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Abstract: In the standard PSO algorithm, each particle in swarm has the same inertia weight settings and its values decrease from
generation to generation, which can induce the decreasing of population diversity. As a result, it may fall into the local optimum.
Besides, the decreasing of weights values is restricted by the maximum evolutionary generation, which has an influence on the conver-
gence speed and search performance. In order to prevent the algorithm from falling into the local optimum early, reduce the influence
of the maximum evolutional generation to the decline rate of weights, A Self-guided Particle Swarm Optimization Algorithm with
Independent Dynamic Inertia Weights Setting on Each Particle is proposed in the paper. It combines the changes of the evolution speed
of each particle with the status information of current swarm. Its core idea is to set the inertia weight and accelerator learning factor
dynamically and self-guided by considering the deviation between the objective value of each particle and that of the best particle in
swarm and the difference of the objective value of each particle’s best position in the two continuous generations. Our method can ob-
tain a balance between the diversity and convergence speed, preventing the premature as well as improving the speed and accurateness.
Finally,30independent experiments are made to demonstrate the performance of our method compared with the standard PSO algo-
rithm based on 9 standard testing benchmark functions. The results show that convergence accurateness of our method is improved by
30%compared with the standard PSO, and there are 4 functions obtaining the optimal value. And convergence accurateness is improved
by more than 20%for 5 functions at the same evolution generation.
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1. Introduction many researchers have proposed various modifications to
the original PSO, including improved parameters [4, 5, 6],
topology [7, 8] and hybrid algorithms [9, 10, 11]. Initially,
the introduction of the linear inertia weight made a bal-
ance effectively to some extent between the global and lo-
cal search, and formed the standard PSO algorithm. After
that, a variety of inertia weight algorithms [15] were pro-
posed such as random inertia weight algorithm, constric-
tion factor inertia weight algorithm, etc. Those algorithms

Particle swarm optimization (PSO) [1] is a population-
based, self-adaptive search optimization technique, firstly
introduced by Kennedy and Eberhart in 1995. The moti-
vation for the development of this method was based on
the simulation of simplified animal social behaviors such
as fish schooling, bird flocking, etc. PSO algorithm has
been widely used in various fields [2, 3] due to its few pa-

rameters to adjust, easy to understand, easy to implement,
and computationally efficient. Despite of these advantages,
PSO is easy to be trapped into local optima, and the con-
vergence rate decreased considerably in the later period
of evolution processing. To overcome these shortcomings,

have their own advantages and disadvantages.

Compared with other evolutionary algorithms, standard
PSO algorithm exist the following problems. Firstly, al-
though standard PSO algorithm can converge faster, each
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particle becomes more and more similar with the increase-
ment of evolutionary generation, which can’t make the op-
timization sustained but hover near the local optimal solu-
tion. Secondly, it is not proper that each particle uses the
same inertia weight and the linear weights just depend on
maximum generation not related to characteristic of prob-
lems, which may affect the balance between the global and
local search ultimately. Finally, most early developments
in PSO have been proven to be effective in static optimiz-
ing problems [12, 13, 14], which is not common. Based
on the above problems, a Self-guided Particle Swarm Op-
timization with Independent Dynamic Inertia Weights Set-
ting on Each Particle is proposed in the paper (SgDPSO),
which considers the current situation and historical infor-
mation of each particle, and the inertia weight of each par-
ticle is dynamic, self-guided setting to avoid the effective-
ness of maximum generation to inertia weight.

The rest of this paper is organized as follows. In Sec.
2, a brief review of the updating process of the standard
PSO algorithm is given, and some problems about the lin-
ear inertia weight method are analyzed. In Sec. 3, a novel
method is proposed to set the inertia weight and acceler-
ator learning factor of each particle dynamically and self-
guided in accordance with problems in Sec. 2. Sec. 4 de-
scribes the procedure of SgDPSO algorithm. In Sec. 5, ex-
perimental settings for the benchmarks are explained and
the results in comparison with the two algorithms are pre-
sented. Finally, conclusions are made in Sec. 6.

