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Abstract: In this paper, the modified equal width wave (MEW) equation is solved numerically using the cubic and septic
B-spline. The proposed algorithms are based on Crank-Nicolson formulation and finite difference approximation. The non-
linear term for cubic B-spline is computed during executing the algorithm at each time level in terms of the previous level
while for septic B-spline we tackle the nonlinear term in the equation using a variant of the linearization technique. The
stability analysis using Von-Neumann concept shows the schemes are unconditionally stable. To test accuracy the error
norms , are computed.
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1 Introduction

In this paper we consider the numerical solution of the modified equal width wave (MEW) equation based upon the equal
width wave (EW) equation [1, 2]. The MEW equation as in the form [3, 4, 5]

ut+5u2ux — muxxt =0, @
where, subscripts x and t denote differentiation and ¢, 1 are positive parameter with boundary conditions u—0 as
X — oo . The analytic solution of the (MEW) equation can be expressed in the form

u(x,t) = ,/6c/s sech (k(x—ct—xg)), 2

where, k = % and c (speed of the wave) are positive constants.

y7i
This equation is related with the modified regularized long wave (MRLW) equation [6] and modified Korteweg-de Vries
(MKdV) equation [7] and with Burger’s equation using septic B-spline [8]. The MEW equation was solved numerically by
various forms of finite element method [9-14] such as collocation method using quadratic, cubic, quantic, and septic B-
splines. Evan and Raslan [5] studied the generalized EW equation by using collocation method based on quadratic B-
spline.
In the present work we solve the MEW equation numerically by a collocation method with cubic and septic B-spline.
Moreover, interaction of solitary waves and other properties of the MEW equation are also studied.

2 Solution Methods
2.1 Collocation Method using Cubic B-spline

Boundary conditions and the initial condition are of the form
u(a,t)=u(b,t)=0, uy(at)=uy(b,t)=0, u(x,0) = f(x), 3)
where, f(x) is localized disturbance inside the given closed interval and will be chosen later.
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. . b-a
Let us consider a=xp <Xy <..<xy =b, as a partition of [ab] by knotsX;,and h=xp —Xpn_1 =N

m=1,., N.

Partition the interval [a,b] into N finite elements of equal length h=x, —xm_1 where the knots xp are such that
a=Xg <Xy <..<Xy =b. Let ¢p (x) be those cubic B-splines with knots at x, defined as [10,16]

(x- Xm—2)3v Xm-2 < X < Xm-1
h3 +3h2 (x - x 3h(x - 2 _3h(x- 8 <x<
m-1) + 3N(X = Xm_1)" = 3" (X = Xm_1)", Xm-1= X=Xy
1 4
;zﬁm(x):gaT h® +3h2 (X2 — X) + 30 (Xmaq — ¥)° = 3h(Xmeg — X)°, Xm < X < Xms1 )
(ma1 =) Xma1 < X < X2
0, otherwise

The splines {¢_1,... #n 41} form a basis for functions defined over[a, b]. Our aim is to find an approximate solution
U (x,t) to the solution u(x,t) which can be expressed in terms of cubic spline trial functions of the form:
N+1
Un ()= D m (1) dm (%), )

m=-1
where, &, (t) are time dependent parameters for m=-1,0,.., N +1, to be determined from the cubic B-spline collocation
form of the MEW Eq. (1) together with the boundary conditions (3) and from conditions based on Eq. (5).
The values of ¢, (x) and its first and second derivatives at the knots points x,, are given in Table 1 as shown below:

Table 1: values of cubic B-spline and its derivativesat the knots points.
X

Xm-2 | Xm-1 Xm Xm+1l | Xm+2
bm | O 1 4 1 0
b 0 3 0 -3 0
h h
dm 0 6 =12 6 0
h? h? h?

The nodal values U, ,U U, at the knots x,, are obtained from Egs. (4), (5) in terms of the element parameters &y, as:

Un=UXn,)=0m_1+45m +Sm41

! ! 3
Um =U"0m. )= (Om+1 = Om-1) , (6)

" " 6
Up=U (Xm"[):h_z(amfl_2 Sm +Sm+1)

where dashes represent differentiation with respect to space variable.
Substituting from Eq. (6) into Eq. (1) gives the set of coupled first ordinary differential equations

(5h71+45h'*5h+1)+%$zm(5m+1_5m71)
7)

6# ’ ’ ’ (
*;545m—1*25m'+5m+1)=0

where, the nonlinear terms are zp, = (Syp—1 + 46 + 5m+1)2.

