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Abstract: In this paper we prove fixed point result in generating Padishce (random space which is more general than the other
spaces) with implicit relations stratifying integral typequality. Fixed-point theory is an important branch ohdimear analysis. A
point, which is invariant under any transformation, is techas “Fixed Point” that is for any transformation T on mespece (X, d), x

is fixed point of T if T(x) = x.
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Symbols Used establish fixed point result in generating Polish space (
random space which is more general than the other

= Not equal to, spaces).

€ epsilon,

o alpha

@ phi 2 Materials and Methods

C propersubset

€ varepsilon Let (Q,Y) be a measurable space witha sigma algebra

> grater than of subsets ofQand Ma non-empty subset of a metric

< less than spaceX = (X,d). Let 2Mbe the family of all non-empty

subsets oM andC (M) the family of all nonempty closed
subsets ofM. A mapping G : Q — 2M s called
1 Introduction measurable if, for each open subseof M, G 1 (U) € 5
whereG1(U) = {we Q : G(w)NU # ¢}. A mapping
Probabilistic functional analysis has emerged as one of : 2 — M is called a measurable selector of a
the important mathematical disciplines in view of its role Mmeasurable mapping: Q — 2" if ¢ is measurable and
in analyzing probabilistic models in the applied sciences.$ (W) € G(w) for each w € Q. A mapping
The study of fixed points of random operators forms aT : £ x M — X is said to be a random operator if, for
central topic in this area. The place City Prague school ofach fixedx € M,T(.,x) : Q@ — X is measurable. A
probabilistic initiated its study in the 1950s. Howeveg th Measurable mappin® is a random fixed point of a
research in this area flourished after the publication of the@ndom operatofr : Q x M — X if & (w) € T (W& (w))
survey article of Bharucha-Reid][. Since then, many foreachwe Q.
interesting random fixed point results and several
applications have appeared in the literature, see, for
example the work of Beg and Shahzaj, itoh [5], Lin 2.1 Definition
[7], O'Regan B], Papageorgiou9], Dhagat et.l. 4],
Shahzad and Latif1J0], Tan and Yuan 11], Xu [12], Let X be non empty set anftly : o € (0,1]} be a family
Smriti Mehta [L3. The purpose of this paper is to of mappingg, of (Q x X) x (Q x X) into R",we Q be
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a selector{X,dq : o € (0,1]} is called generating Polish
space of quasi metric family if it satisfies the following
conditions:

1da (W,x), (W y )):O €(0,]] &x=y

2dg (W), (WY)) = da (WY),(WX))VXy € X,w €
Qanda € (0,1]

3.For anya € (0,1], there exists a numbar € (0,d]
such that
da (W), (W) = d (W), (W,2)) +dp (W 2), (W) VX, y € X, w € Qbe a selector

4.For anyx,y € X,w € Q,dq ((W,X),(WY))is non -
increasing and left continuous i

2.2 Definition

Let {X,dq: o € (0,1]} be a generating Polish space of
quasi metric family an&andT be mappings fronf2 x X
into X. The mappingS and T are said to be quasi
compatible if

do (ST(W,Xn), TS(W,Xn)) = 0asn— o, a € (0,1 ,we Q

whenevekw, x,} be a sequence i? x X such that
lim S(w,xp) = lim T (W, X,) = p for somep € X.
n—oo n—o0

2.3 Definition

Let {X,dq: o € (0,1]} be a generating Polish space of
qguasi metric family anéandT be mappings fronf2 x X
into X. The mappingandT are said to be compatible of

type (A) if:
da (TS(W, %n), SSW, %n)) = 0 and
do (ST(W,%n), TT (W, Xy)) =0

whenevekw, x,} be a sequence i? x X such that
lim S(w,xp) = lim T (W, X,) = p for somep € X.
n—oo n—oo

2.4 Definition

Let O be the set of all real functioris: RY — Rsuch that:
(F1) : F is continuous in each coordinate variable,

(Rp) : If either F (u,0,u,v) <0 orF (u,0,u+v,v) <O for
all u,v > 0, then there exists a real constant @ < 1such
thatv > u.

