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1 Introduction and Preliminaries

Kubiak [10] and Sostak [15] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that
not only the objects are fuzzified, but also the axiomatics. In [16,17] Sostak gave some
rules and showed how such an extension can be realized. Chattopadhyay et al. [4] have
redefined the same concept under the name gradation of openness. A general approach to
the study of topological type structures on fuzzy powersets was developed in [7-11].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced
by Atanassov [2]. By using intuitionistic fuzzy sets, Coker and his colleague [5,6] defined
the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [14] introduced
the notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subsets
there is a definite grade of openness and there is a grade of nonopenness. Thus, the concept
of intuitionistic gradation of openness is a generalization of the concept of gradation of
openness and the topology of intuitionistic fuzzy sets.

In this paper, we have used the intuitionistic supra gradation of openness that was cre-
ated from an intuitionistic fuzzy bitopological spaces to introduce and study the concepts

of continuity, some kinds of separation axioms and compactness.



292 A. M. Zahran et al.

Throughout this paper, let X be a nonempty set, I = [0,1], I, = (0,1], I; = [0,1).
For a € I, a(x) = « for each x € X. The set of all fuzzy subsets of X are denoted by
IX.Forxz € X and t € I a fuzzy point is defined by

) t, if y==x
xr =
Wy 0, if y#ux.

xy € Niff t < A(z). We denote a fuzzy set A which is quasi-coincident with a fuzzy set 1
by Aqu, if there exists € X such that A(z) 4+ u(x) > 1. Otherwise by AGu.

Definition 1.1. [1,14] An intuitionistic supra gradation of openness (ISGO, for short) on

X is an ordered pair (7, 7*) of mappings from IX to I such that

(ISGO1) 7(\) +7*(\) <1, VX e IX.

(I1SG02) 7(0) = 7(1) = 1, 7*(0) = (1) = 0.

(ISGO3) 7(Vica Mi) = Niea 7(Ai) and 7(V;ca Ai) SViea 75(Ni), YV Ai € IXieA.
The triplet (X, 7, 7*) is called an intuitionistic supra fuzzy topological space (isfts, for

short).

An ISGO (7, 7*) is called an intuitionistic gradation of openness (IGO, for short) on X
iff (IT) 7(A1 A X2) > 7(A1) A7(A2) and 7 (A1 A Xa) < 75 (A1) V 7% (A2), VAL, Mg € T,

The triplet (X, 7, 7*) is called an intuitionistic fuzzy topological space (ifts, for short).
7 and 7* may be interpreted as gradation of opennes and gradation of nonopenness, respec-
tively. The (X, (7, 7%), (v, v*)) is called an intuitionistic fuzzy bitopological space (ifbts,
for short) where (7, 7*) and (v, v*) are IGO’s on X.

Definition 1.2. [1] A map C : IX x Iy x I; — IX is called an intuitionistic supra fuzzy
closure operator on X if for \,u € IX and r € Iy, s € Iy, it satisfies the following
conditions:

(1) C(0,r,5) = 0.

(C2) A< C(\ 1, s).

(C3) C(A\,r,s)VC(uyr,s) <CAV u,r,s).

(C4) C(\ r1,81) < C(\ 11, 82)ifry <rgand sy > so.

(C3) C(C(Ar,8),r,8) =C(\T1,s).

The pair (X, C) is called an intuitionistic supra fuzzy closure space.

The intuitionistic supra fuzzy closure space (X, C) is called the intuitionistic fuzzy
closure space iff
©) C(Ar,s)VC(u,r,s)=C(AV u,r,s).

Theorem 1.1. [1] Let (X, 7,7*) be an isfts. Then Y\ € I, r € Iy, s € I, we define an

operator Cy = : IX x Iy x Iy — I as follows:

Crro(Nrys) = Npe I X< pr(L—p) >r 7 (L—p) < s}



Intuitionistic Supra Gradation of Openness 293

Then (X, C; +) is an intuitionistic supra fuzzy closure space. The mapping I, .« : I X x
Iy x I} — IX defined by

Lo (Ars) = \{p e I s p < X\ 7(p) = r, 77 (p) < s}
is an intuitionistic supra fuzzy interior space. And I -« (1 — X\,r,s) =1 — C. 1«(\, 1, 5).