Replacing the time derivative of the parameter 5 by usual forward finite difference approximation and parameter 5§ by the
Crank-Nicolson formulation
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, 1 1 1 1
S :E((s,ﬁ‘ﬁ —-5m), Sm :E(ar?r +6m) (8)

where, At time step and the superscripts n and n+1 are successive time levels.

By using approximations (8) in Eq. (7) and some calculations then we have the following nonlinear recurrence relationship
for time parameters between consecutive time n and n+1 as:

amSptl+ Bomtt + ymont sh

el =YmOm 1+ A Om T amdp ©

where,
am =2h?-3ehk 2y 12,  B=8h?+24u, ym =2h?+3ehk zp-124, m=0,1.., N. (10)

From the above general scheme as stated in system (9) and using the values of m=0/1,.., N, the above nonlinear algebraic
system (9) is of the (N +1) equations in the (N +3) unknown parameters {5_1,8q,..6n , SN +1} - Thus solving, it to obtain a
unique solution we need to two additional constraints which are obtained from the boundary conditions (3) and used to

eliminate 6_1, o +1 from (9). Then we have the matrix equation in the simple form as
As" _Bsn, (11)
where A and B are tri-diagonal (N +1)x (N +1) matrices. We can rewrite approximation (5) for the initial condition

N+1
Un(x0)= Y &% ¢m (), (12)

m=-1

), we require the initial

where parameters 5% will be determined. To determine the parameters 59 =( 591,..., 5,9‘ 1

numerical approximation U y (x,0) to satisfy the following conditions:

(a) 1t must agree with the initial condition u(x,0) at the knots x,.

(b) The first derivative of the approximate initial condition agrees with those of exact initial

conditions at both ends of the range.

These two conditions (a), (b) can be expressed as:
U y)N (Xp,0) =ux(a,0) =0,
U n (X ,0) = u(xy,0), m=041,.., N (13)
Ux)N (xn,0) = uy (b,0) =0,

Then, we have

Ds® =q°, (14)
where, D is the tri-diagonal matrix given by
4 0
1 0
D= ,
0
0 00O

and 50 =[50,510,50,..., 5,9] ]T, q0 =[f(xg), F(X1)sms f(xN)]T. Hence, we can easily determine the initial time
parameters 50 by solving the above a tri-diagonal system.

2.2 Stability Analysis
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The Von-Neumann stability concept will be applied to investigate the stability of the cubic scheme by assuming the
nonlinear term as a constant 4 where,

Zm = (Om_q +435m +0ma1) = (6d)% =3d2 = 4. (15)
According to the Von-Neumann concept we have
sh=gheloih =g, (16)

where ¢ is the mode number and h is the element size will be determined for a linearization of numerical scheme. At
x =xj, system (9) can be written as

n+1 n+1 n+1 n n n
aj5j_1+ﬁ5j +}/j5j+1=j/j§j_l+ﬂ5j +0!j5j+1 a7
where
aj=2n?-3shki-12u,  f=8h%+24y, yj=2h%+3ch k 2-124, j=01..,N (18)
substitute the Fourier mode (16) into the linearized recurrence relationship (17) hence we get
A-iB
= 19
J A+iB (19)
c j+l
where, g = is amplification factor, A and B are as follows
e J
_(an2_ 2
A=(4h" -24u)cos ph+8h* +24 u, (20)

B =18hAt Asing h.
Therefore, the linearized scheme is marginally stable since |g| =1.
2.3 Numerical Tests and Rresults of MEW Equation

We determine the solution of two and three solitary waves interaction at different time levels. The numerical solutions must
preserve the conservation laws during propagation as discussed the in three invariant conditions which correspond to
conversation of mass, momentum, and energy [12] respectively

b N
Ilzju(x,t)dx =n > U,
a m=0

b N
Ip = j(uz(x,t)qu(x,t))dx = hZ{(ur%)z - UOM?), (21)
a m=0
b N
I3 = ju4(x,t)dx =ny um*
a m=0

