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1 Introduction

The Banach contraction principle is one of the most
versatile result in fixed point theory and approximation
theory. It plays an important role in solving many existing
problems in pure and applied mathematics. There is a vast
literature dealing with technical extensions and
generalizations of Banach contraction principle, some
instances of these works are in [1–10]. Besides, this
famous classical theorem gives an iteration process
through which we can obtain better approximation to the
fixed point. It renders a key role in solving systems of
linear algebraic equations involving iteration process.
Iteration procedures are using in nearly every branch of
applied mathematics, convergence proof and also in
estimating the process of errors, very often by an
application of Banach’s fixed point theorem.

In recent times, fixed points of mappings in ordered
metric spaces are of great use in many branches of
mathematical analysis for solving nonlinear equations.
The first result in this direction was initiated by Wolk [11]
and later Monjardet [12] in partially order sets. Ran and
Reurings [13] studied the existence of fixed points for
certain mappings in partially ordered metric spaces and
applied their results to matrix equations. The results of
Ran and Reurings [13] were extended by Nieto et
al. [14–16] for non decreasing mappings and obtained the
solutions of certain partial differential equations with

periodic boundary conditions. While Agarwal et al. [17]
have discussed some new results for a generalized
contractions in partially ordered metric spaces. There
have been a lot of generalizations and improvements of
the results to obtain fixed point, common fixed point
results for single valued and multivalued operators in
various ordered spaces with topological properties, some
of which are in [18–32, 48]. Recently, Seshagiri Rao et
al. [33–40] have explored some results on fixed point,
coincidence point, coupled fixed point and coupled
common fixed point for the mappings in partially ordered
metric spaces as well as in partially ordered b-metric
spaces [41–47].

In (cf [8]), Singh, Badshah and Rathore proved the
following fixed point theorem:

Theorem 11A mapping T : X → X, defined on a complete
metric space (X ,d) satisfying the following condition

d(T x,Ty)≤ α
d(x,T x) [1+d(y,Ty)]

1+d(x,y)
+β [d(x,T x)+d(y,Ty)]

+ γ [d(x,Ty)+d(y,T x)]+δd(x,y),

(1)

for all distinct x,y ∈ X, where α,β ,γ,δ are non negative

reals with 0 ≤ α +2(β + γ)+δ < 1. Then T has a unique

fixed point in X.

In this paper, we generalize and extend the above
Theorem 11 in a complete partially ordered metric space.
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Also, we generalize and extend the results
of [8, 14, 23, 27] and several comparable results in the
literature. A few examples are given to support our
results.

2 Preliminaries

We start this section with the following frequently used
definitions in our study.

Definition 21 [35] The triple (X ,d,�) is called partially

ordered metric spaces, if (X ,�) is a partially ordered set

and (X ,d) is a metric space.

Definition 22 [35] If (X ,d) is a complete metric space,

then the triple (X ,d,�) is called complete partially

ordered metric spaces.

Definition 23 [23] A partially ordered metric space

(X ,d,�) is called ordered complete (OC) if for each

convergent sequence {xn}∞
n=0 ⊂ X, the following

condition holds: either

•if xn is a non-increasing sequence in X such that xn → x

implies x � xn, for all n ∈ N that is, x = inf{xn}, or

•if xn is a non-decreasing sequence in X such that xn →
x implies xn � x, for all n ∈N that is, x = sup{xn}.

Definition 24Let (X ,�) be a partially ordered set and let

T : X → X be a mapping. Then

(1).elements x,y ∈ X are comparable, if x � y or y � x

holds;

(2).a non empty set X is called well ordered set, if every

two elements of it are comparable;

(3).T is said to be monotone non-decreasing w.r.t. �, if for

all x,y ∈ X,

x � y implies T x � Ty.

(4).T is said to be monotone non-increasing w.r.t. �, if for

all x,y ∈ X,

x � y implies T x � Ty.

3 Main Results

3.1 Results under generalized rational type

contractions

In this section, the existence and uniqueness of a fixed
point of a mapping satisfying a generalized rational type
contraction condition are proved in partially ordered
metric space.

Theorem 31Let (X ,d,�) be a complete partially ordered

metric space. Suppose that T : X →X be a non-decreasing,

continuous self mapping satisfying

d(Tx,Ty)≤











λ d(x,y)+η [d(x,Ty)+ d(y,Tx)]

+µ
d(x,T x)d(x,Ty)+d(y,T x)d(y,Ty)

d(y,T x)+d(x,Ty) , i f A 6= 0

0 , i f A = 0

(2)

for all distinct x,y ∈ X with y � x, where A = d(y,T x)+
d(x,Ty) and λ ,η ,µ are non-negative reals such that 0 ≤
λ + 2η + µ < 1. If there exists x0 ∈ X with x0 � Tx0, then

T has a fixed point in X.

