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Abstract: The current classification algorithms have weak fault-tolerance. In order to solve the problem, a multiple support vector
machines method, called Upper preferred Multiple Directed Acyclic Graph Support Vector Machines (UMDAG-SVMs), is proposed.
Firstly, we present least squares projection twin support vector machine (LSPTSVM) with confidence-degree for generating binary
classifiers. It uses the idea that “when the confidence-degree outputted from the node in the directed graph, is below the threshold,
the decision-making process will go on along with the two branches of the node at the same time.”, which strengthens the algorithm’s
fault-tolerance. In order to select the parameters of the algorithm, we use genetic algorithm to select these parameters. Secondly,
according to the minimal hypersphere distance, and the known principle “the upper-level classifiers bring up better performance of
classification in DAG-SVMs ”, we present a new classification algorithm, called UMDAG-SVMs. This algorithm has two advantages
of strong fault-tolerance and high classification accuracy. Finally, we make the experiments to test the performance of the algorithm.
Experimental results in public datasets show that our UMDAG-SVMs has comparable classification accuracy to that other algorithms
but with remarkable less computation.
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1. Introduction

Directed acyclic graph support vector machines (short as
DAG-SVMs) is derived from the Platt’s proposed decision-
oriented DAG, and is designed to deal with the false and
refusing classification problems caused by “one-versus-
one” in SVMs [1]. We have known the error accumulation
will happen in the DAG-SVMs classification process. In
other words, when classification errors occurred at a node,
these errors will continue in its further down-level nodes.
Meanwhile, if classification errors show up in the closer
to the root node, the error accumulation will be more seri-
ous and the classification quality will be worse. In the pa-
per, in order to avoid the upper-level nodes’ leading wrong
classification paths, we put forward least squares projec-
tion twin support vector machi-ne with confidence-degree.
During decision-making process, this classifier can output
classification labels as well as output the decision making
confidence-degree. Having confidence-degree as a basis,
the multiple classification process can go on simultane-
ously along the multiple graph paths when a node’s confi-

dence level which output from a directed acyclic graph is
below a certain threshold. Support vector machine (SVM)
in solving the small samples, nonlinearity, high dimension
and local minimum problems shows many unique advan-
tages, has become the current hot research, and was widely
used in handwriting recognition, face recognition, speech
recognition areas [2–5]. However, the current multi-class
support vector machine algorithms have weak fault toler-
ance, which will obviously influence the support vector
machine classification accuracy. Other algorithms such as
nearest neighbor classification method [6], bayesian clas-
sification based SVM [7], latent SVM [8] were not well ap-
plied to classification with fault-tolerance. In order to solve
the problem of weak fault tolerance, we present strong
fault tolerance classification method – the upper preferred
directed acyclic graph support vector machines.
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2. Least squares recursive projection twin
support vector machine with the
confidence-degree

2.1. Brief introduction of LSPTSVM

The objective function and the constraint condition of the
least squares recursive projection twin support vector ma-
chine [9] are as follows
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where c1 > 0,c2 > 0,c3 > 0,c4 > 0 are the parameters.

There are extra two modifications. The first one is that
in the objective functions of Eq.(1),the regularization terms
c3
2 ∥w1∥2 and c4

2 ∥w2∥2 are introduced. It leads to be more
theoretically sound than classical SVM [10] and twin sup-
port vector machine [11]. The second one is that the loss
function in Eq.(1) is the square of 2-norm of slack vari-
ables ξ and η instead of 1-norm of ξ and η . It allows us
to solve the dual quadratic programming problems (QPPs)
by solving a simultaneous system of linear equations.

According to Eq.(1), the solving of the optimal projec-
tion axes w1 and w2 are given by
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where I is an identity matrix of appropriate dimensions.
After the optimal projection axes are obtained accord-

ing to Eq.(2), the training stage of LSPTSVM is com-
pleted. For testing, the label of a new coming data point x is
determined depending on the distance between the projec-
tion of x and the projected class mean which is expressed
as

label(x) = arg min
i=1,2

|wT
i x−wT

i
1
mi

mi

∑
j=1

x(i)j |.

2.2. Parameter Selection Algorithm of
LSPTSVM

LSPTSVM needs four parameters c1 c4, whose values re-
flect the classification performance. These parameters gen-
erally range from 2−8 to 28 based on practical cases that
even if the parameters take discrete values, the enumera-
tion method is difficult to find the solution in the accept-
able time. So enumeration method is not suit for the
LSPTSVM parameter selection problem.