Also, we computed L,, L, error norms to show how well the numerical schemes models the test problems in terms of
accuracy.
2.3.1 The Motion of Single Solitary Wave
For this problem we consider Eq. (1) with the boundary condition u— 0 as x — 4o, and initial condition
u(x,0) = Asech[k(x—xg)l- (22)
An analytical solution of this problem is given by
u(x,t) = Asechl[k (x —ct—xg)] (23)
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which represents the motion of a single solitary wave with amplitude A where the wave velocity c = A2/2 and k=1/u .
We choose the parameters ¢=1/32, k=h=0.1 and xg =30 to get the conservation quantities and the error norms
Lo, Ly for cubic B-spline method as shown in Table 2, and the change in I, I, and I3 as seen in Table 2, are

2.87X10'4, 8X10'5 and 6.05x107° respectively. Also, Fig. 1 shows the computer plot of the interaction of these
solitary waves at different time levels.

2.3.2 Interaction of two Solitary Waves

The interaction of two solitary waves having different amplitudes and traveling in the same directions illustrated. We
consider the MEW equation with initial conditions given by the linear sum of two well separated solitary waves of various
amplitudes

2
u(x,0) = Z A; sech (k(x—x;)),

i=1
(24)

where, amplitude A; =/2¢j, i=12 and k = [/ .

we choose ¢; =1/32,¢c, =1/64, x; =15,x5 =30,and x =1, h=k =0.1 through the interval [a,b]. And the change in 14,
I,and I3 asseen in Table 3, are 3.4x10'4, 9.1x10™ and 6.47x10°0 respectively. In addition Fig. 2 shows the
computer plot of the interaction of these solitary waves at different time levels.

2.3.3 Interaction of Three Solitary Waves

In this subsection interaction of three solitary waves having different amplitudes and traveling in the same directions is
studied. We consider the MEW equation with initial conditions given by the linear sum of two well separated solitary waves
of various amplitudes.

3

u(x,0) = Z,/Zq sech (k(x—Xj)). (25)
i=1

we choose ¢ =1/32,c, =1/64,c3 =1/128, h=k =0.1, x =1 and x; =15,x5 = 30,x3 = 45, The change in 1,1, and I3 as

seen in Table 4, are 3.5X10"4, 1.11x10'4 and 6.64x1070 respectively. Also Fig. 4 shows the computer plot of the
interaction of these solitary waves at different time levels.
Table 2: Invariants and error norms for single solitary wave.

t I P I3 L, -norm L, -norm
0 | 0.785398 | 0.124999 | 0.00520833 0.0 0.0
1 | 0785341 | 0.124984 | 0.00520711 | 2.52462x10" | 2.13768x10°
5 5
2 | 0.785283 | 0.124968 | 0.0052059
3 | 0.785226 | 0.124951 | 0.0052046 | °-06155x10" | 4.30664x10
4 | 0.785168 | 0.124935 | 0.0052034 _ _
7.61246x10° | 6.51776x10
5 | 0.785111 | 0.124919 | 0.00520225 5 5
1.01790x10" | 8.74257x10
4 5
1.27629x10° | 9.78617x10
4 5
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t=0 t=50
Fig. 1: Single solitary wave at different times.
Table 3: Invariant for the interaction of two solitary waves.

t Iy Iy I3

1.34076 | 0.187502 | 0.00651044
1.34069 | 0.187483 | 0.00650914
1.34062 | 0.187465 | 0.00650785
1.34056 | 0.187447 | 0.00650655
1.34049 | 0.187429 | 0.00650526
1.34042 | 0.187411 | 0.00650397

g b~ W N - O

t=0 t=1000
Fig. 2: Two solitary waves at different times.