Proof.If x0 = T x0, then the proof is finished. Suppose that
x0 ≺ T x0. Since T is a non-decreasing mapping then by
induction, we obtain that

x0 ≺ T x0 � T 2x0 � ...� T nx0 � T n+1x0 � ... . (3)

Put xn+1 = T xn. If there exists n0 ∈N such that xn0
= xn0+1,

then from xn0
= xn0+1 = Txn0

, we have xn0
is a fixed point,

and therefore the proof is finished. Suppose that xn 6= xn+1,
for all n ∈ N. Since the points xn and xn−1 are comparable
for n ∈ N due to (3), we have the following two cases.
Case 1: If A= d(xn−1,T xn)+d(xn,T xn−1) 6= 0, then using
the contractive condition (2), we get

d(xn+1,xn) = d(T xn,T xn−1)

≤ λd(xn,xn−1)+η [d(xn,T xn−1)+d(xn−1,T xn)]

+µ
d(xn,T xn)d(xn,T xn−1)+d(xn−1,T xn)d(xn−1,T xn−1)

d(xn−1,T xn)+d(xn,T xn−1)
,

which implies that

d(xn+1,xn)≤ λ d(xn,xn−1)+η [d(xn,xn)+ d(xn−1,xn+1)]

+ µ
d(xn,xn+1)d(xn,xn)+ d(xn−1,xn+1)d(xn−1,xn)

d(xn−1,xn+1)+ d(xn,xn)
.

Hence, we derived that

d(xn+1,xn)≤ hnd(x1,x0),

where h = λ+η+µ
1−η < 1. Moreover, by the triangular

inequality, for m ≥ n

d(xm,xn)≤ d(xm,xm−1)+ d(xm−1,xm−2)+ ...+ d(xn+1,xn)

≤ hn

1− h
d(x1,x0),

as m,n → +∞, d(xm,xn) → 0. Thus, {xn} is a Chachy
sequence in X and by the completeness of X , there exists
z ∈ X such that lim

n→+∞
xn = z. Further, the continuity of T

implies that

T z = T

(

lim
n→+∞

xn

)

= lim
n→+∞

T xn

= lim
n→+∞

xn+1

= z.
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Thus, z is a fixed point of T in X .
Case 2: If A = d(xn−1,T xn) + d(xn,T xn−1) = 0, then
d(xn+1,xn) = 0. This implies that xn = xn+1, a
contradiction as the sequence points are comparable.
Thus there exists a fixed point z of T .

We may remove the continuity criteria on T in
Theorem 31 as follows:

Theorem 32Let (X ,d,�) be a complete partially ordered
metric space. Assume that X satisfies

if a nondecreasing sequence {xn}→ x in X , then x = sup{xn}.
(4)

Let T : X → X be a monotone non-decreasing mapping

satisfying the contraction condition (2). If there exists x0 ∈
X with x0 � T x0, then T has a fixed point in X.

Proof.We only have to check that z = T z. As {xn} ⊂ X

is a non-decreasing sequence such that xn → z ∈ X from
Theorem 31, then z = sup{xn} for all n ∈ N by (4). Since
T is a non-decreasing mapping, then T xn � T z for all n ∈
N or, equivalently, xn+1 � T z for all n ∈ N. Moreover, as
x0 ≺ x1 � T z and z = sup{xn}, we get z � T z.

suppose that z ≺ T z. Using a similar argument as that
in the proof of Theorem 31 for x0 � Tx0, we obtain a non-
decreasing sequence {T nz} in X such that lim

n→+∞
T nz = y

for certain y ∈ X . Again by (4), we get that y = sup{Tnz}.
Moreover, from x0 � z, we get xn = T nx0 � T nz for n ≥ 1
and xn ≺ T nz for n ≥ 1 because xn � z ≺ T z � T nz for all
n ≥ 1.

As xn and T nz are comparable and distinct for n ≥ 1,
consider the following cases:
Case 1: If d(T nz,T xn)+ d(xn,T

n+1z) 6= 0, then applying
the contractive condition (2), we get

d(xn+1,T
n+1z) = d(T xn,T (T

nz))

≤ λ d(xn,T
nz)+η

[

d(xn,T
n+1z)+ d(T nz,xn+1)

]

+ µ
d(xn,xn+1)d(xn,T

n+1z)+ d(Tnz,xn+1)d(T
nz,T n+1z)

d(T nz,xn+1)+ d(xn,T n+1z)
.

Making n →+∞ in the above inequality, we obtain

d(z,y)≤ (λ + 2η)d(z,y),

as λ + 2η < 1, d(z,y) = 0, thus z = y. Particularly,
z = y = sup{Tnz} and consequently, T z � z, which is a
contradiction. Hence, we conclude that T z = z.
Case 2: If d(T nz,T xn) + d(xn,T

n+1z) = 0, then
d(xn+1,T

n+1z) = 0. Taking the limit as n → +∞, we get
d(z,y) = 0. Then z = y = sup{T nz}, which implies that
T z � z, a contradiction. Thus T z = z.

Now, we present some examples where it can be
appreciated that hypotheses in Theorem 31 and Theorem
32 do not guarantee uniqueness of the fixed point. These
examples appears in [14].

Example 33Let X = {(1,0),(0,1)} ⊆ R
2 with the

Euclidean distance d. We consider the partial order U in

X as follows:

U : (u,v)≤ (r,s) if and only if u ≤ r and v ≤ s.

Let T : X → X by T (x,y) = (x,y). Then T have fixed points

in X.