Genetic algorithm provides a common framework to
solve the complex system optimization problem. Genetic
algorithm learns from biological natural selection and nat-
ural genetic mechanism, and it is a highly parallel, ran-
domized, adaptive search method. Genetic algorithm works
with the individuals in the generation, operating with three
basic operations-selection, cross and variation-combining
with the fitness function. The scale of the LSPTSVM pa-
rameter selection problem is too large to calculate the op-
timal solution using enumeration method, so that we pay
attention to find the acceptable solution. Genetic algorithm
is one of the better methods to find these kinds of accept-
able solutions.

Algorithm 1. Parameter selection algorithm of
LSPTSVM based on genetic algorithm.

Step 1. Discretization. Let the LSPTSVM parameter
selection range in the set Φ = {2−8,2−7, . . . ,27,28}.

Step 2. Parameter initialization. Initialize the popula-
tion number N, the generation number gen, the cross prob-
ability cross p, the metamorphosis probability mutate p,
and set the current generation gen now = 1.

Step 3. Population initialization. Pick four values from
Φ for each individual as its four chromosome that we get
the initial population (v1,v2, . . . ,vN).

Step 4. Calculate fitness degree. Run LSPTSVM using
the parameters stand for each individual on the same data
set and calculate the classification accuracy acci. Then cal-
culate fitness degree adapti for each individual by

adapti = acci/
N

∑
j=1

acc j.

Step 5. Selection. Firstly, select the “elite individual”
which has the highest fitness degree and let it be into the
next generation. Then use the roulette selection method to
select the other individuals: break the interval [0,1] into
pieces and assign them to each individual vi, where the
size of each piece is proportional to the fitness degree of
the corresponding individual. And then, generate a random
number ranging in [0,1]. If this number locates in the small
interval assigned to vi, vi is selected into the next genera-
tion. Repeat the above process N −1 times to get the new
generation (v

′
1,v

′
2, . . . ,v

′
N).

Step 6. Cross. Divide the samples into groups and each
group contains 2 samples. For each group, generate a ran-
dom number ranging in [0,1]. If r < cross p, do the cross
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operation: generate a random number r
′

for each chromo-
some. If r

′
< cross p, exchange this chromosome into the

sample.
Step7. Metamorphosis. For each chromosome in each

individual, generate a random number r ranging in [0,1]. If
r < mutate p, replace the chromosome by picking a value
in Φ randomly.

Step 8. If gen now < gen, turn to step4.
Step 9. Output the optimal samples, and then end the

algorithm.

2.3. LSPTSVM with confidence-degree

In the decision-making process, the distance d1 of every
new data point x projecting onto the center of positive class
is as follow

d1 = |wT
1 x−wT

1
1

m1

m1

∑
j=1

x(1)j |,

where m1 is the number of positive sample, and x(1)j is the
jth point of positive sample. Therefore, we can get that
the distance d2 of every projected new data point x to the
projected center of negative class is as follow

d2 = |wT
2 x−wT

2
1
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∑
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x(2)j |.

Definition 1. The confidence-degree of LSPTSVM.
The confidence-degree of LSPTSVM refers to the pos-

itive degree of the results on decision-making in the train-
ing stage. Its expression is as follow

σ =
max{d1,d2}

d1 +d2
. (3)

From Eq.(3), we can see that the confidence-degree is
high when the projected data x is close to the projected
center of one class and far from the projected center of
another class (the maximum is 1).

3. The upper preferred multiple directed
acyclic graph support vector machines

In order to state the upper preferred multiple directed acyclic
graph support vector machine, firstly we give several defi-
nitions.

Definition 2.Inaccessible nodes, trusted nodes and trust-
less nodes.

In the DAG-SVMs classification process, inaccessible
node is the node which is not involved in the directed graph
classification. Trusted node is the node which confidence
value is no less than the threshold of the classifier. Trust-
less node is the node which confidence value is less than
the threshold of classifier node.

Definition 3. Feasible path.
Feasible path is the path starting from the root node in

the diagram, to leaf node as the end point without includ-
ing inaccessible node in the DAG-SVMs.