2. Problems of Setting Inertia Weight in
Standard PSO

To improve the convergence performance of particle
swarm optimization, Shi and Eberhart [3] published a pa-
per in IEEE International Conference on Evolutionary Com-
putation in 1998, which introduced the concept of inertia
weight and used the linear inertia weight setting method.
Their work improves the performance of the traditional
PSO effectively, and forms the current standard particle
swarm optimization algorithm.

In the standard PSO algorithm, the trajectory of each
individual in the search space is adjusted according to (1)
and (2) by dynamically altering the velocity of each par-
ticle based on its own flying experience and that of other
particles in the search space.

via(t+1) = wxvig(t) +c1 x rp X (pia(t) —xia(t))
Fc2 X 12 X (pgal(t) — xia(t)) (D

x,-d(t+1):v,~d(t)+v,»d(t+l) 2)

Where x;; and v;; represent the position and the veloc-
ity of the ith particle (i =1,2,--- ,N)in the d-dimension(d =
1,2,---,D) search space,respectively.f is the current gen-
eration, r; and r, are two separately generated uniformly
distributed random numbers in the range [0, 1], ¢; and ¢,

are constants known as acceleration coefficients, p;; is the
best position of the ith particle in the d-dimension search
space, pgq is the fittest particle found so far at genera-
tion ¢,w is the inertia weight, which determines the influ-
ence of the previous particle to the current particle veloc-
ity. Commonly,w is given by (3)

t

3

W= Wnax — (Wmax - Wmin) X - .
ltermax

where wy,,,, and wy,;, are the initial and final values of
the inertia weight, respectively, and iter,,,,is the maximum
number of allowable generations.

In the standard PSO algorithm, the method of setting
w is static effectively, which can’t be adaptive to differ-
ent problems and particles. Firstly, each particle in swarm
has the same inertia weight settings and its value decreases
from generation to generation, which can induce the de-
creasing of population diversity. As a result, it may fall into
the local optimum, resulting in premature convergence.
Secondly, a large w can make the neighborhood of parti-
cle skip the best optimal solution when it is in the vicinity
of the particle during the early part of the search, thereby
reducing search performance of the best optimal solution.
Finally, we can see from (3), it is useful for particle to ex-
plore new search area with a large inertia weight, which
has been few influenced by the best solution of particle and
the best solution of swarm found so far. But, it is not help-
ful to the convergence of global optimal. If w with a small
value, the result is opposite. Therefore, w has a great im-
pact on the exploration and convergence of the algorithm.
The value of w decreases slowly with the large number of
generations while decreases rapidly with the small gener-
ations, and there is no doubt about the effectiveness on the
exploration and convergence of the algorithm. To take into
account the above problems, a method to dynamically set
the inertia weight is introduced based on the history and
current information of each particle.

3. A Method of Setting Inertia Weight
Dynamically Based on Current and
Historical Information

3. 1. Motivation of ”Historical + Current”
Information

Two important messages are usually integrated when
people make a decision, which is known by the Boy and
Recharson [18] on the exploration of human decision-making
process. One is the experience from themselves and their
neighbors, which is called historical information. The other
is the current situation. Inspired by this idea, we use it to
set the inertia weight of each particle to guide them search
in the search space.
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3.2. Method of Setting Inertia Weight Dynamically

Inertia weight plays an important role on the balance
between local optimum and global optimum. The appro-
priate inertia weight settings can improve the performance
of PSO algorithm effectively. To solve the problems found
in Sec. 2, we believe that the appropriate inertia weight
settings should consider the following aspects at the same
time. First, inertia weight settings should vary with the
different problems. Second, inertia weight settings should
vary with the environment changed. Finally, inertia weight
settings should vary with the particle.

