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Abstract: In this paper, the modified equal width wave (MEW) equation is solved numerically using the cubic and septic 

B-spline. The proposed algorithms are based on Crank-Nicolson formulation and finite difference approximation. The non-

linear term for cubic B-spline is computed during executing the algorithm at each time level in terms of the previous level 

while for septic B-spline we tackle the nonlinear term in the equation using a variant of the linearization technique. The 

stability analysis using Von-Neumann concept shows the schemes are unconditionally stable. To test accuracy the error 

norms  ,   are computed. 
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1 Introduction 
 

In this paper we consider the numerical solution of the modified equal width wave (MEW) equation based upon the equal 

width wave (EW) equation [1, 2].  The MEW equation as in the form [3, 4, 5] 

                                      ,0
2

 txxxt uuuu                                                           (1) 

where, subscripts x  and t  denote differentiation and  ,   are positive parameter with boundary conditions 0u  as 

x . The analytic solution of the (MEW) equation can be expressed in the form  

         )),((sec6),( 0xtcxkhctxu                                                    (2) 

  where, 


1
k  and c (speed of the wave)  are positive constants. 

This equation is related with the modified regularized long wave (MRLW) equation [6] and modified Korteweg-de Vries 

(MKdV) equation [7] and with Burger’s equation using septic B-spline [8]. The MEW equation was solved numerically by 

various forms of finite element method [9-14] such as collocation method using quadratic, cubic, quantic, and septic B-

splines. Evan and Raslan [5] studied the generalized EW equation by using collocation method based on quadratic B-

spline.  

In the present work we solve the MEW equation numerically by a collocation method with cubic and septic B-spline. 

Moreover, interaction of solitary waves and other properties of the MEW equation are also studied. 
 

2 Solution Methods 

2.1 Collocation Method using Cubic B-spline  

Boundary conditions and the initial condition are of the form 

 ),()0,(,0),(),(,0),(),( xfxutbutautbutau xx                                       (3) 

where, )(xf  is localized disturbance inside the given closed interval and will be chosen later.  
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Let us consider ,...10 bxxxa N   as a partition of ],[ ba  by knots ix , and ,1
N

ab
xxh mm


         

.,...,1 Nm   

Partition the interval ],[ ba  into N finite elements of equal length 1 mm xxh  where the knots mx  are such that 

....10 bxxxa N   Let )(xm  be those cubic B-splines with knots at mx  defined as [10,16] 
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The splines  11 ,...,  N  form a basis for functions defined over b][a, . Our aim is to find an approximate solution 

),( txU N  to the solution ),( txu  which can be expressed in terms of cubic spline trial functions of the form: 

                                      ,)()(),(

1

1








N

m

mmN xttxU                                         (5) 

where, )(tm  are time dependent parameters for ,1,...,0,1  Nm  to be determined from the cubic B-spline collocation 

form of the MEW Eq. (1) together with the boundary conditions (3) and from conditions based on Eq. (5). 

The values of )(xm  and its first and second derivatives at the knots points mx  are given in Table 1 as shown below: 

Table 1: values of cubic B-spline and its derivativesat the knots points. 

x  2mx  1mx  mx  1mx  2mx  

m  0 1 4 1 0 

m   0 
h
3  0 

h
3  0 

m   0 
2

6

h
 

2
12

h

  
2

6

h
 0 

 
The nodal values mmm UUU  ,,  at the knots mx  are obtained from Eqs. (4), (5) in terms of the element parameters m  as: 
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                                     (6) 

where dashes represent differentiation with respect to space variable.  

Substituting from Eq. (6) into Eq. (1) gives the set of coupled first ordinary differential equations 

,0)121(
2

6

)11(
3

)141(





mmm
h

mmmz
hmmm









                              (7)  

where, the nonlinear terms are .)4(
2

11m   mmmz    

Replacing the time derivative of the parameter   by usual forward finite difference approximation and parameter    by the 

Crank-Nicolson formulation 
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                              (8) 

where, t  time step and the superscripts n  and 1n  are successive time levels. 