Table 4: Invariant for the interaction of three solitary waves.

t Iy P I3

1.73346 | 0.218752 | 0.00683596
1.73339 | 0.218734 | 0.00683466
1.73332 | 0.218716 | 0.00683336
1.73325 | 0.218697 | 0.00683207
1.73318 | 0.218679 | 0.00683077
1.73311 | 0.218661 | 0.00682947

g b W N -, O
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t=0 t=1800
Fig.4:Three solitary waves at different times.
3 The Maxwellian Initial Condition
The development of the Maxwellian initial condition
u(x,0) = exp(~(x—7)%) (26)
into a train of solitary waves is examined. We apply it to the problem for different cases:
() =05, () ©=0.1,=0.05, (Il1) £=0.02, and (IV) «=0.005, when g is large such as case (I), only single soliton

is generated as shown in Fig. 6. However, when 4 is reduced more and more as in case (Il) two solitons are generated as

shown in Fig. 7, and for case (I11) three solitons are generated as shown in Fig. 8, for the fourth case (IV), the Maxwellian
initial condition has decayed into six stable solitary waves as shown in Fig. 9. The peaks of the well-developed wave lie on a
straight line so that their velocities are linearly dependent on their amplitudes and we observe a small oscillating tail
appearing behind the wave as shown in the fig. 6, and all states at t =5.

Fig. 6: The Maxwellian initial condition at x=0.5 and t=5.
|
\

#=0.1 £ =0.05
Fig.7: The Maxwellian initial conditionat t =5.

l‘
I

Il

Fig.8: The Maxwellian initial condition at ;z=0.02, and t =5.
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Fig. 9: The Maxwellian initial condition at ,=0.005, and t =5.
4 Collocation Method using Septic B-spline

The boundary conditions will be chosen from
Uyx(a,t) =uy(b,t) =0, uyx(a,t) = Uyx(b,t) =0, uyxx(a,t) = uyxx(b,t) =0, 27
and the initial condition u(x,0)= f(x), where f(x) is localized disturbance inside the given closed interval and will be

chosen later. Let ¢y, (x) be those septic B-splines with knots at x, defined as [11]

a1 =(x—Xp_4)" Xm—-4 < X< Xp_3
an :a1—8(x—xm,3)7 Xm—_3 X< Xp_2
ag =ap +28(x—xm,2)7 yXm_2 < X< Xm_1
ay :a3—56(x—xm,1)7 Xm-1 < X< X
b (X) = i7 by =bg —56(Xm.1 — X)' X € X< Xl (28)
" b3=b2+28(xm+2—x)7 Xmal S X< Xmg2
by = by ~8(Xpm 43 - X)’ Xm42 € X< Xmy3
by = (X3 - %)’ Xm+3 < X< Xmya
0 ,otherwise

The splines {¢_3,¢_2,... én .3} form a basis for functions defined over [a, b]. Our aim is to find an approximate solution
Uy (x,t) to the solution u(x,t) which can be expressed in terms of septic spline trial functions of the form:

N+3
UN(D) = D 0m 1) ¢m (), (29)
m=-3
where &, (t) are time dependent parameters to be determined from the septic B-spline collocation form of the MEW Eg. (1)
together with the boundary conditions (27) and from conditions based on Eq. (29). The values of ¢, (x) and its first and
second derivatives at the knots points x,, are given in Table 5 as shown below:

Table 5 The values of septic B-spline and its derivatives at the knots points

X Xm—4 Xm-3 Xm-2 Xm-1 Xm Xm+1l | Xm+2 Xm+3 | Xm+4
ém 0 1 120 1191 2416 1191 120 1 0
P 0 =7 —392 —1715 0 1715 392 s 0
h h h h h
om 0 42 1008 630 —3360 630 1008 42 0
h2 h2 h2 h2 h2 h2 h2

The nodal values U ,,U,, Uy, at the knots x,, are obtained from Eqgs. (28) and (29) in terms of the element parameters

Om as:
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Ump =UXmt) =6n_3 +1208pm_2 +11915y,_1 + 24166, +11915 11 +1205 42 + Sm+3,

7
Ugp =U'(Xy.t) = F(_(Sm_3 -568_2 — 24361 +2438141 +560m12 + Om13), (30)
" " 42
Um =U"(Xm.t) = —2(5m_3 +246m_2 +1567,_1 —808 3 +156 141 + 240512 + Om43)s
h

