameter 𝛿 increases. 
8. The equation (4) represents the third formulation of fluid 
mechanics in a linear acceleration diffusion form. 
9. The Navier-Stokes equations can be solved in the 
different cases of fluid and flow as a future prospect. 
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