By using approximations (8) in Eq. (7) and some calculations then we have the following nonlinear recurrence relationship 

for time parameters between consecutive time n   and 1n  as: 

                                n
mm

n
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n
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        (9)                                                                      

where, 

.,...,1,0,1232,248,1232
222

Nmzkhhhzkhh mmmm         (10) 

From the above general scheme as stated in system (9) and using the values of ,,...,1,0 Nm   the above nonlinear algebraic 

system (9) is of the )1( N  equations in the )3( N  unknown parameters  101 ,,...,  NN  . Thus solving, it to obtain a 

unique solution we need to two additional constraints which are obtained from the boundary conditions (3) and used to 

eliminate 11 ,  N  from (9). Then we have the matrix equation in the simple form as 

,
1 nn

BA  
                                                                  (11) 

where A  and B  are  tri-diagonal )1()1(  NN  matrices. We can rewrite approximation (5) for the initial condition 

,)()0,(

1
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

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
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m

mmN xxU                                                              (12) 

where parameters 0
m  will be determined. To determine the parameters  ),,...,(

0
1

0
1

0



N

  we require the initial 

numerical approximation )0,(xU N  to satisfy the following conditions: 

(a) It must agree with the initial condition )0,(xu  at the knots .mx  

(b) The first derivative of the approximate initial condition agrees with those of exact initial       

      conditions at both ends of the range. 

These two conditions (a), (b) can be expressed as: 
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Then, we have 

,
00

qD                                                                    (14) 

where, D  is the tri-diagonal matrix given by 
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xfxfxfq    Hence, we can easily determine the initial time 

parameters 0
  by solving the above a tri-diagonal system. 

2.2 Stability Analysis 
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The Von-Neumann stability concept will be applied to investigate the stability of the cubic scheme by assuming the 

nonlinear term as a constant   where, 

  .3)6()4(
222

11    ddz mmmm                                              (15)  

According to the Von-Neumann concept we have 

                                   ,1,  ie
hjinn

j


                                                     (16)        

where   is the mode number and h  is the element size will be determined for a linearization of numerical scheme.  At 

,jxx   system (9) can be written as 
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                          (17) 

where 

Njkhhhkhh jj ,...,1,0,1232,248,1232
222

            (18) 

substitute the Fourier mode (16) into the linearized recurrence relationship (17) hence we get 
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
                                                                        (19) 

where, 
j

j
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  is amplification factor, A  and B are as follows  
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Therefore, the linearized scheme is marginally stable since .1g  

2.3 Numerical Tests and Rresults of MEW Equation 

We determine the solution of two and three solitary waves interaction at different time levels. The numerical solutions must 

preserve the conservation laws during propagation as discussed the in three invariant conditions which correspond to 

conversation of mass, momentum, and energy [12] respectively 
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Also, we computed LL ,2 error norms to show how well the numerical schemes models the test problems in terms of 

accuracy.    

2.3.1 The Motion of Single Solitary Wave 

For this problem we consider Eq. (1) with the boundary condition  0u  as ,x  and initial condition 

)].([sec)0,( 0xxkhAxu                                                (22) 

An analytical solution of this problem is given by 

                                           )]([sec),( 0xtcxkhAtxu                                               (23)  
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which represents the motion of a single solitary wave with amplitude A  where the wave velocity 2
2

Ac   and 1k . 

We choose the parameters ,321c 1.0 hk  and 300 x  to get the conservation quantities and the error norms 

LL ,2  for cubic B-spline method as shown in Table 2, and the change in 21 , II  and 3I  as seen in Table 2, are 

5-8x10,4-2.87x10  and 
-66.05x10  respectively. Also, Fig. 1 shows the computer plot of the interaction of these 

solitary waves at different time levels. 
 