Definition 4. Trusted leaf node.
Trusted leaf node is the leaf node in the directed graph

of DAG-SVMs, which can be reached starting from the
root node along a feasible path. Notice that the trusted leaf
node is the decision-making results, not the classifier.

Definition 5. Total degree of confidence.
For a trusted leaf node, total degree of confidence is the

product of the confidence degree of total nodes including
trusted nodes and trustless nodes in a path ending in the
trusted leaf nodes. When a number of feasible paths end in
the same trusted leaf node, the total degree of confidence
is the maximum feasible path confidence value.

Multiple DAG-SVMs is short as MDAG-SVMs. Its
decision-making process starts from the root, when faced
with a trusted node, decision-making process is along the
high confidence branch of the node; When faced with trust-
less nodes, decision-making process goes along the two
branches of the node, until it reaches the leaf node of the
directed graph, each feasible path produces a trusted leaf
node (maybe repeat). If there is only one trusted leaf node,
the classification label of the leaf node value is the classi-
fication result. If there is more than one trusted leaf node,
calculate the total degree of confidence of trusted leaf node
respectively, the classification label of the leaf node, which
has the highest total degree of confidence, is the classifica-
tion result.

3.1. The upper preferred multiple directed
acyclic graph support vector machine

In the Multiple DAG-SVMs (short as MDAG-SVMs), clas-
sification error occurred in the closer place to the root node,
the easier it will eventually sample normalized to the wrong
category. At the same time, the closer to the low degree of
confidence of the classification of the root node, the more
branch path through the nodes are, and the longer the de-
cision time is. Therefore, in the formation process of the
directed acyclic graph, we should let the classification per-
formance of a good classifier in the upper nodes of a di-
rected acyclic graph, improve classification accuracy, and
reduce the decision-making time.

Definition 6. Class-contained minimal hypersphere.
The minimal hypersphere which can contain all the

data belonging to the same classification is called class-
contained minimal hypersphere.

Assume that the class S has n samples x1,x2, . . . ,xn, the
minimal radius of the hypersphere containing the class of
these samples is as follows

R = max
xi∈S

{∥x− xi∥}, (4)

where x = 1
n ∑n

i=1 xi is the center of such a sample set, ∥∥
is the Euclidean distance operator.
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Definition 7. Minimal hypersphere distance.
Suppose there are two classifications of S1 and S2, the

centers of the class-contained the minimal hypersphere are
O1 and O2 respectively, and the intersection points of these
two class-contained minimal hypersphere and the segment
O1O2 are P1 and P2. The minimal hypersphere distance of
S1 and S2 is the Euclidean distance of vertex P1 and P2.
The expression is as follows

D = ∥O1O2∥−R1 −R2, (5)

where ∥∥ is Euclidean distance computing, R1 and R2 are
class-contained the minimal hypersphere radius of S1 and
S2 respectively.

The deployment strategy of two classifiers in the up-
per preferred multiple DAG-SVMs(Up-preferred Multiple
DAG-SVMs, short as UMDAG-SVMs) is as follows: (1)
calculate the various types of centers and the radius of
the class-contained minimal hypersphere; (2) calculate the
minimal hypersphere distance between each classification
and other classifications; (3)calculate the average value of
the minimal hypersphere distance for each classification
and other classifications, compare the average value, and
select the bigger value to generate the upper classifier of a
directed acyclic graph.

Here we give the complete UMDAG-SVMs training
algorithm and decision-making algorithm.

Algorithm 2. Training algorithm of
UMDAG-SVMs.

Step 1. According to Eq.(4), calculate the radius of all
the class-contained minimal hypersphere Ri.

Step 2. According to Eq.(5), calculate the minimal hy-
persphere distance between each classification and other
classifications and generate the distance matrix Di j.

Step 3. Calculate mean value of each line of the matrix
Di j and generate the matrix Di.

Step 4. Compare the average value of minimal hyper-
sphere distance of each classification, and order the corre-
sponding classification by the above average values, get all
the classifications n1,n2, . . . ,nk, where nm ∈ {1,2, . . . ,k},
m = 1,2, . . . ,k is the classification label. Here, the order of
classifications n1,n2, . . . ,nk is as follows.

n1 n2 . . . nk−1 nk
| | | |
I III . . . IV II

Here I means the classification n1 has the largest av-
erage value of minimal hypersphere distance. II means
the classification nk has the second largest average value
of minimal hypersphere distance. III means the classifi-
cation nk has the third largest average value of minimal
hypersphere distance. IV means the classification nk has
the third largest average value of minimal hypersphere dis-
tance.