2.5 Lemma

Let {X,ds: o € (0,1]} be a generating Polish space of
quasi metric family an&andT be mappings fronf2 x X
into X. Suppose that

lim S(w,xp) = lim T (W, X,) = p for somep € X.
N—co N—co
Then we have the following:
r!mn ST(w,xn) = Tpif T is continuous and
STp=TSpandSp=Tpif T is continuous

2.6 Lemma

Let {X,ds: o € (0,1]} be a generating Polish space of
guasi metric family an@andT be mappings fronf2 x X
into X. If S and T are compatible of type (A) for
a € (0,1] and foru € (0,a].
ThenSTp=TTp=TSp=SSp

Let (X,d)be a complete metric spaae,c [0,1],f : X — X

a mapping such that for each

X,y € X,

1
fg(fx‘fy)tp(t)dtg af(;nax{d(x‘y)‘d(x‘fx),d(y,fy)g[d(x,fy)+d(x‘fx)¢(t)dt

Where ¢ ; R — R is a lebesgue integrable mapping
which is summable, nonnegative and such that, for each
€ >0, 5 @(t)dt > 0. Thenf has a unique common fixed
ze Xsuch that for eack € X, I|m fix=2z

Rhoades(2003), extended th|s result by replacing the
above condition by the following

fo fxfy)¢( ) t< a fmax{d x.y).d(x,fx), d(yfy) ¢( )dt
Ojha et al.(2010) Le{X,d) be a metric space and let
f: X=X, F: X — CB(X)be a single and a multi-valued
map respectively, suppose thiand F are occasionally

weakly commutative (OWC) and satisfy the inequality
x{ ad(fx, fy)d®~L(fx Fx),ad(fx, fy)d"1(fy,Fy), }

/gP(FX-FY) Q(t)dtg /0 ad(fx"Fx)dP’l(fy,Fy),cdp’l(fx,Fy)d(fy,Fx) (p(t)dt

for all x,y in X,wherep > 2 is an integera > 0 and

0 < c< 1thenf andF have uniqgue common fixed point

in X.

[d(x, fy)+d(x,fx)]

3 Results and Discussions

3.1 Theorem

Let {X,ds: o € (0,1]} be a generating Polish space of
quasi metric family andS, Tand Gare mappings from
Q x X — Xare continuous random operator w.r.t. d.
Suppose there is soneec (0, 1)such that fox,y € X and

w € Q, we have the following conditions (3.1.1)
S(X) CG(X) and T(X) CG(X)

(3 1 2)-¢{dn(${wx]T(wy}w.datS:wxw.G(w.y)y.da(G(wx)T(wy)).da(Gth) G(wy))}
L)

(3.1.3) G is continuous

(3.1.4) The pairgS,G}and{T,G} are quasi compatible
onX.

ThenS TandG have common fixed point.

@(t)dt<0vxye X,anda € (0,1]

Proof:
Letxgbe any point oiX
Since S(X) € G(X)andT(X) C G(X) and

SG(X) C GG(X) and TG(X) C GG(X)
So there existg;andx,in X such that
GG(w,X1) = SG(W, Xg)andGG(w, X)) =
In general

TG(w,x1)
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GG (W, X2n+1) = SG(w,xgn)and  Suppose there is songec (0,1)such that fox,y € X and

GG(W,Xan12) = T G(W, Xzn1) we Q,

forn=0,1,2,............. we have the following conditions

Let dn = da ((3(;(\/\/7 Xn) == GG(W, Xn+l))