Theorem 1.2. [1] Let (X, C) be an intuitionistic (intuitionistic supra) fuzzy closure space.

*

Define the mappings 7., 7 : I’ — I on X by
e\ =\{rel:C1-Ars)=1-)},

TN =N{seh:CL-\rs) =1-AL

Then,

(1) (7¢, 7)) is an IGO’s (ISGO’s) on X,

(2) CTc,Té < C.
Theorem 1.3. [1] Let (X, (71, 71), (T2, 7)) be an isfbts. We define the mappings C12, I1 :
I* x Iy x Iy — IX as follows:

Cia(A,r,8) = Cry oy (A1, 8) A C’T%T;()\,r, s),
Iis(\, 1, 8) = Iy o (A\r,s)V Iy rs A\, 8),
forall X € IX, r € Iy, s € I,. Then,

(1) (X, C12) is an intuitionistic supra fuzzy closure space,
(2) 112(1 - >\a T, 5) = l - 012()\5 T, S)'

Corollary 1.1. [1] Let (X, C12) be an intuitionistic supra fuzzy closure space. Then, the
Mappings Tc,,, Té,, IX — I on X defined by
TC1a (/\) = \/{T €lp: 012(1_ ATy S) =1- )‘}
and
T¢,,(A) = /\{8 €h:Cia(l—Amrs)=1-A}
is an ISGO’s on X.

Theorem 1.4. [1] Let (X, (71, 77), (72, 73)) be an ifbts. Let (X, C12) be an intuitionistic
supra fuzzy closure space. Define the mappings T, 75, : I — I on X by

Tsu(/\) = \/{7’1()\1) A\ 7'2()\2) A=\ V )\2},

7o) = AT ) Vs ) s A = A v e,
where \/ and )\ are taken over all families {1, o : A\ = A\ V Ao }. Then,
(D) (Tous T3y) = (Tery,72,) is the coarsest ISGO on X which is finer than both of
(11, 77) and (12, 75).

(2) C112 = CT = C‘r

* * .
susTgy c12:Tcqq
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Definition 1.3. [13, 14] Let f : (X, (71, 77), (72, 75)) — (Y, (v1,v7), (v2,v3)) be a map-
ping. Then f is called

(1) IFP-continuous iff 7;(f~1(x)) > v;(p) and 77 (f () < vi(p) Vp e IV, i =
1,2;

(2) IFP-openiff 7;(\) < v;(f(\)) and 7(\) > v (f(A) VA € IX, i =1,2;
(3) IFP-closed iff 7;(1 — \) < v;(1 — f(N)) and THL-=N) > v (1l—f(\) VA€
X, i=1,2;

(4) IFP-weakly open iff 7;,(A) > rand 7 () < s = v;(f (X)) > rand vj (f(N)) <
sYAETX, i=12

(5) IFP-weakly closed iff 7;(1 — A) > rand 77 (1 — A\) < s = v;(1— f(\) >r
andvy(L— f(\) <sVAelX,i=1,2.

2 [FP*-Continuous Mapping

Definition 2.1. Let f : (X, (71,77), (12, 75)) — (Y, (v1,v7), (v2,13)) be a map-
ping. Then f is called IF P*-continuous (resp. [F P*-open, IFP*-closed) iff f :
(X, Tsu, 7o) — (Y, sy, v3,) is I F-continuous (resp. I F-open, I F-closed).

Theorem 2.1. Every I[F P-continuous (resp. 1F P-open, IF P-closed) is IFP*-
continuous (resp. I F P*-open, I F P*-closed).

Proof. Let f : (X, (11,717), (12,75)) — (Y, (v1,v7),(v2,v3)) be an IF P-continuous
mapping and (X, Tsy, 725,), (Y, Vs, V5, their associated isfts. Suppose that there exists
w € IV and sy € I such that

o (f (1) = s0 = v ().