Proof.It is clear that (X ,d,≤) is a complete partially
ordered metric space. Besides, the identity mapping
T (x,y) = (x,y) is trivially continuous, non-decreasing and
satisfies the contraction condition

d(T (u,v),T (r,s)) ≤ λ d((u,v),(r,s))

≤ λ d((u,v),(r,s))+η [d((u,v),T (r,s))+ d((r,s),T (u,v))]

+ µ
A1 +A2

d((r,s),T (u,v))+ d((u,v),T(r,s))
,

for all λ ,η ,µ ∈ [0,1) with 0 ≤ λ + 2η + µ < 1, where
A1 = d((u,v),T (u,v))d((u,v),T (r,s)) and
A2 = d((r,s),T (u,v))d((r,s),T (r,s)). Notice that the
elements of X are only comparable to themselves.
Moreover, (1,0) ≤ T ((1,0)). Here all the conditions of
Theorem 31 are satisfied and T has two fixed points,
which are (1,0) and (0,1).

Example 34Under the same assumptions in Example 33,

let us consider a non-decreasing sequence {(xn,yn)} ⊆ X

converging to (x,y). Then necessarily, {(xn,yn)} is a

constant sequence and (xn,yn) = (x,y) for all n ∈ N. Also,

note that the limit (x,y) is an upper bound, of course

supreme for all the terms of the sequence. Hence, all the

conditions of Theorem 32 are satisfied and, (1,0) and

(0,1) are two fixed points of T in X.

Now we give a sufficient condition for the uniqueness of
the fixed point that exists in Theorem 31 and Theorem 32.

every pair of elements has a lower bound or an upper bound.

(5)

In [14], it is proved that the above mentioned condition is
equivalent to

for every x,y ∈ X , there exists ϑ ∈ X which is comaprable to

x and y.

Theorem 35In addition to the hypotheses of Theorem 31

(or Theorem 32), condition (5) provides uniqueness of the

fixed point of T in X.

Proof.Suppose that there exists y,z ∈ X are fixed points of
T .

We distinguish two cases.
Case 1: If y and z are comparable and y 6= z. Now we have
the following two subcases:
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(i). If d(z,Ty)+ d(y,Tz) 6= 0 then using the contradiction
condition (2), we have

d(y,z) = d(Ty,T z)

≤ λ d(y,z)+η [d(y,T z)+ d(z,Ty)]

+ µ
d(y,Ty)d(y,T z)+ d(z,Ty)d(z,T z)

d(z,Ty)+ d(y,Tz)

≤ λ d(y,z)+η [d(y,z)+ d(z,y)]

+ µ
d(y,y)d(y,z)+ d(z,y)d(z,z)

d(z,y)+ d(y,z)
,

which suggest that

d(y,z) ≤ (λ + 2η)d(y,z)

< d(y,z) as λ + 2η < 1,

this is a contradiction. Hence, y = z.
(ii). If d(z,Ty) + d(y,T z) = 0, then d(y,z) = 0, a
contradiction again. Therefore, y = z.
Case 2: If y and z are not comparable, then by contraction
condition (2) there exists x ∈ X comparable to y and z.
Monotonicity implies that T nx is comparable to T ny = y

and T nz = z for n = 0,1,2, ... .
If there exists n0 ≥ 1 such that T n0x = y, then as y is

fixed point, the sequence {T nx : n ≥ n0} is constant and
consequently lim

n→+∞
T nx = y. On the other hand, if T nx 6= y

for all n ≥ 1. Now we have the follows two subcases:
(i). If d(T n−1y,T nx)+ d(T n−1x,T ny) 6= 0, then by (2) for
n ≥ 2, we obtain that

d(T nx,y) = d(T nx,T ny)

≤λ d(T n−1x,y)+η
[

d(T n−1x,y)+ d(y,T nx)
]

+ µ
d(T n−1x,T nx)d(T n−1x,y)+ d(y,T nx)d(y,y)

d(T nx,y)+ d(y,T n−1x)

≤λ d(T n−1x,y)+η
[

d(T n−1x,y)+ d(y,T nx)
]

+ µd(T n−1x,y).

This implies that

d(T nx,y)≤
(

λ +η + µ

1−η

)

d(T n−1x,y).

By induction, we obtain that

d(T nx,y)≤
(

λ +η + µ

1−η

)n

d(x,y).

As λ + 2η + µ < 1 and taking limit as n → +∞ in the
above inequality, we get

lim
n→+∞

T nx = y.

Using a similar argument as above, we can prove that

lim
n→+∞

T nx = z.

Now, the uniqueness of the limit gives that y = z.
(ii). If d(T n−1y,T nx) + d(T n−1x,T ny) = 0, then by
condition (2), we have d(T nx,y) = 0. Therefore,

lim
n→+∞

T nx = y.

By similar argument, we can prove that

lim
n→+∞

T nx = z.

Now, the uniqueness of the limit gives that y = z. Hence,
T has a unique fixed point in X .

Example 36It is easily proved that the space C[0,1] = {x :
[0,1]→ R,continuous} with the partial order given by

x ≤ y if and only if x(t)≤ y(t), for t ∈ [0,1],

and the metric given by

d(x,y) = sup{|x(t)− y(t)| : t ∈ [0,1]}

satisfies condition (4). Moreover, as for x,y ∈ [0,1], the

function max(x,y)(t) = max{x(t),y(t)} is continuous.

