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Abstract: Inthispaper we study A-statistical summability of conjugate Fourier series, derived Fourier series and Walsh-Fourier series.
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1. Introduction

Let K = {k;} beanindex set and let ¢’ bethe character-
istic sequence of K, i.e. o = (1) with

x |1, for je K,
¥i T )0, otherwise.

If p¥ is C;-summable then the limit
lim Z gp]K
j=1

is caled the asymptotic density of K and is denoted by
0(K). A sequence x = (xy) of real numbers is said to
be statistically convergent to L if §(K.) = 0 for every
e > 0,where K, := {k € N : |z — L| > ¢} (cf. [4],
[7]). Inthis case L is called the st-limit of x.

Let cand!,, denotetheset of al convergent and bounded
sequences, respectively. Let X and Y be two sequence
spacesand A = (ank)?ﬁk:l be an infinite matrix of real
or complex numbers. We write Az = (A, (x)) provided
Ap(x) = >, anray converges for each n. A sequence
x = (z}) issaid to be A-summableto L if lim,, A,,(z) =
L.If z = (x) € X impliesthat Az € Y, then we say
that A defines amatrix transformation from X into Y and
by (X,Y") we denote the class of such matrices. If X and
Y are equipped with the limits X -lim and Y -lim, respec-
tively, A € (X,Y) and Y-lim,, A,,(z) = X-limy x}, for

al z € X, then we say that A isaregular map from X into
Y and in this casewewrite A € (X,Y),¢,. The matrices
A € (c,¢)req arecaled regular.

For a non-negative regular matrix A = (ang)
following Freedman and Sember [6], an index set
{k;} issaid to have A-density

oo
n,k=1>
K =

SA(K) =lim A, o
if ApX € c. Thus

0A(K) = li7rln Z Ank = liTanZanyki.

keK %

A sequence x issaid to be A-statistically convergent
to L if 64(K) = 0 for every e > 0. In this case we write
sta-limz = L, and zy, LZN ) By the symbol st4 we
denote the set of all A-statistically convergent sequences.
Notethat ¢ C st 4.

Thefollowing characterizationisdueto Kolk [9, Corol-
lary 4] which will be needed in our results.

LemmallB = (bnk)fjk:l € (¢, staNlso)req if and only
if
)] B ||= >4 | bk |< o0, and there exists N = {n;}

sothat04(N) =1and
(i)lim; by, = 0 (K € N), i.e. sta-lim b, = 0 for each

)
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(ili)lim; Y ) bp,ie = 1, 1.6 st4-lim ), bps = 1.

Zygmund proved some theorems on the statistical con-
vergence of Fourier seriesin the first edition of his book
([12], pp 181-188 ). Recently, A-statistical convergence
have been used for some approximating operators in [1],
[3] and [8]; and for Fourier integrals[10]. In this paper, we
prove some results on statistical summability of conjugate
Fourier series, derived Fourier series and Walsh-Fourier
series.

2. Preliminaries

2.1.Let f be L-integrable and periodic with period 27, and
let the Fourier seriesof f be

1 o0
w +Z ay, cos kx + by sinkx) . (2.1)
k=1
Then the series conjugate to it is
Z (b cos kx — ay sin kx) , (2.2)

>
Il
—

with partial sum S,, (z); and the derived seriesis

NE

k (by cos kx — ay, sin kx) , (2.3)
k=1
with partial sum .S/, (x). We write
1/’1(0 - T/)(f, t)

(et 0

™ X0
R T

where g(z) = f(x +0) — f(z —0).

We shall need the following lemma which is statisti-
cal version of the Banach Weak Convergence Theorem

[2].

Lemma 21st g-limy, oo [ gndh, = 0 for all b, €
BV[0,n], ifand only if || g, ||< oo for all n and st 4-
lim,, o g, = 0 ; where BV[0, 7| denotes the set of
all functions of bounded variations on [0, 7].

Parallel version also holdsif [0, 7] isreplaced by [0, 1].
2.2.L et us define a sequence of functions

ho(x), b1 (), ...... y o (20)

which satisfy the following conditions:

1
ho(x):{l , for 0 <2<

-1, for—<a:<1 (2.6)

ho(l’ + ].) = ho(CC) and h, ( ) = h0(2 .’L), n =

1,2, ..... Thefunctions h, (x) arecalled the Rademacher’s

functions.
The Walsh functions are defined by ¢¢(z) =
On () = hpy (@) gy (2)..n b, (z), 0 <z <1,
(2.7)
form = 2™ 4 2m2 4 ...2""; wherethe integersn, are
uniquely determined by n; 1 < n;.

Let f be L-integrable and periodic with period 1, and
let the Walsh-Fourier series of f be

> enn(x) (2.8)
where .
%:AfM%wm (2.9)

are called the Walsh-Fourier coefficients of f.

Let usrecall some basic properties of Walsh functions
(see [4]).

For each fixedx € [0, 1) andforallt e [0,1)

(ii) fol flatt)dt = fo dt and
(|||)fO ) (z+t)dt = fo flatt)d,(t)dt

where + denotes the operation in the dyadic group,
the set of all sequences s = (s,),s, = 0,1 forn =
1,2, ....., isaddition modulo 2 in each coordinate.
Letforz € [0,1),

z) = /OI be()dt, E=0,1,2, . (2.10)

Itiseasy to seethat Jj(z) = 0 for x = 0, 1.