There exist p11, o € IY with 1 = py V po such that v%, (n) = vi(p1) V vi(u2) < so.
Then v (p1) < sg and v5 (u2) < so. By I F P-continuity, we have

1 (f7 () < i) < so and 73 (F 7 (p2)) < v5(u2) < so.

This implies that 75 (f = (1)) V 75 (f~(u2)) < so, and so 775, (f 1 (n)) < so. Itis
contradiction. Hence 77, (f (1)) < v, (w),V u € IV.

By the same way, we can prove Te, (f 71 (1)) > veu (1), Vi € IY. So, f is IFP*-
continuous. The other parts can be proved in a similar manner. [

Example 2.1. Let X = {a, b, c}. Define py, pa, pi1, 2 € I as follows

pi(a) = 0.3, p1(b) = 0.5, p1(c) = 0.4,
p2(a) =0.2, pZ(b) =0.3, 02(0) = 0.5,
/u'l(a) =0.3, Nl(b) = 0.5, .ul(c) =0.2,
p2(a) = 0.5, pa(b) = 0.4, pa(c) = 0.3.
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We define 7, 71, T2, 75, V1, V], V2, V5 : IX — I as follows

1 if p=0,1 0 if p=0,1
Ti(p)=4 0.5 if p=p; 71 (p) 04 if p=p

0  otherwise, 1 otherwise,

1 if p=0,1 0 if p=0,1
m2(p) =14 0.6 if p=py 75 (p) 03 if p=ps

0  otherwise, 1  otherwise,

1 if =01 0 if p=0,1
vi(p)=4¢ 0.5 if p=p vi(p) 04 if p=m

0 otherwise, 1  otherwise,

I if p=01 0 if =01
va(p) =4 0.4 if p=po v (p) 05 if pu=pue

0 otherwise, 1  otherwise.

295

The mapping f : (X, (71,77), (12,75)) — (X, (v1,v5), (v2,v])) defined by f(a) =
¢, f(b) =a, f(c) = b, is IFP*-continuous but not I F' P-continuous.

Theorem 2.2. Let f : (X, (11,7]), (12,75)) — (Y, (v1,v7), (v2,v3)) be a mapping. Then
the following statements are equivalent: Y\ € IX, p € IY, r € Iy, s € I
(1) fis IFP*-continuous.

Q) Tou(l— fH (1) > veu(l — ) and 75, (1 — f~H (1)) < v5, (L= p).
(3) f(Cr2(A,7,5)) < Cra(f(A), 7, 5).

4) Clg(f_l(u),r,s) < f_l(Clg(,u,T,S)).

&) [ T2(psr,s) < T (f~Hw), 7, 8).

Proof. (1) = (2) is Obvious.
(2) = (3): Foreach A € IX,r € Iy, s € I;, we have

SN (Cra(f(A),7,9))

=N Cuy e, (F(N), 1, 5))

=AM e fON) < nval—n) =105, L —n) < s}

> AN ) e X A< ) (L= £ ) 2 7, (L= £ () < s}
= Cropre (A1, 8) = Cra(A, 1y 8).

Thus f(Olg(/\, r, S)) S Clg(f()\), T, S)
(3) = (4): Foreachpy € IV, r € Iy, s € I, put A\ = f~*(p). From (3), we have

F(Cr2(f M)y, 8)) < Cra(F(f7H (), 8) < Crap,r, s),
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which implies that
Cra(fH(w)ry8) < fTH(Cra(f (1)o7, 9))) < f7H(Cralp, 1, 8)).
(4) = (5): Foreachu € IV, r € Iy, s € I, we have
Cra(f7 L= p)ymy8)) < F7HCra(l = p, 7, 9)),

which implies that
1—f7H(Cra(l = p,rys5)) < 1= Cra(f (L = p), 7, 9),

= fHL = Cra(l — pyry8)] < 1= Cra(f 1 (L — p),m, 5).