Also (C[0,1],≤) satisfies the condition (5).

Example 37Let X = {(0,0),( 1
2
,0),(0,1)} be a subset of

R
2 with the order ≤ defined as: for (x1,y1),(x2,y2) ∈ X

with (x1,y1) ≤ (x2,y2) if and only if x1 ≤ x2 and y1 ≤ y2.

Let the distance d : X ×X → R is defined by

d((x1,y1),(x2,y2)) = max{|x1 − x2|, |y1 − y2|}.

Let T : X → X be defined by T (0,0) = (0,0),
T (0,1) = ( 1

2
,0) and T ( 1

2
,0) = (0,0). Here all the

conditions of Theorem 31,32 and 35 are satisfied and

(0,0) is the unique fixed point of T .

Note 38 (i).If η = µ = 0 in Theorems 31, 32 and 35, then

we obtain Theorems 2.1, 2.2 and 2.3 of [14].

(ii).If η = 0 in Theorems 31, 32 and 35, then we get

Theorems 15, 17 and 18 of [23].

(iii).If λ = η = 0 in Theorems 31 and 32, we obtain

Theorem 20 of [23]. Also, the uniqueness of the fixed

point can be proved by using Condition (5) in the

hypotheses.

If in the Theorems 31 and 32, λ = 0, we obtain the
following fixed point theorem in complete partially
ordered metric space.

Theorem 39Let (X ,d,�) be a complete partially ordered

metric space. Suppose that a self mapping T on X be a

non-decreasing, continuous and satisfying following

condition

d(Tx,Ty)≤











η [d(x,Ty)+ d(y,Tx)]

+ µ
d(x,T x)d(x,Ty)+d(y,T x)d(y,Ty)

d(y,Tx)+d(x,Ty) , i f A 6= 0

0 , i f A = 0

(6)
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for all x,y ∈ X with y � x, where A = d(y,T x)+ d(x,Ty)
and η ,µ are non-negative reals such that 0 < 2η +µ < 1.

And also suppose that either T is continuous or X satisfies

condition (4). If there exists x0 ∈ X with x0 � Tx0, then T

has a fixed point in X.

Theorem 310The uniqueness of the fixed point in Theorem

39 can be proved using Condition (5).

Theorem 311Let (X ,d,�) be a complete partially ordered
metric space. Assume that either T is continuous or X is
such that

if a nonincreasing sequence {xn}→ x in X , then x = inf{xn}.

Let T : X → X be a monotone non-decreasing mapping

satisfying the contraction condition (2) (or (6)). If there

exists x0 ∈ X with x0 � Tx0, then T has a fixed point in X.

Proof.The scheme of the proof is similar to the procedure
followed in the proof of the previous Theorems 31 and 32.

Theorem 312Condition (5) provides uniqueness of the

fixed point of T in the hypotheses of Theorem 311.

3.2 Results under Singh, Badshah and Rathore

contractions

We start this section with the following definition.

Definition 313Let (X ,d,�) be a partially ordered metric

space. A self-mapping T on X is called an almost Singh,

Badshah and Rathore contraction if it satisfies the

following condition:

d(T x,Ty)≤ α
d(x,T x) [1+ d(y,Ty)]

1+ d(x,y)

+β [d(x,Tx)+ d(y,Ty)]

+ γ[d(x,Ty)+ d(y,Tx)]+ δd(x,y)

+L min{d(x,Ty),d(y,T x),d(x,T x),d(y,Ty)},
(7)

for all distinct x,y ∈ X with x � y, where L ≥ 0 and there

exist α,β ,γ,δ ∈ [0,1) such that 0 ≤α +2(β +γ)+δ < 1.

In the sequel, we prove the following theorem which is a
version of Theorem 11 in the context of partially ordered
metric spaces.

Theorem 314Let (X ,d,�) be a complete partially ordered

metric space. Suppose that a self-mapping T is an almost

Singh, Badshah and Rathore contraction, continuous and

non-decreasing. Suppose there exists x0 ∈X with x0 � Tx0,

then T has a fixed point in X.

Proof.Let x0 ∈ X and set xn+1 = T xn. If xn0
= xn0+1 for

some n0 ∈ N, then T has a fixed point. In particular, xn0

is a fixed point of T . We assume that xn 6= xn+1 for all n.
Since x0 � T x0, then

x0 � x1 � ...� xn � xn+1 � ... . (8)

Now,

d(xn+1,xn) = d(T xn,Txn−1)

≤ α
d(xn,T xn) [1+ d(xn−1,T xn−1)]

1+ d(xn,xn−1)

+β [d(xn,T xn)+ d(xn−1,Txn−1)]

+ γ[d(xn,T xn−1)+ d(xn−1,T xn)]+ δd(xn,xn−1)

+L min{d(xn,T xn−1),d(xn−1,T xn),d(xn,T xn),

d(xn−1,T xn−1)},

which implies that

d(xn+1,xn) =

(

β + γ + δ

1−α −β − γ

)

d(xn,xn−1)≤ .....

≤
(

β + γ + δ

1−α −β − γ

)n

d(x1,x0).