The MEW Eq. (1) can be written as
(u—yuxx)t+gu2uX=0, (31)
The time derivative of Eq. (31) is discretized by a first order accurate forward difference formula and by using the & -
weighted (0<@<1) scheme to the space derivative at time levels to get the equation
UM pUu - Ul
k
where, k = At time step and the superscripts n and n+1 are successive time levels. In this chapter we take 8 =0.5, and we

+0(eU%U )" L a-0)u2u,)" =0, (32)

will tackle the nonlinear term (U 2u X)”Jrl by a variant of linearization form introduced by Rubin and Graves [15]
UAU O+ UHN U =UA)" U 2u U U - U U™ (33)
Atthe n® time step, we denote U ,,Up,,Up, atthe knots x, given in (30) by the following expressions
Lmi =(0q_3 +1200,,_ +11916j3_1 +24160m +119151,1 +12051, 0 +§m+3)n

;
Lz =+ (~0m-3 =565 _p — 2435 _1 +2435p,1 +56 5., +3mea)". (34)
Loz = 4_22(5m_3 +248,_9 +155;,_1 —805m +1553,1 + 24512 +Om43)"-

h

Substituting from Eq. (33) in Eq. (32) and some calculation we get the system which can be rewritten in the simple as
nonlinear recurrence relationship for time parameters between consecutive time n and n+1 as
n+1 n+1 n+1 n+1 n+1
9 O3t 220, o230, T +240m T+ 250,
n
m-2

n+1 n+1
1+265m+2+z7 6m+3 (35)

+Zﬁ,5rrr11+zé5r?1+1+zé5n +z§5”

_ o <N ’
=2 0m_3+229 m+2 m+3

N
m—3 +Z35

m-1
where

op2 2
zi=2h" ~7ekhL? -84y, 21 =2 +2ekh%LygLlmy

' 2 2
22:240h —3928kh|_ml—2016/u, 22 =Z'2+24O£kh2Lmle2

25=2382h% ~1715skhL2, ~12604, 23 = 25 + 23826 khZLy Linp
2 = 4832h% + 67204, 24 =174 +4832ekh%LgLlmo
25 = 2382h% +1715skh L2 ~12604, z5 = 25 + 23826 kh2Ly Lo
25=240h% +392ckhL2 ~2016y, 26 = 2 + 2402 kh% Ly Lnp
' 2
Z’7=2h2+78khLﬁ11—84,u, 27 =27 +26kh"Lmilma.

From the above general scheme as stated in system (35) and using the values of m=0/1,., N, a septa-diagonal matrix is
produced containing N +1 equations in N +7 unknowns{5_3,6_2,5_1,80,0N 0N 110N +2,ON+3}. Thus, solving it,
to obtain a unique solution we need six additional constraints which are obtained from the boundary conditions (27) and
used to eliminate 6_3,5_5,5_1and Sy +1.0Nn4+2,0N +3 from (35). Hence we have the matrix equation in the simple form

as
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As"toBs", (36)
where A and B are septa-diagonal (N +1)x (N +1) matrices and the vector 5" is given by 6" =[57.5]" ... 5, 1'. We
can rewrite approximation (29) for the initial condition

N+3 0
Un (%0 = D" Sm dm (), @37)
m=-3
0 i ; ; 0_,s0 0 0 0 0 0
where parameters 5, will be determined. To determine the parameters &~ = (63,85, 1, Oy 110N 42/ 0N 43)0 WE

require the initial numerical approximation U  (x,0) to satisfy the following conditions:
(a) It must agree with the initial condition u(x,0) at the knots xy .

(b) The first, second and third derivatives of the approximate initial condition
agree with those of the exact initial conditions at both ends of the range.
These two conditions (a), (b) can be expressed as:

(Ux)N (x0.0) =uy(a,0)=0,
(U xx)N (x0.0) =uyx(a,0) =0,
(U xxx)N (X0.0) = uyxx(a,0) =0,
Un (Xm.0) = u(xy.0), m=01..,N (38)
U xxx)N (XN ,0) = Uxxx (b,0) =0,
(U xx)N (XN ,0) = uyx (b,0) =0,
(Ux)n (XN ,0) =ux(b,0) =0,
then we have