Based on the above considerations, a method is intro-
duced that sets the inertia weight and accelerator learn-
ing factor dynamically and self-guided of each particle of
swarm. The particles can be classified into three catalogues
by observing their changing during the evolution: one is
near the optimal solution, one is far from the optimal so-
lution, and other is between the above two. We define that
the particle is more far away from the best solution when
its fitness value is larger than the fitness value of the best
solution, so the increasing of the velocity of particle can
enlarge its search range space. Otherwise, the decreasing
of the velocity of the particle can make it search near the
best solution. The particles between the above two are used
to balance the global search and local search. Second, the
inertia weight of particle should also be concerned with its
history information, in this paper the evolutionary rate of
particle are used to reflect its changing of historical infor-
mation. We define that the velocity of particle should be in-
creased if its evolutionary rate is slow. Otherwise its veloc-
ity is decreased. Based on the comments mentioned above
and lots of experiments, the following setting methods are
used in this paper. The inertia weight of each particle and
evolutionary rate is calculated by (4) and (5), respectively.

1

wit+1)=1- )
V Une @) = O+ (e +1

“)

1
V=1 = f,(t=2))7+ 1

Where w; is the inertia weight of ith particle, f),is the
fitness value of the best solution of ith particle, which re-
flects the history information of ith particle.hv; is the evo-
lutionary rate of ith particle. f; is the fitness value of ith
particle, which reflects the current information, f,,g is the
fitness value of the best solution of swarm found so far.

The next generation inertia weight of each particle is
dynamically decided by the difference between its current
fitness value and the best fitness value of swarm and the
revolution rate. So the inertia weight of each particle can
vary with the generation, and the inertia weight of each
particle is also different at the same generation. The iner-
tia weight of each particle is different for various issues
because different fitness functions are used.

hvi(t) = (5)

3.3. Setting of other Parameters

Similar consideration, we define that the particle is more
far away from the best solution when its fitness value is
larger than the fitness value of the best solution, so increase
the cognitive capacity of the particle. Otherwise, increase
the social capacity of the particle. The particles between
the above two are used to balance the cognitive and the
social component of the particle. Based on the above con-
siderations, according to the literature [16], after a number
of experiments, the acceleration learning factor by (6) and
(7), the velocity by (8) and the position for the next func-
tion evaluation is updated by (9).

1
VU= £:(0)2 +1

2 .
cl; = =7 — arcsin(

) (6)

1 1
2= e arcsin( ) 7

VU ()= £i(1)2 +1

Via(t +1) = wi xvig(t) +cli X (pia(t) — xia(t))
+¢2i X (pg(t) —xia(t)) ®)

xid(t+l):xid(l)+v,~d(t+l) 9)

Where c1; and ¢2; are accelerate learning factor of ith
particle, respectively. The random number r| and r; are re-
moved to reduce excessive random noise for each particle
is set both c¢1; and ¢2;.

4. Procedure of SgDPSO Algorithm

An approach is described in the above section, which is
used to set the inertia weight and accelerator learning fac-
tor of each particle. On the basis of that the SgDPSO algo-
rithm is proposed, and its main procedure can be stated as
follows:

Step1: To generate the initial population. The population
is generated randomly in the search space, population size
is Pyize and the dimension of problem is D.

Step2: To evaluate the population. Here, the objective func-
tion value is considered as fitness.

Step3: To update pj. and pg. If the best solution is found,
the algorithm terminates, or goes to Step4.

Step4: To update inertia weight and acceleration learning
factors of particles. The evolutionary rate of each particle
is calculated by (5), the inertia weight is calculated by (4),
and the acceleration learning factors is calculated by (6)
and (7).