From the triangular inequality for m ≥ n, we have

d(xn,xm) = d(xn,xn+1)+ d(xn+1,xn+2)+ ...+ d(xm−1,xm)

≤
(

kn + kn+1 + ...+ km−1
)

d(x0,T x0)

≤ kn

1− k
d(x1,x0),

(9)

where k = β+γ+δ
1−α−β−γ

. Letting m,n → +∞ in the above

inequality (9), we get d(xn,xm) = 0. Thus, the sequence
{xn} is a Cauchy sequence. Since X is complete, then
there exists a point z ∈ X such that xn → z. Furthermore,
the continuity of T in X implies that

T z = T

(

lim
n→+∞

xn

)

= lim
n→+∞

Txn = lim
n→+∞

xn+1 = z.

Therefore, z is fixed point of T in X .

Theorem 315Let (X ,d,�) be a complete partially ordered
metric space. Assume that X satisfies

if a nondecreasing sequence {xn}→ x in X , then x = sup{xn}.
(10)

Let T : X → X be a monotone non-decreasing mapping

satisfying the contraction condition (7). If there exists x0 ∈
X with x0 � T x0, then T has a fixed point in X.

Proof.The proof follows Theorem 32.

Now, we give the examples for Theorem 314.

Example 316Let X = {(2,0),(0,2)} ⊆ R
2 with the

Euclidean distance d. We consider the partial order in X

as follows:

(x1,y1)≤ (x2,y2) if and only if x1 ≤ x2 and y1 ≤ y2.

Thus, (X ,d,≤) is a complete partially ordered metric

space. The mapping T (x,y) = (x,y) is continuous,
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non-decreasing and the condition

d(T (x1,y1),T (x2,y2))≤ δd((x1,y1),(x2,y2))

≤ α
d((x1,y1),T (x1,y1)) [1+ d((x2,y2),T (x2,y2))]

1+ d((x1,y1),(x2,y2))

+β [d((x1,y1),T (x1,y1))+ d((x2,y2),T (x2,y2))]

+ γ [d((x1,y1),T (x2,y2))+ d((x2,y2),T (x1,y1))]

+ δd((x1,y1),(x2,y2))

+Lmin{d((x1,y1),T (x2,y2)),d((x2,y2),T (x1,y1)),

d((x1,y1),T (x1,y1)),d((x2,y2),T (x2,y2))},

holds for any α,β ,γ,δ ∈ [0,1) with 0 ≤ α + 2(β + γ)+
δ < 1 and for any L ≥ 0. Notice that the elements of X are

only comparable to themselves and no different elements

are comparable. Moreover, (0,2)≤ T ((0,2)). Here all the

conditions of Theorem 314 are satisfied, (2,0) and (0,2)
are the fixed points of T .

Example 317Let X = {(x,−x),x ∈ R} with usual order

and d be the Euclidean distance. The identity map has an

infinite number of fixed points in X. Note that two different

points in X2 are not comparable.

Theorem 318In addition to the hypotheses of Theorem

314 (or Theorem 315), condition (5) provides uniqueness

of the fixed point of T in X.

Proof.The proof follows Theorem 35.

Now, we illustrate an example for Theorem 318.

Example 319Let us define a metric d : X ×X → R on X =
[0,1] as

d(x,y) = |x− y|.

And also define a self-mapping T on X by

T x =
x3

10
.

Then T has a unique fixed point in X.

Proof.The mapping T is continuous and non-decreasing
and, let x0 = 0 then x0 ≤ T x0. Note that any two different
points are comparable in X . Take δ = 1

3
. Then for any

α,β ,γ ∈ [0,1) with 0 ≤ α + 2(β + γ) + δ < 1, we have
the result. Let us examine in detail. Without loss of
generality, we assume that y � x. Also note that
0 ≤ d(x,T x) ≤ 9

10
, 0 ≤ d(y,Ty) ≤ 9

10
, 0 ≤ d(x,Ty) ≤ 9

10
and 0 ≤ d(y,T x)≤ 1.

Now, consider the following

d(T x,Ty) =
1

10
|x3 − y3|= 1

10
|(x− y)(x2 + xy+ y2)|

≤ 1

3
|x− y|= 1

3
d(x,y),

that is,

d(T x,Ty)≤ α
d(x,T x) [1+ d(y,Ty)]

1+ d(x,y)

+ β [d(x,T x)+ d(y,Ty)]

+ γ[d(x,Ty)+ d(y,Tx)]+
1

3
d(x,y)

+ L min{d(x,Ty),d(y,T x),d(x,T x),d(y,Ty)},

holds for any L ≥ 0 and any α,β ,γ ∈ [0,1) with
α + 2(β + γ) + δ < 1. Thus all conditions of Theorem
314 and Condition (315) are satisfied in X . Therefore,
0 ∈ X is the unique fixed point of T .

Definition 320Let (X ,d,�) be a partially ordered metric
space. A self-mapping T on X is called Singh, Badshah
and Rathore contraction if it satisfies the following
condition:

d(T x,Ty)≤ α
d(x,T x) [1+d(y,Ty)]

1+d(x,y)
+β [d(x,T x)+d(y,Ty)]

+ γ [d(x,Ty)+d(y,T x)]+δd(x,y),

(11)

for all distinct x,y ∈ X with x � y, there exist α,β ,γ,δ ∈
[0,1) such that 0 ≤ α + 2(β + γ)+ δ < 1.