2.3.2 Interaction of two Solitary Waves 

The interaction of two solitary waves having different amplitudes and traveling in the same directions illustrated. We 

consider the MEW equation with initial conditions given by the linear sum of two well separated solitary waves of various 

amplitudes 

                                      




2

1

)),((sec)0,(

i

ii xxkhAxu                                                                                                      

(24) 

where, amplitude 2,1,2  icA ii  and 1k . 

we choose ,641,321 21  cc ,30,15 21  xx and 1.0 ,1  kh  through the interval ].,[ ba  And the change in 1I , 

2I and 3I  as seen in Table 3, are 
5-9.1x10,4-3.4x10  and 

-66.47x10  respectively. In addition Fig. 2 shows the 

computer plot of the interaction of these solitary waves at different time levels. 

2.3.3 Interaction of Three Solitary Waves 

In this subsection interaction of three solitary waves having different amplitudes and traveling in the same directions is 

studied. We consider the MEW equation with initial conditions given by the linear sum of two well separated solitary waves 

of various amplitudes. 

             




3

1

)).((sec2)0,(

i

ii xxkhcxu                                                                                      (25) 

we choose ,1281,641,321 321  ccc 1,1.0  kh  and ,45,30,15 321  xxx The change in 1I , 2I and 3I  as 

seen in Table 4, are 
4-1.11x10,4-3.5x10 and 

-66.64x10  respectively. Also Fig. 4 shows the computer plot of the 

interaction of these solitary waves at different time levels. 

Table 2: Invariants and error norms for single solitary wave. 

t 1I 2I 3I 2L -norm L -norm 

0 
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2 

3 
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5 
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5
 

9.78617×10
-
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              t=0 t=50 

Fig. 1: Single solitary wave at different times. 

Table 3: Invariant for the interaction of two solitary waves.  

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

  
   t=0                                                        t=1000   

Fig. 2: Two solitary waves at different times.  

 

Table 4: Invariant for the interaction of three solitary waves.  

 

 

 

 

 

 
 
 
 

 

t  1I  2I  3I  

0 

1 

2 

3 

4 

5 

1.34076 

1.34069 

1.34062 

1.34056 

1.34049 

1.34042 

0.187502 

0.187483 

0.187465 

0.187447 

0.187429 

0.187411 

0.00651044 

0.00650914 

0.00650785 

0.00650655 

0.00650526 

0.00650397 

t  1I  2I  3I  

0 

1 

2 

3 

4 

5 

1.73346 

1.73339 

1.73332 

1.73325 

1.73318 

1.73311 

0.218752 

0.218734 

0.218716 

0.218697 

0.218679 

0.218661 

0.00683596 

0.00683466 

0.00683336 

0.00683207 

0.00683077 

0.00682947 
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           t=0             t=1800  

Fig.4:Three solitary waves at different times. 

3 The Maxwellian Initial Condition  

The development of the Maxwellian initial condition 

                                 ))7(exp()0,(
2

 xxu                                                                                                              (26) 

into a train of solitary waves is examined. We apply it to the problem for different cases: 

 (I) ,5.0 (II) ,05.0,1.0    (III) ,02.0  and (IV) ,005.0  when   is large such as case (I), only single soliton 

is generated as shown in Fig. 6. However, when   is reduced more and more as in case (II) two solitons are generated as 

shown in Fig. 7, and for case (III) three solitons are generated as shown in Fig. 8, for the fourth case (IV), the Maxwellian 

initial condition has decayed into six stable solitary waves as shown in Fig. 9. The peaks of the well-developed wave lie on a 

straight line so that their velocities are linearly dependent on their amplitudes and we observe a small oscillating tail 

appearing behind the wave as shown in the fig. 6, and all states at t =5. 

 
Fig. 6: The Maxwellian initial condition at 5.0  and .5t  

   
      1.0     05.0  

Fig.7: The Maxwellian initial condition at 5t . 