Step 5. LSPTSVM training algorithm of Binary clas-
sification is used to generate the optimal projection axis

of each internal node for decision-making oriented cyclic
graph. In the root node, the classification n1 is selected
to the positive sample set, and the classification nk is se-
lected to the negative sample set, LSPTSVM training al-
gorithm generates the optimal projection axis. In the nodes
in the second layer, select classification n1 and classifica-
tion nk−1, classification n2 and classification nk as positive
samples and negative samples respectively from the sam-
ple set. LSPTSVM training algorithm is used to generate
the optimal projection axis. Turn down, and finally the re-
sults are as shown in Figure 1.

Figure 1 UMDAG-SVMs classification model

Algorithm 3. Recursive decision algorithm of
UMDAG-SVMs. Step 1. Initialization. Initialization sam-
ple of the total number of categories class len, Thresh-
old θ , The current classifier line number is rol = 1, col-
umn number is col = 1, the total degree of confidence is
con = 1.

Step 2. Start recursion. Go to step 3 , and if get the fi-
nal classification results label and confidence con f idence,
then turn to step 5.

Step 3. Use the classifier of line number rol and col-
umn number col to classify unlabeled samples x, get the
classifier label not label (in this classification given sam-
ple does not belong to a classification) and confidence-
degree c, if the current classification is the leaves in the hi-
erarchical classifiers, that is rol = class len−1, according
to the judgment not label, the current sample label label
is decided, at the same time , set con f idence = con× c,
return to step 2. Otherwise, go to step 4.

Step 4. If the confidence level c is greater than the
threshold θ , the classifier of the next level should be cho-
sen according to not label. If the classifier in the right
branch is selected, rol = rol +1, col = col +1, and con =
con×c, otherwise, rol = rol+1, col = col+1, and con =
con× c, go to step 3. If the confidence level c is less than
or equal to the threshold θ , unlabeled samples should be

c⃝ 2013 NSP
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classified along the two branches recursively, In the left
branch, con= con×c, and in the right branch, con= con×
(1− c), recursively run step 3 respectively, until get the
classification results label1, con f idence1 and label2,
con f idence2 respectively, return to the classification labels
of samples corresponding to the greater confidence-degree
value.

Step 5. End.

4. Experimental results

4.1. LSPTSVM parameters selection based on
genetic algorithms

In this experiment, the values of all parameters of genetic
algorithms are as follows: population size N = 20, gener-
ations gen = 20, crossover probability cross p = 0.6, and
mutation probability mutate p = 0.1. For fear of the par-
tial results, we use the 10-folds to calculate accuracy and
ten independent runs are performed to obtain the mean ac-
curacy. Figure 2 shows the relationship between the gener-
ations and the accuracy in the process of selecting the 4 pa-
rameters of LSPTSVM by genetic algorithms on complex
Xor dataset. The results are c1 = 0.25,c2 = 0.0039,c3 =
0.125,c4−0.25,accuracy= 98.94%, the runtime is 42 sec-
onds. This experiment shows that, on one hand, genetic
algorithms can find the parameters which close to the opti-
mal solution in a more acceptable time on the comparison
with the enumeration algorithms, on the other hand, the
results and the runtime of this algorithm are related to the
population size and generations, so this algorithm has con-
trollability to a certain degree.

Figure 2 The relationship between generations and accuracy in
the genetic algorithm on complex Xor dataset

4.2. LSPTSVM with confidence-degree

According to Eq.(3), the confidence-degree provided by
the classifier will be the lowest on the condition that the
distance between the projection of one sample point and
the projected class mean d1 = d2. Therefore, the distribu-
tion of the point with minimum confidence-degree is ex-
pressed as

|wT
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∑
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2
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Eq. (6) is also expressed as
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In order to simplify the formulas above, we give the
following definition

{
C1 = wT
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1
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2

1
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According to Eq.(8), Eq.(7) can be simplified as

(wT
1 −wT

2 )x =C1or(wT
1 +wT

2 )x =C2. (9)

From Eq.(9), we can see that the distribution of the
sample point with minimum confidence-degree, actually,
is two hyperplanes S1 and S2 which are related to the pro-
jection axis W1,W2 and the center of the two classifica-
tions, which is illustrated in Figure 3 and Figure 4.