Corollary 321Let (X ,d,�) be a complete partially

ordered metric space. suppose that a self-mapping T is

Singh, Badshah and Rathore contraction, continuous and

non-decreasing. Suppose there exists x0 ∈ X with

x0 � T x0, then T has a fixed point in X.

Proof.Set L = 0 in Theorem 314.

Besides, if X satisfies the condition (4), then a map T has
a fixed point and also, if X satisfies condition (5), then one
obtains uniqueness of the fixed point.

Theorem 322Let (X ,d,�) be a complete partially ordered
metric space. Assume that either T is continuous or X is
such that

if a nonincreasing sequence {xn}→ x in X , then x = inf{xn}.

Let T : X → X be a monotone nondecreasing mapping

satisfying the contraction condition (7) (or (11)). If there

exists x0 ∈ X with x0 � T x0, then T has a fixed point in X.

Proof.The scheme of the proof is similar to the procedure
followed in the proof of the previous theorems.

We present an example where Theorem 314 (or
Corollary 321) can be applied and this example cannot be
treated by the main theorem of Singh, Badshah and
Rathore (cf [8]) in complete metric space.

Example 323Let X = {(0,1),(1,0),(1,1)} and consider

the partial order relation on X by R = {(x,x) : x ∈ X}.

Notice that elements in X are only comparable to

themselves. Besides, (X ,d) is a complete metric space,
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where d is an Euclidean distance. Also, (X ,≤) is a

partially ordered set.

Let T : X → X be defined by

T (0,1) = (1,0), T (1,0) = (0,1), T (1,1) = (1,1).

Thus, T is trivially continuous and non-decreasing and

satisfy the condition (7) (or condition (1)) of Theorem 314

(or Corollary 321), since elements of X are only

comparable to themselves. Moreover,

(1,1) ≤ T (1,1) = (1,1) and, by Theorem 314 (or

Corollary 321), T has fixed point (1,1).
On the other hand, for x = (0,1), y = (1,0) in X, we

have

d(T x,Ty) =
√

2, d(x,Ty) = 0, d(y,T x) = 0, d(x,T x) =
√

2,

d(y,Ty) =
√

2,

and the contractive condition of the main theorem of

Singh, Badshah and Rathore (cf [8]) is not satisfied

because

d(Tx,Ty) =
√

2 ≤ α
d(x,T x) [1+ d(y,Ty)]

1+ d(x,y)

+β [d(x,Tx)+ d(y,Ty)]

+ γ[d(x,Ty)+ d(y,Tx)]+ δd(x,y)

≤ α.

√
2
[

1+
√

2
]

1+
√

2
+β .2

√
2+ γ.0+ δ .

√
2

= (α + 2β + δ ).
√

2,

(12)

and thus, α +2β +δ ≥ 1. Consequently, this example can

not treated by the main theorem of Singh, Badshah and

Rathore (cf [8]).

Moreover, notice that in this example we have the

uniqueness of fixed point and (X ,≤) does not satisfy

condition (5). This proves that condition (5) is not

necessary condition for the uniqueness of the fixed point.

Now, in the next theorem we establish a fixed point of
a self mapping T by assuming only the continuity of some
iteration of T .

Theorem 324Let (X ,d,�) be a complete partially

ordered metric space. Suppose that a self-mapping T is

non-decreasing and an almost Singh, Badshah and

Rathore contraction. Suppose there exists x0 ∈ X with

x0 � T x0. If the operator T p is continuous for some

positive integer p, then T has a fixed point in X.

Proof.From Theorem 314, we construct a non-decreasing
sequence {xn} in X such that xn → z, for some z ∈ X . Also,
its subsequence xnk

(nk = kr) converges to the same point
z. Therefore,

T pz = T p

(

lim
n→+∞

xnk

)

= lim
n→+∞

xnk+1
= z.

Thus, z is a fixed point of T p.

Next to prove that z is a fixed point of T . Let m be
the smallest positive integer such that T mz = z but T qz 6=
z (q = 1,2,3, ...,m− 1). If m > 1, then

d(T z,z) = d(T z,T mz)

≤ α
d(z,T z)

[

1+ d(Tm−1z,T mz)
]

1+ d(z,Tm−1z)

+β [d(z,Tz)+ d(T m−1z,T mz)]

+ γ[d(z,T mz)+ d(T m−1z,T z)]+ δd(z,T m−1z)

+L min{d(z,T mz),d(T m−1z,T z),d(z,T mz),

d(T m−1z,T mz)},

which implies that

d(z,T z)≤
(

β + γ + δ

1−α −β − γ

)

d(z,T m−1z).

Regarding (314), we have

d(z,T m−1z) = d(T mz,T m−1z)

≤α
d(T m−1z,T mz)

[

1+ d(Tm−2z,T m−1z)
]

1+ d(Tm−2z,T m−1z)

+β [d(Tm−1z,T mz)+ d(T m−2z,T m−1z)]

+ γ[d(Tm−1z,T m−1z)+ d(T m−2z,T mz)]

+ δd(T m−1z,T m−2z)

+L min{d(T m−1z,T mz),d(T m−2z,T m−1z),

d(T m−1z,T m−1z),d(T m−2z,T mz)}.