 
Fig.8: The Maxwellian initial condition at ,02.0  and .5t  
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Fig. 9: The Maxwellian initial condition at ,005.0  and .5t  

4 Collocation Method using Septic B-spline 

The boundary conditions will be chosen from 

,0),(),(,0),(),(,0),(),(  tbutautbutautbutau xxxxxxxxxxxx                                  (27) 

and the initial condition ),()0,( xfxu   where )(xf  is localized disturbance inside the given closed interval and will be 

chosen later. Let )(xm  be those septic B-splines with knots at mx  defined as [11] 
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The splines  323 ,...,,  N  form a basis for functions defined over b][a, . Our aim is to find an approximate solution 

),( txU N  to the solution ),( txu  which can be expressed in terms of septic spline trial functions of the form: 

                                      ,)()(),(
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
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mmN xttxU                                         (29) 

where )(tm are time dependent parameters to be determined from the septic B-spline collocation form of the MEW Eq. (1) 

together with the boundary conditions (27) and from conditions based on Eq. (29). The values of )(xm  and its first and 

second derivatives at the knots points mx  are given in Table 5 as shown below: 

            Table 5   The values of septic B-spline and its derivatives at the knots points                     

x 4mx 3mx 2mx 1mx mx 1mx 2mx 3mx 4mx 

m 0 1 120 1191 2416 1191 120 1 0 

m  0 
h
7 

h
392 

h
1715 0 

h
1715 

h
392 

h
7 0 

m  0 
2

42

h
 

2
1008

h
 

2
630

h
 

2
3360

h

 
2

630

h
 

2
1008

h
 

2
42

h
 0 

 

The nodal values mmm UUU  ,,  at the knots mx  are obtained from Eqs. (28) and (29) in terms of the element parameters 

m  as: 
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),2415801524(
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),(

),5624324356(
7

),(

,120119124161191120),(

3211232

321123

321123
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









mmmmmmmmm

mmmmmmmm

mmmmmmmmm

h
txUU

h
txUU

txUU







             (30) 

The MEW Eq. (1) can be written as 

0)(
2

 xtxx uuuu  ,                                           (31) 

The time derivative of Eq. (31) is discretized by a first order accurate forward difference formula and by using the  -

weighted )10(   scheme to the space derivative at time levels to get the equation 

,0))(1()(
)()( 212

11


 


n

x
n

x

n
xx

nn
xx

n

UUUU
k

UUUU



               (32) 

where, tk   time step and the superscripts n  and 1n  are successive time levels. In this chapter we take 5.0 , and we 

will tackle the nonlinear term 12
)(
n

xUU  by a variant of linearization form introduced by Rubin and Graves [15]  

.)()()(2)()()()()(
2112212 n

x
nnn

x
nn

x
nn

x
nn

x UUUUUUUUUUU 
              (33) 

At the th
n  time step, we denote mmm UUU  ,,  at the knots mx  given in (30) by the following expressions 

.)3224115801152243(
42

,)3256124312432563(
7

)321201119124161119121203(

23

2

1

n
mmmmmmmL

n
mmmmmmh

L

n
mmmmmmmL

h
m

m

m













       (34) 

Substituting from Eq. (33) in Eq. (32) and some calculation we get the system which can be rewritten in the simple as 

nonlinear recurrence relationship for time parameters between consecutive time n   and 1n  as 

n
m

zn
m

zn
m

zn
mzn

m
zn

m
zn

m
z

n
m

zn
m

zn
m

zn
mzn

m
zn

m
zn

m
z

3726154132231

1
37

1
26

1
15

1
4

1
13

1
22

1
31








































                  (35) 

where 
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2
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2

44
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2
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2
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LLhkzz

LLhkzz

LLhkzz

LLhkzz

LLhkzz

LLhkzz

LLhkzz





























 