Ds” =q°, (39)
where D is the septa-diagonal matrix given by
1536 2712 768 24 0
27.577 46.793 11.644 27.577
27 18 9 27
3200 10733 21752 32158 .. 0 0 0
27 9 9 27
1 120 1191 2416 120 1 0 0 0
I
120 1191 2416 1191 120 1
32,158 21.752 10.733 3200
1 120
27 9 9 27
0 0 0 o 1 27577 46793 46.793 3200
27 18 18 27
0 0 0 0 o0 24 768 2712 1536

And s° =[50,510,50,..., 5,(\)1 ]T, q0 =[f(xg) F(x1)s f(xN)]T. Hence, we can easily determine the initial time
parameters 50 by solving the above a septa-diagonal systems.
5 Stability Analyses

We will be applied the stability of the septic scheme by assuming the nonlinear term as a constant 4 . This is equivalent to

assuming that all the (5?) are equal to a local constant 4, at x = X, system (35) can be written as

© 2020 NSP
Natural Sciences Publishing Cor.



Num. Comp. Meth. Sci. Eng. 2, No. 3, 97-110 (2020)/ http://www.naturalspublishing.com/Journals.asp %._,:3 107

alﬁ?j?l’+a2 5?:% +asz 5?f11+a4 5?+1+a5 5?:11“‘0‘6 5?:; +ay 5?;% = @)
ay 5?_3 +ag 5?_2 +ag 5?_1+a4 5? +ag 5?+1+a2 §?+2 +a15?+2
where
ay =2h? —Tghel —84u, ay =240h% —392¢hel — 20164, agz = 2382h2 —1715¢hel —12604,
ay =4832h% +6720u, as =2382h% +1715phed —1260u, ag = 240h% +392¢hsl — 20164, |,
a7 =2h% +Tghel —84u,
substitute the Fourier mode (16) into the linearized recurrence relationship (40) hence we get
A-iB
9= ariB’ (41)

where,
A= (4h? —1684) cos(30) + (480h2 — 40324) cos(26) + (4764h% —52204) cos 6 + a,

B = 14hkAsin(39) + 784hkA sin(20) + 3430hkising, « = (4832h% +6720u), O =kh,
Therefore the linearized scheme is marginally stable since |g| =4/0 a =1
6 Test Problems

The purpose of this section is to examine our numerical method using different test problems concerned with the
development, migration and interaction of two and three solitary waves.

6.1 Motion of Single Solitary Wave

For the computational work we put ¢=1/32,e=3,2=1x9 =30, Ax=0.1 and At=0.05 with the interval [0,80]. Initial
conditions enable the conservations to be determined analytically as

2
6 16 4
lh=7 —C,|2=—C' I3 = 8; : (42)
£ &

&

For our treatment, we find the wvalues of conservation laws from the analytical form are
I4 =0.785398 1, =0.166667, 13 =0.00520833 The simulations are done up tot=5. The invariants I,1, and I3

approach to zero in the computer program for the scheme. Errors, also, at t=>5are satisfactorily small L, -error =

2.5178x10 8and L, -error =1.46041x 108 for the scheme. Our results are recorded in Table 6 and the motion of solitary
wave is plotted at t = 20in Fig. 10.

6.2 Interaction of two Solitary Waves

We study the interaction of two positive solitary waves with an amplitude ratio 2:1. For computation, we have chosen the
amplitudes A =1,A, =0.5, and h=0.1,At =0.2,% =15,x, =30 . The simulations are done up tot=55, and the change in I

approach to zero, the change in 1,and 15 as seen in Table 7, are 2.09X10-3, 2.08x10-3 respectively, also Fig. 11

shows the computer plot of the interaction of these solitary waves at different time levels.
6.3 Interaction of Three Solitary Waves

We study the interaction of three positive solitary waves with an amplitude ratio 4:2:1. We have chosen the amplitudes
A =1 A =05 A3=025 and x; =15,x, =30,x3 =45, h=0.1, At=0.2 and the interval [0,80], the three invariants in this case
are shown in Table 8. Fig. 11 shows the interaction of these three solitary waves at different times.
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Table 6:Invariants and error norms for single solitary waves.