Inductively, we get

d(z,T m−1z) = d(T mz,T m−1z)≤ kd(T m−1z,T m−2z)≤ ...

.......≤ km−1d(T z,z),

where k = β+γ+δ
1−α−β−γ

. Notice that k < 1. Therefore

d(T z,z)≤ kmd(Tz,z) < d(T z,z),

a contradiction. Hence T z = z.

Corollary 325Let (X ,d,�) be a complete partially

ordered metric space. Suppose that a self-mapping T is

non-decreasing and a Singh, Badshah and Rathore

contraction. Suppose there exists x0 ∈ X with x0 � T x0. If

the operator T p is continuous for some positive integer p,

then T has a fixed point in X.

Proof.Set L = 0 in Theorem 324.

Theorem 326Let (X ,d,�) be a complete partially ordered

metric space and let T be a non-decreasing self mapping

defined on X. Suppose that for some positive integer m, self
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mapping T satisfies the following condition

d(T mx,T my)≤ α
d(x,T mx) [1+ d(y,Tmy)]

1+ d(x,y)

+β [d(x,T mx)+ d(y,T my)]

+ γ[d(x,T my)+ d(y,T mx)]+ δd(x,y)

+Lmin{d(x,Ty),d(y,T x),d(x,T x),d(y,Ty)},
(13)

for all distinct x,y ∈ X with x � y, where L ≥ 0 and

α,β ,γ,δ ∈ [0,1) with 0 ≤ α +2(β + γ)+δ < 1. Suppose

there exists x0 ∈ X with x0 � T mx0. If T m is continuous,

then T has a fixed point in X.

Proof.The proof follows from Theorem 314 and Theorem
324.

Corollary 327Let (X ,d,�) be a complete partially

ordered metric space and let T be a non-decreasing self

mapping defined on X. Suppose that for some positive

integer m, self mapping T satisfies the following

condition:

d(T mx,T my)≤ α
d(x,T mx) [1+ d(y,Tmy)]

1+ d(x,y)

+β [d(x,T mx)+ d(y,T my)]

+ γ[d(x,T my)+ d(y,T mx)]+ δd(x,y),
(14)

for all x,y ∈ X with x � y, where α,β ,γ,δ ∈ [0,1) with

0 ≤ α + 2(β + γ) + δ < 1. Suppose there exists x0 ∈ X

with x0 � T mx0. If T m is continuous, then T has a fixed

point in X.

Proof.Set L = 0 in Theorem 326.

Now, we give the following example.

Example 328Let X = [0,1] with the usual metric and

usual order ≤. Define an operator T : X → X as follows:

Tx =

{

0 , i f x ∈ [0, 1
7
],

1
7

, i f x ∈ ( 1
7
,1].

It can be easily seen that T is discontinuous and does not

satisfy (7) for any α,β ,γ,δ ∈ [0,1) with 0 ≤ α + 2(β +
γ)+ δ < 1 when x = 1

7
,y = 1. Now T 2(x) = 0 for all x ∈

[0,1]. It can be verified that T 2 satisfies the conditions of

Theorem 326 and 0 is a unique fixed point of T 2.

Remark 329In [14], instead of condition (4), the authors

use the following weaker condition:

if a nondecreasing (nonincreasing) sequence {xn}→ x in X ,

then xn � x (x � xn), for all n ∈ N.

(15)

we have not been able to prove Theorem 32, 314 and its

consequences using (15).

Some other consequences of the main Theorem 314 for
the self mapping involving in the integral type contractions
are as follows.

Corollary 330Let (X ,d,�) be a T-orbitally complete

partially ordered metric space. Suppose that T : X → X

be a non-decreasing, continuous mapping such that

∫ d(Tx,Ty)

0
ds ≤ α

∫

d(x,T x)[1+d(y,Ty)]
1+d(x,y)

0
ds+β

∫ d(x,T x)+d(y,Ty)

0
ds

+ γ

∫ d(x,Ty)+d(y,Ty)

0
ds+ δ

∫ d(x,y)

0
ds

+L

∫ min{d(x,Ty),d(y,T x),d(x,T x),d(y,Ty)}

0
ds,

(16)

for all distinct x,y ∈ X with x � y and there exist

α,β ,γ,δ ∈ [0,1) such that 0 ≤ α + 2(β + γ) + δ < 1,

where L ≥ 0. If there exists x0 ∈ X with x0 � T x0, then T

has at least one fixed point in X.

Similarly, the following results is the consequence of
Corollary321.

Corollary 331Let T be a continuous, non-decreasing

self-mapping defined on a complete partially ordered

metric space (X ,d,�). Suppose that T satisfies the

following condition

∫ d(Tx,Ty)

0
ds ≤ α

∫

d(x,T x)[1+d(y,Ty)]
1+d(x,y)

0
ds+β

∫ d(x,T x)+d(y,Ty)

0
ds

+ γ

∫ d(x,Ty)+d(y,Ty)

0
ds+ δ

∫ d(x,y)

0
ds,

(17)

for all distinct x,y ∈ X with x � y and for α,β ,γ,δ ∈ [0,1)
with 0 < α + 2(β + γ)+ δ < 1. If there exists x0 ∈ X with

x0 � T x0, then T has a fixed point in X.
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[30] Ljubomir Ćirić, Sopme Recent Results in Metrical Fixed

Point Theory, University of Belgrade, Beograd, Serbia,

2003.