From the above general scheme as stated in system (35) and using the values of ,,...,1,0 Nm   a septa-diagonal matrix is 

produced containing 1N  equations in 7N  unknowns  3210123 ,,,,...,,,  NNNN  . Thus, solving it, 

to obtain a unique solution we need six additional constraints which are obtained from the boundary conditions (27) and 

used to eliminate 123 ,,   and 321 ,,  NNN   from (35). Hence we have the matrix equation in the simple form 

as 
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,
1 nn

BA  
                                                         (36) 

where A  and B  are  septa-diagonal )1()1(  NN  matrices and the vector 
n

  is given by .],...,,[
10

Tn
N

nnn
   We 

can rewrite approximation (29) for the initial condition 

,)()0,(

3

3

0







N

m

mmN xxU                                                              (37) 

where parameters 0
m  will be determined. To determine the parameters  ),,,,...,,,(

0
3

0
2

0
1

0
1

0
2

0
3

0



NNN

  we 

require the initial numerical approximation )0,(xU N  to satisfy the following conditions: 

(a) It must agree with the initial condition )0,(xu  at the knots .mx  

(b) The first, second and third derivatives of the approximate initial condition    

      agree with those of the exact initial conditions at both ends of the range. 

These two conditions (a), (b) can be expressed as: 

 

,0)0,()0,()(

,0)0,()0,()(
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,...,1,0),0,()0,(
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0

0

0
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
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NmxuxU
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xNNx

xxNNxx

xxxNNxxx

mmN

xxxNxxx

xxNxx

xNx

                 (38) 

then we have 

,
00

qD                                                                  (39) 

where D  is the septa-diagonal matrix given by 
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000

2
0
1

0
0

0 T
N

T
N

xfxfxfq    Hence, we can easily determine the initial time 

parameters 0
  by solving the above a septa-diagonal systems. 

 

5 Stability Analyses 

We will be applied the stability of the septic scheme by assuming the nonlinear term as a constant  .  This is equivalent to 

assuming that all the  n
j  are equal to a local constant  , at ,jxx   system (35) can be written as 
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substitute the Fourier mode (16) into the linearized recurrence relationship (40) hence we get 

                                               
BiA

BiA
g




 ,                                                     (41) 

where,  

,),67204832(,sin3430)2sin(784)3sin(14

,cos)52204764()2cos()4032480()3cos()1684(

2

222

hkhhkhkhkB

hhhA
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





Therefore the linearized scheme is marginally stable since 1 ggg  
 

6 Test Problems 

The purpose of this section is to examine our numerical method using different test problems concerned with the 

development, migration and interaction of two and three solitary waves.  
 

6.1 Motion of Single Solitary Wave 

For the computational work we put ,30,1,3,321 0  xc   1.0x  and 05.0t  with the interval ].80,0[  Initial 

conditions enable the conservations to be determined analytically as  

                                                      
2

2

321
48

,
16

,
6




c
I

c
I

c
I  .                                                                                   (42) 

For our treatment, we find the values of conservation laws from the analytical form are

.00520833.0,166667.0,785398.0 321  III  The simulations are done up to 5t . The invariants 21 , II  and 3I  

approach to zero in the computer program for the scheme. Errors, also, at 5t are satisfactorily small 2L -error =

8
105178.2


 and L -error =

8
1046041.1


  for the scheme. Our results are recorded in Table 6 and the motion of solitary 

wave is plotted at 20t in Fig. 10. 
 

6.2 Interaction of two Solitary Waves 

We study the interaction of two positive solitary waves with an amplitude ratio 1:2 . For computation, we have chosen the 

amplitudes ,5.0,1 21  AA  and 30,15,2.0,1.0 21  xxth . The simulations are done up to ,55t  and the change in 1I  

approach to zero, the change in 2I and 3I  as seen in Table 7, are 
3-

2.08x10,
3-

2.09x10  respectively, also Fig. 11 

shows the computer plot of the interaction of these solitary waves at different time levels. 
 