3. Main results

We prove the following theorems:

Theorem 31Let B = (bnk);‘jk:l € (¢, staNlso)req- ThenN
for every © € [—m, x| for which 3, (t) € BV[0, «],

B2 (0+) (3.1.1)

sta-lim Z binn S (7) =

m

if and only if

(o]
. . 1
stA-hT{ln Eﬁ by sin(n + §)t =0forallt e [0,n].

(3.1.2)
Theorem 32Let B € (¢, sta Nlxo)req- Then for every x €
[—m, 7] for which 3, (t) € BV[0, 7],

> ~ 1
st a- 117131 Z nbmnsn(x) = ;g(l‘)

n=1

(3.2.1)
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if and only if

st 4-1lim Z by cosnt = 0 forall ¢ € [0, 7.

n=1

(3.2.2)

Theorem 33Let B € (¢, stANloo)reg- L€t 21 () = crpr ()
for an L-integrable function f € BV'[0,1). Then for every
z€0,1)

sta-lim  byrzr(z) =0 (3.3.1)
" k=1
if and only if
St a- limanka(a:) =0 (3.3.2)

where z is a point at which f(z) is of bounded variation.

4. Proofs

Proof(Proof of Theorem 3.1. ). We have

17 -
Sl(x) == [ (1) ( k sin kt) dt

B sin(n + 1)t
___/ Va(t dt( 251115 )dt7

=1, + = /bm(n+ )t dBy(t), (3.1.3)
0
where
1T t (sin(n+ 3)t
*w/o Ba(t)c 2(7@1% >dt. (3.1.4)
Then
> bnSi@) = Y bl + 2 [ Ln(t) dsi)
n=1 n=1 0
(3.1.5)
where
Lin(t) =Y by sin(n + %)t. (3.1.6)

n=1

Since 3, (t) is of bounded variation on [0, 7] and 3, (t) —
B.(0+) ast — 0, B,(t) cos £ has also the same property.
Hence by Jordan’s convergence criterion for Fourier series
I, — 5.(0+) asn — oc.

Since B € (¢, st ANl )req, Dy the conditions of Lemma
1.1, we get

n=1

(3.1.7)

Now, it is enough to show that (3.1.2) holdsif and only if

st 4- hm/

Hence, by Lemma 2.1, it follows that (2.1.8) holds if and
only if

£) B, (t) = (3.1.8)

Il L, (t) ||< M foral mandforal¢e[0,7], (3.1.9)

and (3.1.2) holds. Since (3.1.9) issatisfied by Lemma 1.1(3),
it follows that (3.1.8) holds if and only if (3.1.2) holds.
Hence the result follows immediately.

Proof(Proof of Theorem 3.2). We have
We have

S, (x) = % /O ’ Y, (t) sinnt dt,

:M i/ cos nt di,(t).
nmw nw Jo
Therefore
oo N IE) oo 1 ™
n; (z) ; =) (t) da(2)
(3.2.3)
where

K,(t) = Z Dynn cOS 1AL
n=1

Now, taking st 4-lim on both sides of (3.2.3) and using
Lemmas 1.1 and 2.1 as in the proof of Theorem 3.1, we
get the required result.

Proof(Proof of Theorem 3.3). We have

/f¢k¢)k)

= / F) ¢ (xFt)dt = / fa+t)gp(t)dt
0 0

where z+t belongs to the set {2 of dyadic rationals in
[0,1), in particular each element of {2 has the form p/2™
for some non-negativeintegersp and n, 0 < p < 2™. Now,
on integration by parts, we obtain

zi(2) = cpdr(z

(@) = [Fat0) T (0]} - / Ji(t)df (z-+1),

0

1
= —/ Ji(t)df (z+t), since Ji(x) = 0 forz = 0, 1.
0

— /1 D, (t) dh,(t)
0

Hence

Z bnkzk (iL’) =
k=1

(3.3.3)
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where .
D, (t) = Z biJr (t)7 (334)
k=1

and h,(t) = f(z+t). Write, forany ¢t € R, g, = (D, (t)).
Since B € (¢, sta Nloo)rey, it follows by Lemma 1.1

that || gy, ||< oo for all n, and g,, = 0. Hence by Lemma

) Da(t) dha(t) 22 0.
Now, taking st 4-lim in (3.3.3) and (3.3.4) and using
Lemma 2.1, we get the desired resullt.

Remark. Theorem 3.3 generalizes the result of Mursaleen
[11] and the following example shows that this theorem is
stronger than that of [11].

Example. Let A bea (C,1) matrix, B = I (identity
matrix). Let us define asequence u = (uy) by

w = I L if k =m?2,m e N;
710, otherwise.

Then u is A-statistically convergent to 0 but not A-
summable. Now write 2, () = (1+uy )z, (x) and Jy, (z) =
(1 + ug)Ji(z), itis easy to see that Theorem 3.3 holds if
we replace z, () by 2 () and J, (z) by Jj(z) but Theo-
rem 3.1 of [11] does not hold.
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