[31] M. Ozturk and M. Basarir, On some common fixed point

theorems with rational expressions on cone metric spaces

over a Banach algebra, Hacet. J. Math. Stat., 41(2), 211–222

(2012).

[32] F. Rouzkard and M. Imdad, Some common fixed point

theorems on complex valued metric spaces, Comput. Math.

Appl., 2012. doi:10.1016/j.camwa.2012.02.063.

[33] N. Seshagiri Rao and K. Kalyani, Generalized Contractions

to Coupled Fixed Point Theorems in Partially Ordered

Metric Spaces, Journal of Siberian Federal University.

Mathematics & Physics, 13(4), 492–502 (2020). doi:

10.17516/1997-1397-2020-13-4-492-502

[34] N. Seshagiri Rao, K. Kalyani and Kejal Khatri, Contractive

mapping theorems in Partially ordered metric spaces,

CUBO, 22(2), 203–214 (2020).

[35] N. Seshagiri Rao and K. Kalyani, Unique fixed point

theorems in partially ordered metric spaces, Heliyon 6(11),

e05563 (2020). doi.org/10.1016/j.heliyon.2020.e05563

[36] N. Seshagiri Rao and K. Kalyani, Coupled fixed point

theorems with rational expressions in partially ordered

metric spaces, The Journal of Analysis 28(4), 1085–1095

(2020). https://doi.org/10.1007/s41478-020-00236-y

[37] N. Seshagiri Rao and K. Kalyani, Coupled fixed point

theorems in partially ordered metric spaces, Fasciculi

Mathematic, Nr 64, 77–89 (2020). DOI: 10.21008/j.0044-

4413.2020.0011

[38] N. Seshagiri Rao and K. Kalyani, On Some Coupled

Fixed Point Theorems with Rational Expressions in

Partially Ordered Metric Spaces, Sahand Communications

in Mathematical Analysis (SCMA), 18(1), 123–136 (2021).

DOI: 10.22130/scma.2020.120323.739

[39] K. Kalyani and N. Seshagiri Rao, Coincidence point results

of nonlinear contractive mappings in partially ordered

metric spaces, CUBO, A Mathematical Journal, 23(2), 207–

224 (2021).

[40] K.Kalyani, N. Seshagiri Rao and Belay Mitiku, On

fixed point theorems of monotone functions in Ordered

metric spaces, The Journal of Analysis, 14 pages

(2021). https://doi.org/10.1007/s41478-021-00308-7,

https://rdcu.be/ceMYl

[41] N. Seshagiri Rao, K. Kalyani and Belay Mitiku, Fixed point

theorems for nonlinear contractive mappings in ordered b-

metric space with auxiliary function, BMC Research Notes

13:451 (2020). doi :10.1186/s13104-020-05273-1

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


460 N. S. Rao et al.: Fixed point theorems in partially ordered metric....

[42] Belay Mitiku, N. Seshagiri Rao and K. Kalyani, Some fixed

point results of generalized (φ ,ψ)-contractive mappings

in ordered b-metric Spaces, BMC Research Notes, 13:537

(2020). https://doi.org/10.1186/s13104-020-05354-1

[43] K.Kalyani, N. Seshagiri Rao and Belay Mitiku, Fixed

point results of contractive mappings with altering distance

functions in ordered b-metric spaces, Natural Science-

Information Science Letters, 10(2), 267–275 (2021).

http://dx.doi.org/10.18576/isl/100211

[44] K.Kalyani, N.Seshagiri Rao and Belay Mitiku, Some fixed

point results in ordered b-metric space with auxiliary

function, Advances in the Theory of Nonlinear Analysis

and its Application (ATNAA), 5(3), 421–432 (2021).

https://doi.org/10.31197/atnaa.758962

[45] N. Seshagiri Rao and K. Kalyani, Some fixed point

results of (φ ,ψ,θ )-contractive mappings in ordered b-

metric spaces, Mathematical Sciences, 13 Pages (2021).

DOI:10.1007/s40096-021-00408-2

[46] K.Kalyani, N.Seshagiri Rao and L.N.Mishra,

Coupled fixed points theorems for generalized weak

contractions in ordered b-metric spaces, Asian-

European Journal of Mathematics, 22 pages (2022).

https://doi.org/10.1142/S1793557122500504

[47] N. Seshagiri Rao, K.Kalyani and K.Prasad, Fixed point

results for weak contractions in partially ordered b-

metric space, BMC Research Notes, 14:263 (2021).

https://doi.org/10.1186/s13104-021-05649-x.

[48] X. Zhang, Fixed point theorems of multivalued monotone

mappings in ordered metric spaces, Appl. Math. Lett., 23,

235–240 (2010).

c© 2021 NSP

Natural Sciences Publishing Cor.


	Introduction
	Preliminaries
	Main Results