By Theorem 1.3 (2), we have

f_1(112(l_ w7, 3)) < 112(1_ f_l(l_ /J/)’T’S) = I12(f_1(M),T73)-

(5) = (1): Suppose that there exists . € IY, r € I, s € I, such that

o (FTH ) > s = v () and e (71 (1) <7 < vsu(p)-

Then, there exist pu1, o € IY such that v, (p) = vi (1) V V5 (p2), veu(p) = vi(p1) A
va(pe), and g = pg V po. This implies that v5 (1) < sand v5 (p2) < s. Also, v1 (1) > r
and v () > 1, then, I, .= (1,7, 5) = py and 1, s (2,7, 8) = pi2. From Theorem 1.3,
we have

112(/1177”7 8) = Illl,Vl* (Mlara S) V Il/g,l/z* (/1/27Ta S) = M1 V M2 = M.

By (5), we have

F7Hw) = La(fH (), 8) = Lngy s, (FH (1), 7 8).

This implies that 77, (f (1)) < s and 74, (f~(n)) > r, which is a contradic-
)

tion. So, 75, (f~1(w) < vi,(p) and 7o (f " (n)) > veu(u)¥uw € IY. Hence,
(X, (m,1), (12, 75)) — (Y, (11, v7), (v, v3)) is I F P*-continuous. O

Theorem 2.3. Let [ : (X, (11,77), (12, 75)) — (Y, (v1,v7), (v2,V3)) be a mapping. Then
the following statements are equivalent: Y\ € IX, pe 1Y, r € Iy, s € I,

(1) fis IFP*-weakly open.

) f(hz(Ar,s)) < Tia(f(A), 7, 8).

(3) La(f M (w),ry8) < f~HIa(p, 7, 8)).
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Proof. (1) = (2): Foreach A € IX and r € Iy, s € I, Since I15(\,7,5) =
I, =, (A7, 8) < A we have

Iz, (A1, 8)) < F(N).

Also,
TSU(ITWTS*U (A\yr,8)) >r and T:u(ITmT;“’()\,r, s) < s.
By (1),
Vsu(f(Iry iz, (A 78))) 27 and - vg, (f(Ir,, 7z, (A7, 8))) < s.
Hence

fhz (A 7y 8)) < ha(f(A), 7, 5).

(2) = (3): Foreachpy € IV, r € Iy, s € I, put A = f~*(p). From (2), we have

f([12(f_1(,u)77“78)) < Il?(f(f_l(ﬂ))ﬂr’s) < Il?(ﬂvras)a

which implies that

Il?(f_l(:u)vrvs) < f_l(f(‘[12(f_1(ﬂ)vr7s))) < f_l(IIQ(:uvrvs))'

(3) = (1): Foreach A\ € IX with 75, (\) > 7, 72,(A) < s implies I12(\,7,5) = \. Put
w= f(A), by (3), we have

Lia(A,ry8) < i (F7H(F V), 7y08) < fHTa(F(A),7y8)),

which implies that A < f=1(I12(f()\), 7, 5)) and so f(A\) < I12(f(\),7,s). Then

va(FV)) 27 and 12, (FV) < s.

Hence,
f : (X7 (Tlan)7 (7-277-2*) - (Y7 (Vla Vf)a (V27 V;))
is [ ' P*-weakly open. O

Theorem 2.4. Let f : (X, (11,77), (12, 75)) — (Y, (v1,v7), (v2, v5)) be a mapping. Then
the following statements are equivalent:

(1) fis IFP*-weakly closed.

(2) Cr2(f(N),r,8) < f(Cra(A,1y8)), YA€ X r €Iy, s €I4.

Theorem 2.5. Let f : (X, (71,77), (12, 75) — (Y, (v1,v7), (ve,v3)) be a bijective map-
ping. Then the following statements are equivalent:

(1) fis IFP*-weakly closed.

Q) f~HCua(py7,8)) < Cra(f~Y(p),r,8),Yu eIV, r€ly, s €.