Figure 3 The feature of the confidence-degree on crossplane
dataset
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Figure 4 The feature of the confidence-degree on complex Xor
dataset

Figure 3 and Figure 4 show that when the sample is
closer to hyperplanes S1 and S2, it will be harder to classify
and its confidence-degree will be lower. So, intuitively, the
solution of confidence-degree given by Eq.(3) is reason-
able.

4.3. Comparison among multi-classification
algorithms

We further experimented with 4 UCI benchmark datasets
and report the results of the four algorithms on the se-
lected datasets in Table 4.1. All the classification algo-
rithms are implemented in Matlab 7.11.0 environment on
a PC with 1.86GHZ processor with 2GB RAM. In order
to avoid the partial results, we employ standard 10-fold
cross-validation technique.

Table 1 Comparison between four multi-classification algo-
rithms on 4 UCI benchmark datasets

Datasets Iris Glass Segmentation Letter
(instances×attributes) (150×5)(214×11) (2100×20) (1160×17)

(categories) (3) (6) (7) (15)
Accuracy(%) 98 87.73 94.15 83.89

DAG-SVMs Training time(s) 0.0224 0.0677 0.571 0.5507
Decision time(s) 0.0116 0.0334 0.228 0.2057

Accuracy (%) 98 89.35 97.27 89.06
MDAG-SVMs Training time(s) 0.0233 0.1102 0.6459 2.7705

Decision time(s) 0.0156 0.0312 0.2094 0.2475
Suspect nodes 0 0.3 2.1 37.2
Accuracy (%) 98 89.35 96.98 89.91

UMDAG-SVMs Training time(s) 0.039 0.1796 0.8774 3.3270
Decision time(s) 0.012 0.0265 0.1541 0.1597
Suspect nodes 0 0 1.3 25.8

UMDAG-SVMs Accuracy (%) 98 91.97 97.73 92.38
with Noise reduction time(s) 0.0796 0.2459 2.8233 7.133

noise reduction Training time(s) 0.0365 0.1694 0.7056 2.846
Decision time(s) 0.0111 0.0233 0.1051 0.1146

We can infer from the comparison between DAG-SVMs
and MDAG-SVMs that,

(1) In the course of decision, the MDAG-SVMs gener-
ates a little of suspect nodes when the categories of sam-
ples are small. Under this circumstance, the decision pro-
cess of DAG-SVMs and MDAG-SVMs are similar. (2) The
MDAG-SVMs generates a lot of suspect nodes if there are
large numbers of categories of samples, contrarily. In such
a case, accuracy the MDAG-SVMs achieves is higher than
which the DAG-SVMs obtains, but the decision time of the
MDAG-SVMs is longer than that of DAG-SVMs.

The comparison between MDAG-SVMs and UMDAG-
SVMs shows that: The UMDAG-SVMs, putting the clas-
sifiers which have better performance to upper layer of
multi-classifier, reduces the quantity of suspect nodes in
the course of decision. From Table 1, we can see that
UMDAG-SVMs decreases the decision time effectively on
the condition that its accuracy is comparable to the accu-
racy of MDAG-SVMs.

The comparison between UMDAG-SVMs and UMDAG-
SVMs with noise reduction indicates that: UMDAG-SVMs
with noise reduction can further increase the accuracy, but
its training time is longer due to the distance matrixes of
every sample in the same class which needs to be solved
in the course of decision.

5. Conclusions

In order to solve that the current classification algorithms
have weak fault-tolerance, we propose the UMDAG-SVMs.
For binary classification, we present LSPTSVM with
confidence-degree. In the algorithm, when the confidence-
degree outputted from the node in the directed graph is
below the given threshold, the decision-making process
will go on along with the two branches of the node at
the same time, which strengthens the algorithm’s fault-
tolerance. We use genetic algorithm to select these param-
eters of the algorithm. Next, according to the minimal hy-
persphere distance, we present a new classification algo-
rithm called UMDAG-SVMs. This algorithm has two ad-
vantages of strong fault-tolerance and high classification
accuracy. Finally, Experimental results in publicly avail-
able datasets indicate that our UMDAG-SVMs has com-
parable classification accuracy to that other algorithms.
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