Step5: To update the velocity and position of particles.
The velocity and position of each particle is updated by
(8) and (9), and then go to Step2.
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Table 1 Nine benchmarks used in SgDPSO algorithm in this paper

Range Global Global
Function Names Mathematical representation of optimal optimal
search fmin position
D
Sphere filx) = ¥ a7 [—100,100]? 0 0.0P
i=1
1 2 D D
Griewank 12(%) = 7000 Z — [T cos() +1 [—600,600] 0 0.0
i=1 i=1
D
Rastrigin f3(x) = ¥ (% — 10cos(27x;) + 10) [-5.12,5.12)° 0 0.0?
i=1
D1
Rosenbrock fa(x) = ¥ (100(x; 11 —x7) + (x; — 1)?) [—30,30]” 0 1.0°
i=1
—0.24/5 )l:)'xz Y cos(2mx;)
Ackley f5(x) = —20e e 4204 [—32,32]P 0 0.0
D
Step fo(x) = l):,l([x,‘+0 5])2 [—100, 100]? 0 0.0°
i=
D D
Schwefel(P2.22) fx) =X x|+ Tx [—10,10° 0 0.0?
i=1 =1
1 D ; L b
Quadric e =Y (X x)? [—100,100] 0 0.0P
i=1 j=1
Schwefel(P2.21) fo(x) = max;{|x;|,1 <i< D} [~100, 100]” 0 0.0°
The characteristic of our algorithm is that the inertia s
weight and acceleration learning factors of each particle is
calculated dynamically during the evolution, and the set- O .
ting of inertia weight takes both the current and historical "\\ Pso
information into consideration to avoid the effectiveness sor =g /= RgPSO I
by maximum evolution generation. Compared with the lin- "‘~_._~‘
ear inertia weight method, our method is more proper be- e g i
cause the inertia weight can vary with different problems o R,
and particles. 7 T
-200 . . . ]
0 500 1000 1500 2000
5. Experimental Design and Analysis fl: Sphere
5.1. Experimental Design
2
[
1
To demonstrate the performance of SgDPSO algorithm, Zk"'* |
9 standard testing benchmarks are selected to make a com- '4 B |
parison experiment listed in table I, and the dimension is 6 i. _____ Peo
set to 30. To ensure the fairness of the tests, both testing al- 8 2
gorithms are run based on SZAPSO [17] algorithm. In the ol |
experiment, population size is 15, w € [0,1] . In the stan- ol . |
dard PSO algorithm,c; = ¢; = 1.49445 ry,r, € U(0,1),In i |
the SgDPSO algorithm, ¢ and ¢; are calculated by (6) and 6l i |
(7), and the range is referenced as [16]. Two algorithms run . & ‘ ‘
30 times independently. s 1000 1800 2000

5.2. Experimental Results

Figure 1 shows the average convergence curve of PSO and
SgDPSO separately on 9 standard benchmarks, the results

of average convergence accuracy on 9 standard benchmarks
is listed in Table II.

£2: Griewank

5.3. Analysis and Discussions

The convergence curve of the two test algorithms is
showed in nine standard test functions in Figure 1. From
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5 Figure 1 Comparison among standard PSO and SgDPSO on the
; numerical optimization problems, the vertical axis is the function
value of common logarithm function log; f(x), and the horizon-
3 tal axis is the number of generation. f1, 2, f3, {4, 5, f6, {7, f8
5 and f9 show the optimization result of functions in table I. All are
averaged over 30 independent runs.
1| 4
i
o i
i ] which we can see that SgDPSO algorithm is better than
2 ‘

; ; standard PSO algorithm both in convergence speed and
0 500 t‘(5~1%0tip 1500 2000 convergence accuracy, and prevents the premature conver-
. gence phenomenon effectively. Table II lists the standard

deviation of various functions. Compared with the stan-

dard PSO algorithm, SgDPSO algorithm is more stable.

For the single peak function like f1, f7, {9, the algorithm
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shows a good continuous optimization performance, im-
proves the accuracy of the results obviously, about by 20-
30%. For the multi-peak function like 5,8, the conver-
gence accurateness is improved by more than 20%.For the
multi-peak function like f2,f3, the pathological quadratic
function which is extremely difficult to minimize like f4,
and the discontinuous single-peak function like {6, the al-
gorithm can quickly find their optimum, and avoid the de-
fect of premature convergence.