Also we know 3.3.1)S(X) C G(X) and T(X) C G(X)
da(GG(WXZn) GG(Wxan2)) (0(t) <

f Il( G(W,Xon),GG(WXon 1)) (t) + 3.3.2)(‘0‘1:{du(3WX>-T(wy)>datiwxz-G{wyhda(G(wy)T(Wyz)-dﬂG(wxz-GMy‘w)q]mm <0vxyeX.anda € (0.1)
dy (GG(WXan+1),GG(WXon+2)) 3.3.3) G is continuous

t)dtv a 0,1]and
uoe (0,a]. o) < (0,4] 3 3.4) The pairgS,G}land{T,G} are quasi compatible on

SuppoSen, Xon 1 satisfy ((3.1.2), thei a € (0,1)

,-uw{da\SGsznv T G(WXon1)).da (SGWXon) GG(WXon 1) ).da (GG(WXon ). T G(WiXan . 1)).da (GG(Wxzn ). GG(WXon 1)) } P(t)dt <0

ThenS, TandG have common fixed point.
Proof:
Letxobe any point oX
Since S(X) € G(X)andT(X) € G(X) and
SG(X) CGG(X) and TGX) C GG(X)
So there existg;andx,in X such that
GG (w,x1) = SG(W,X0)andGG(w,x2) = TG(W, Xq)
In general
G w, x2n+1 = SG(w, xzn)and

d, GG(w.x; ). da ( GG(WXzn+1)).d GG( )) .o (! GG(WXon
X 1) Xon+2)). 1) 1), ) 2)) m(pm dt<0

GG 2.0/, GG 1)+, Xon2))].d
( 1).GG(Wxzn2)).0, ), 1).GG(Woxzn 2)) }()d\<0

Thus from def|n|t|on of implicit relation 2.4, we have
f0¢{da(GG(WX2n+l) ,GG(Wxan+2)) } p(t)dt < fh{du (GG(W.x2n),GG(WXon-1)) }w(t)

J™ e)dt < Jo* g(t)dt

o etdt < 57 g(t)dt

Similarly [&0 p(t)dt < /1%t g(t)dt

Thus {dan}be monotone decreasing and hence converg

to zero G(W,Xen+2) = T G(W,X2n 1)
i : for n =0,1,2,.cccccee.
Therefore {GG(w,xzy)}is a Cauchy sequence and
converge td3p and hence to poirX. ,I&(Iasfodr\}vz E‘r”]c()GG(W’ *n) = GG (W Xn+1))

Since {SG(w, x2n) }and {T G(w, x2n) }are subsequence of 42 (GGWxan).GG(Woxn:2))

t)dt <
{GG(w,xzn) }and so converge to same point p. Now by /0 o =
lemma 2.5 Wegbtaln j(;j u(GG(WXzn). (jG wxen1)) )(l))(t) +
SGp: GSpan Sp: Gp -0y (GG(Wxon 1), GG(W,Xon .2 t)dty 0.1 d
Similarly TGp=GTpandGp=Tp IJJE (0,q] odty a < (01jan
HenceSp=Gp=Tp. SUPPOSEXGn, Xon 1 Satisfy (3.1.2), thei a € (0,1]
A|SOSp= p:Gp:TpaSGp: p pp 2N, A2n+1 y reb ’ )

Hence P is common fixed point GITandG . [P (S0 TGl 1)) (S G )) (GG TG .1)) o (GG(ren) SCWen-1)} it it < 0

This completes the proof.