6.3 Interaction of Three Solitary Waves 

We study the interaction of three positive solitary waves with an amplitude ratio 1:2:4 . We have chosen the amplitudes 

,25.0,5.0,1 321  AAA  and 45,30,15 321  xxx , ,1.0h  2.0t  and the interval ]80,0[ , the three invariants in this case 

are shown in Table 8.  Fig. 11 shows the interaction of these three solitary waves at different times. 
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Table 6:Invariants and error norms for single solitary waves. 

t 1I 2I 3I 2L -norm L -norm 

1 

2 

3 

4 

5 

a]11[5  

b]11[5  

c]11[5  

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785396 

0.7853966 

0.7854325 

0.166667 

0.166667 

0.166667 

0.166667 

 0.166667      

0.1666666 

0.1666664 

0.1666908  

0.00520833 

0.00520833 

0.00520833 

0.00520833 

0.00520833   

0.0052083 

0.0052083  

0.0052098 

5.03592 E-9 

1.00718 E-8 

1.51075 E-8 

2.01433 E-8 

2.51780 E-8 

0.00979 E-5 

0.00972 E-5 

2.37333 E-5 

2.97232 E-9 

5.92458 E-9 

8.84653 E-9 

1.17278 E-8 

1.46041 E-8 

0.00622 E-5 

0.00627 E-5 

2.28190 E-5 

 
where ba,  and c  refer to different three linearization techniques implemented in [11]. 
 

 

 

 

 

 

 
 
 

 

Fig.10: Single solitary wave. 

Table 7: Invariant for the interaction of two solitary waves. 

t  1I  2I  3I  

10 

20 

30 

40 

50 

55 

4.71239 

4.71239 

4.71239 

4.71239 

4.71239 

4.71239 

3.33278 

3.33219 

3.33077 

3.33094 

3.33097 

3.33069 

1.41611 

1.41552 

1.41386 

1.41404 

1.41431 

1.41403 

 
                                               t=0         t=55.2 

Fig.11: Interaction of two solitary waves at different times. 
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Table 8: Invariant for the interaction of three solitary waves. 

t  
1I  3I  3I  

20 

40 

60 

80 

100 

5.49779 

5.49779 

5.49779 

5.49779 

5.49777 

3.49886 

3.49761 

3.49633 

3.49624 

3.49511 

1.42073 

1.41925 

1.41821 

1.41811 

1.41698 

 
 

 
                              t=0                                                   t=100 

Fig. 11:Interaction of three solitary waves at different times. 

7 Comparison between Septic B-spline and Cubic B-spline 

Now, a comparison between the collocation method using septic B-spline and the cubic B-spline method is carried 

out. We find that the numerical solution for the collocation method using septic B-spline provides better accuracy than the 

cubic B-spline collocation method. These obtained numerical results are illustrated in the Tables 9, 10 given as follows: 

          Table 9:  Comparison for LL ,2 -norm with 1.0,25.0,05.0  hAt  and 800,300  xx . 

 

t  

cubic B-spline Septic B-spline 

2L -norm L -norm 2L -norm L -norm 

1 

2 

3 

4 

5 

1.48379E-5 

2.97761E-5 

4.4823E-5 

5.9975E-5 

7.52477E-5 

1.47435E-5 

2.94297 E-5 

4.44288 E-5 

5.94433 E-5 

7.43001 E-5 

5.03592 E-9 

1.00718 E-8 

1.51075 E-8 

2.01433 E-8 

2.51780 E-8 

2.97232 E-9 

5.92458 E-9 

8.84653 E-9 

1.17278 E-8 

1.46041 E-8 

  

Table 10: Comparison for conservation quantities for motion of single solitary waves with      1.0,25.0,05.0  hAt  and 

800,300  xx . 