Our algorithm is able to obtain good results for sev-
eral reasons. Firstly, each particle can use the information
of current generation and historical information to adjust
flight speed, so algorithm allows the particles which is far
away from the optimum in each generation to explore in
the global scope , and particles which is close to the opti-
mum in each generation to search in the vicinity, and the
particles located between the above two particles can bal-
ance the global search and local search, which makes the
new algorithm not easily to miss the optimum found ear-
lier as well as the function not to converge in the local opti-
mum. Secondly, our setting method can change the inertia
weight depending on the problem, just as shown in Figure
2. Take the functions f1 and f3 for example, they are non-
linear symmetrical function and a large number of local
minima of the complex multi-peak function, respectively.
We can see from the Figure 2, the standard PSO algorithm
is exactly the same inertia weight for different functions
which will not vary with different problems, but in the
SgDPSO algorithm, there has different inertia weight in
different problems. To take the function f1 for example
for the same problem, shown in Figure 3,w is different
in the same generation of different particles in SgDPSO
algorithm, but the inertia weight is the same for all parti-
cles in the same generation in the standard PSO algorithm,
where the particles can’t search according to their char-
acteristics in the search space, resulting in the population
diversity decreases during the evolution, and the algorithm
can’t jump out of local optimum.

From the convergence curve of f1 function, we can
see that the optimal value of the swarm continues reducing

Table 2 Experimental Results of the Numerical Optimization
Functions, Mean, Min and Stdev Represent the Mean Best; Min
Best and Standard Deviation. All are averaged over 30 Indepen-
dent runs

Function Names PS,O SgDPSO
mean min std mean min std
Sphere 6.05E-6 2.58E-156 3.31E-5 1.07E-1812.14E- 0
217
Griewank 0 0 0 0 0 0
Rastrigin 3.16E-13 0 1.36E-12 0 0 0
Rosenbrock 5.72E-16 0 3.13E-15 0 0 0
Ackley 3.60E-9 8.88E-16 1.97E-8 8.88E-16 8.88E-16 0
Step 0 0 0 0 0 0
Schwefel(P2.22) 0.01 8.58E-74 0.05 4.05E-92 7.55E- 1.69E-91
110
Qudric 0.04 5.26E-73 0.07 1.99E-4 1.72E- 7.78E-4
206

Schwefel(P2.21) 2.66E-65 1.28E-16 1.28E-16 2.40E-112 8.46E-76 8.46E-76
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Figure 2 Comparison of the w changing curve of ith particle be-
tween PSO and SgDPSO on functions of f1 and f3, the vertical
axis is the value of w, and the horizontal axis is the number of
generation.

in the SgDPSO algorithm, which makes the difference be-
tween the optimal value of the swarm and the fitness value
of ith particle constantly vary as well as the evolution rate
of ith particle.From the convergence curve of f3 function,
we can see that the algorithm converges to the global op-
timum over 200 generations , which makes the difference
between the best optimal values and fitness value of ith
particle maintain at zero at the later of evolution, and the
evolution rate maintain at one.So the w of ith particle is
maintained at 0.3. In Figure 3, there are different in evo-
lutionary rate and fitness of ith particle and jth particle on
SgDPSO for f1 during the optimization, the reason is that
their w changing curve is different.

6. Experimental Design and Analysis

To solve the existing problems in standard PSO algo-
rithm, we proposed SgDPSO algorithm that uses the ex-
isting information of particle swarm during evolution in
this paper. The algorithm is simple and easy to implement.
Both the current and historical information of particle are
taken into consideration to set the inertia weight and ac-
celerator learning factor dynamically and self-guided to
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Figure 3 Comparison of the w changing curve of ith and jth
particle on SgDPSO for f1, the vertical axis is the value of w, and
the horizontal axis is the number of generation.

obtain a balance between the diversity and convergence
speed, preventing the premature as well as improving the
speed and accurateness. The experiment result shows that
our algorithm performance is superior to standard PSO al-
gorithm, and has a good robustness. In the future, we will
continue to study different dynamic inertia weight setting
methods based on the historical + current” information
ideal to find a better method to set the inertia weight.
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