t Iy Iy I3 L, -norm L., -norm
1 0.785398 0.166667 0.00520833 503592 E-9 | 297232 E-9
2 0.785398 0.166667 0.00520833 100718 E-8 | 592458 E-9
3 0.785398 0.166667 0.00520833 151075E-8 | 8.84653 E-9
4 0.785398 0.166667 0.00520833 201433E-8 | 117278 E-8
5 0.785398 0.166667 0.00520833 251780 E-8 | 1.46041E-8
511, | 0.785396 0.1666666 0.0052083 0.00979 E-5 | 0.00622 E-5
Sill, | 0.7853066 | 0.1666664 0.0052083 0.00972E-5 | 0.00627 E-5
SMUe | 07854325 | 0.1666908 0.0052098 237333E-5 | 2.28190 E-5

where a,b and c refer to different three linearization techniques implemented in [11].

Fig.10: Single solitary wave.

Table 7: Invariant for the interaction of two solitary waves.

t I4 Iy I3
10 4.71239 3.33278 1.41611
20 4.71239 3.33219 1.41552
30 4.71239 3.33077 1.41386
40 4.71239 3.33094 1.41404
50 4.71239 3.33097 1.41431
55 4.71239 3.33069 1.41403
‘t r. |
| | |
| .
’Il ll. ’|| i\ )I |‘ I
t=0 t=55.2

Fig.11: Interaction of two solitary waves at different times.
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Table 8: Invariant for the interaction of three solitary waves.

t 1 I3 I3
20 5.49779 3.49886 1.42073
40 5.49779 3.49761 1.41925
60 5.49779 3.49633 1.41821
80 5.49779 3.49624 1.41811
100 5.49777 3.49511 1.41698
1206400 1.20£400
1 D0E+00 1.00€+00
8.006-01 3 00E-0 |
5.00E ,l
600601
w—Serigsl —Spr1E51
4 .00E4 }
4.00£-01 :
‘ \ 2.00E-01 \ i1
200601 L
0.00€+00 —/\/
D.00E400 =t LN 0 20 a0 50 80 100
0 20 20 60 80 100 -2.006-01
t=0 t=100

Fig. 11:Interaction of three solitary waves at different times.

7 Comparison between Septic B-spline and Cubic B-spline

Now, a comparison between the collocation method using septic B-spline and the cubic B-spline method is carried
out. We find that the numerical solution for the collocation method using septic B-spline provides better accuracy than the
cubic B-spline collocation method. These obtained numerical results are illustrated in the Tables 9, 10 given as follows:

Table 9: Comparison for Ly, L, -norm with At =0.05, A=0.25,h =0.1 and x; =30, 0<x<80.

cubic B-spline Septic B-spline
t Ly -norm L, -norm Ly -norm L, -norm
1 1.48379E-5 1.47435E-5 5.03592 E-9 2.97232 E-9
2 2.97761E-5 2.94297 E-5 1.00718 E-8 5.92458 E-9
3 4.4823E-5 4.44288 E-5 1.51075 E-8 8.84653 E-9
4 5.9975E-5 5.94433 E-5 2.01433 E-8 1.17278 E-8
5 7.52477E-5 7.43001 E-5 2.51780 E-8 1.46041 E-8

Table 10: Comparison for conservation quantities for motion of single solitary waves with At =0.05, A=0.25,h =0.1 and
X9 =30, 0<x<80.

Cubic B-spline Septic B-spline
t Iy 12 I3 Iy I2 I3
1 0.785369 0.124992 0.00520772 0.785398 0.166667 0.00520833
2 0.785341 0.124984 0.00520711 0.785398 0.166667 0.00520833
3 0.785312 0.124976 0.00520651 0.785398 0.166667 0.00520833
4 0.785283 0.124968 0.0052059 0.785398 0.166667 0.00520833
5 0.785255 0.124959 0.00520529 0.785398 0.166667 0.00520833
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8 Conclusions

In this paper, a numerical solution of the MEW equation based on the cubic and septic B-spline finite element are presented
using a variant of the linearization technique. Three test problems are worked out to examine the performance of the

algorithm. The performance and accuracy of the method are demonstrated by calculating the error norms L2 and LOO on
the motion of a single solitary wave. We obtained small errors for the solitary wave solution and conservation constants
have been keeping satisfactorily constant during the computer run.
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