‘cv(dakGG(W-sz],\-GGAW»infz))-da(GG{W-sz])-GG\'W»infj)).da(GG{szn)GG(W-szz,\) da (GG(WXzn), GG(Wxzn+1)) t)dt <0
o ot)dt <

w{u (GG(Wxn1).GG(WXon2)).0. dyu (GG(WXon) GG(WXan 1))+ T (GG(Wxan 1) GO(WXan 2)| dar (GG(Wxzn) GG(Woxn 1)) P)dt<0

3.2 Theorem

) ) Thus from definition of implicit relation 2.4, we have
Let {X,ds:a € (0,1]} be a generating Polish space of
quasi metric family andS Tand G be mappings from

QO xX— Xsatisfyir.]g N jéo{da(GG(V\LXZn+1)1GG(WX2n+2 N} pt)dt < [h{du(GG WiXon), GG(WXn41)) }(p(t)dt
we have the following conditions (22n+1 pt)dt < jhdZn p(t)dt
4.2.1)S(X) C G(X) and T(X) C G(X) 24 (t)dt < 2" p(t)dt

Slmllarly S8 g(t)dt < 7L g(t)dit

3'2>2)"0w{da[iwx\1(wyi)da\’S\wx\ (504). o (G(). () a G SO} 1)t < Ox,y € X, and a € (0,1]

3.2.3) G is continuous Thus{d.n}be monotone decreasing and hence converge to
3.2.4) The pairgS,G}and{T,G} are quasi compatible of zero.

type(A). Therefore {GG(w,x,)}is a Cauchy sequence and
ThenS TandG have common fixed point. converge td5p and hence to poirX.

Since {SG(w, X2n) }and {T G(w, xon) }are subsequence of
Proof: Similar to the proof of the theorem 4.1 by using {GG(w,xz,)}and so converge to same point p. Now by
lemma 2.6. lemma 2.5 we obtain

SGp=GSpandSp=Gp

Similarly TGp=GT pandGp=Tp
3.3 Corollary HenceSp=Gp=Tp.

Also Sp=p=Gp=TpasGp=p.
Let {X,ds : 0 € (0,1]} be a generating Polish space of Hence p is common fixed point & TandG .
quasi metric family andS Tand Gare mappings from This completes the proof.
Q x X — Xare continuous random operator w.r.t. d.
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3.4 Corollary [10] Shahzad, N. and Latif, S.(1999), Random fixed points for
several classes of 1-ball -contractive and 1-set-corveact

Let {X,dq: @ € (0,1]} be a generating Polish space of __random maps, J.Math.Anal. Ap#37,83-92. .
quasi metric family andS Tand Gare mappings from [11] Tan, K.K. and Yuan, X._Z.(1997), Random fixed point
Q x X — Xare continuous random operator w.rt. d.  theorems and approximation,Stoch. Anal. Api., 103—

Suppose there is sonee< (0, 1)such that foix X and 123.
Wep% €1 Y e [12] Xu, H.K.(1990), Some random fixed point theorems for

. . condensing and nonexpansive operators, Proc. Amer. Math.
we have the following conditions Soc. 110 - 395-400
[13] Smriti Mehta and Vanita Ben Dhagat(2010), “Some Fixed
Point Theorem in Polish Spaces”, Applied Mathematical
, ; - ; Sciences, Vol. 4, no. 28, 1395 — 1403.
B.3.2) gt Tyl Sy seSben T o G 69 g < 0wy x.anda € 03 [14] Deo Brat Ojha, Manish Kumar Mishra and Udayana
3.3.3) G is continuous Katoch,(2010), “A Common Fixed Point Theorem
e - . . Satisfying Integral Type for Occasionally Weakly
t3'3'4')AThe pairdS G}and{T, G} are quasi compatible of Compatible Maps”, Research Journal of Applied Sciences,
ype(A). ) . Engineering and Technology2%): 239-244.
ThenS TandG have common fixed point. [15] Rhoades(2003), B.E.,Two fixed point theorem for magpin
o ) satisfying a general contractiv condition of integral tyjve.
Proof : Similar to the proof of the corollary 4.3 by using J. Math. Sci., 3, 4007-4013.
lemma 2.6.

3.3.1)S(X) € G(X) and T(X) C G(X)
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4 Conclusion

We establish fixed point result in generating Polish space
(random space which is more general than the other
spaces) with Implicit Relations Satisfying Integral Type
Inequality.
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