 

t  

Cubic B-spline Septic B-spline 

1I  2I  3I  1I  2I  3I  

1 

2 

3 

4 

5 

0.785369 

0.785341 

0.785312 

0.785283 

0.785255 

0.124992 

0.124984 

0.124976 

0.124968 

0.124959 

0.00520772 

0.00520711 

0.00520651 

0.0052059 

0.00520529 

0.785398   

0.785398 

0.785398 

0.785398 

0.785398 

0.166667 

0.166667 

0.166667 

0.166667 

0.166667       

 0.00520833 

0.00520833 

0.00520833 

0.00520833 

0.00520833    
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8 Conclusions 

In this paper, a numerical solution of the MEW equation based on the cubic and septic B-spline finite element are presented 

using a variant of the linearization technique. Three test problems are worked out to examine the performance of the 

algorithm. The performance and accuracy of the method are demonstrated by calculating the error norms 2L  and L  on 

the motion of a single solitary wave. We obtained small errors for the solitary wave solution and conservation constants 

have been keeping satisfactorily constant during the computer run.  

References  

[1] L. R. T. Gardner and G. A. Gardner, “Solitary waves of the equal width wave equation,” Journal of Computational Physics., 1, 218–

223, 1991. 

 [2] K.   R.   Raslan,  “Exact solitary wave  solutions of  equal width wave and  related equation  using a direct algebraic method”,  

International Journal of Nonlinear Science.,  6,  246-254, 2008. 

[3] S.  T.  Mohyud,  A.  Yildirim,  M. E. Berberier and  M. M. Hosseini,“Numerical solution of  modified equal width wave equation”, 

World Applied Sciences Journal., 8, 792-798, 2010. 

[4] S.  I.  Zaki,  “Solitary wave interactions  for the modified equal width equation, “Computer Methods in Applied Mechanics and 

Engineering”, 15, 219-231, 2000. 

 [5] K.  R.  Raslan and  D.  J.  Evans,  “Solitary waves  for the  generalized equal width (GEW)  equation”, International Journal of 

Computer Mathematics., 82, 445–455, 2005. 

[6] K.  R.  Raslan,  “A computational  method  for the regularized long wave (RLW) equation”,  Applied Mathematics and Computation 

167, 1101–1118, 2005. 

[7]  L. R. T. Gardner, G. A. Gardner, and T. Geyikli, “The boundary forced MKdV equation,” Journal of Computational Physics., 113, 5–

12, 1994. 

[8] M. A. Ramadan, T.S. El-Danaf, F. Alaal, A numerical solution of the Burgers’ equation using septic B-splines, Chaos Solitons 

Fractals., 26, 795–804, 2005. 

[9] A. Esen, “A lumped Galerkin method for the numerical solution of the modified equal width wave equation using quadratic B-

splines,” International Journal of Computer Mathematics, 83, 449–459, 2006. 

[10] T.  Geyikli  and  S.  B.  G.  Karakoc,  “Petrov-Galerkin  method  with cubic  B-splines for solving the MEW equation,” Bulletin of 

the Belgian Mathematical Society., 19, 215-227, 2012.  

[11] T.  Geyikli and S.  B.  G.  Karakoc, “Septic B-spline collocation method for the numerical  solution of  the modified equal width 

wave equation”, Applied Mathematics., 2, 739–749, 2011. 

[12] B.  Saka,  “Algorithms for numerical solution of the modified equal width wave equation using collocation method,” Mathematical 

and Computer Modelling., 45, 1096–1117, 2007. 

 [13] A.  M.  Wazwaz,    “The  tanh  and  the  sine-cosine methods   for  a reliable  treatment  of the  modified   equal  width  equation  and  

its   variants”,  Communications  in  Nonlinear Science and Numerical Simulation, 11, 148–160, 2006. 

[14] M.  Ramadan,   K.  Raslan  and  I.  G.  Ameen,    “Finite difference approximations for the modified equal width wave (MEW) 

equation”, Journal of Mathematics and Computational Science., 5, 940-957, 2014. 

[15] S.  G.  Rubin  and  R.  A. Graves,  “A cubic  spline  approximation  for  problems  in  fluid  mechanics”, Nasa Technical Report, R-

436, Washington, 1975. 

[16] K R Raslan and K K Ali, A new structure formulations for cubic B-spline collocation method in three and four-dimensions, 

Nonlinear Engineering. Modeling and Application.,  9, 432-448, 2020. 

 

 

 

 

 

 