298 A. M. Zahran et al.

Proof. (1) = (2): Put A\ = f~!(p), from Theorem 2.4(2)

Cm(f(f_l(ll)),ﬁ S) < 012(/1,,7",8) < f(Cl2(f_1(M)>7“75)>-

Also, since f is onto, we have

f_1(012(/1'7rv S)) < f_l(f(cu(f_l(/f“)’r’ S))) = Cl2(f_1(u)7r7 S)

(2) = (1): Put u = f(A). Since f is injective,

f71(012(f()‘)7r» S)) < Cl?(fil(f()‘))vrv S) = 012(>‘7T’ 8).

Since f is onto,

Clg(f()\), r, S) S f(012(>\, r, S))

3 Some Types of Separation Axioms

Definition 3.1. Fori,j € {1,2},i # j, an ifbts (X, (71, 77), (72, 75)) is called
(1) IFPRy iff 2,GCy, ++ (Ym, 7, s) implies that meCT]}T; (24,7, 8) for any 24 # Y.
(2) IFPR; iff vy GCr, 7»(Ym, 7, s) implies that there exist A, p € IX with 7;(\) > 7,

77(A) <sand 7;(u) > 7, 77 (1) < ssuchthat z; € A, ymm € pand A q p.

(3) IFPRyiff 24q p = Cr, 77 (p,r, s) implies that there exist A, u € IX with 7;(\) >
r, 77 (A) < sand 7;(p) > 7, T;‘(u) < ssuchthat x; € A, p < pand A gpu.

(4) IFPR3iff n = Cy, ++(n,7,8) @p = CTj,T; (p,r,s) implies that there exist A,
p € I* with 7;(\) > r, 77()\) < s and Ti(pn) >, TJ’-‘(M) < ssuchthatny < A, p < pand
AG .

(5) IFPTyiff 2, G yy, implies that there exist A € I such that 7;(\) > 7, 77 (\) < s
and x; € A\, Y, Q L OT Yy € A\, T4 G [0

(6) IFPT, iff x; G y,, implies that there exist A € [ X such that for i = 1 or 2
Ti(A) >, 75 (N) < s, 2 € Xand Y, g A

(7) IFPTy iff 2,q y,, implies that there exist A, p € I with 7;(\) > r, 77(\) < s
and 7;(p) >, T;‘(,u) < ssuchthatz; € A\, y,,, € pand A q p.

(8) IFPT,y iff x¢ G yy, implies that there exist A, 1 € IX with 7;(\) > r, 75 (\) < s
and 7;(p) = 1, 77 () < ssuchthatwy € A, ym € pand Cr, o+ (A, 7, 8) G Cr, 7p (11,7, 5).

9) IFPT; iffitis [FPRy and [ FPT).

(10) IFPT}, iffitis IFPR3 and IF PT.

(11) IFP*R; iff its associated isfts (X, 7gy, 725,) is IFR;, i = 0,1, 2.

(12) IFP*T; iff its associated isfts (X, 7gy, 72,) is [FT;, 0 = 0,1,2, 2%, 3,4.

In this definition if ¢ = j we have the definition of I F' Ry, IF Ry, IF Rs, [ FR3, [ F'Ty,
IFTy, IFT,, IFT, 1 IFT5 and I F'Ty, respectively.
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Theorem 3.1. Let (X, (11, 7), (72, 73)) be an ifbts. Then we have
(1) IFPR; = IFP*R;,i = 0,1,2,3.
() IFPT; = [FP*T;i=0,1,2,21 3.
(3) IFP*T; = [FPT, i = 0,1.
(4) IFP*Ry = [FP*R, = [FP*R,,.
6) IFP'Ty = IFP*T3 = IFP*TQ% = IFP*Ty, = [FP*T) = IFP*T,.

Proof. (1) Let (X, (11,7{),(72,75)) be an IFPRy and let x:GC;,, r= (Ym,7,5).
From Theorem 1.4(2), we have x:GC12(Ym,r,s). Also, by Theorem 1.3, we
have z:G[Cr, v+ (Ym,7,5) A Cryrz (Ym,7,8)]. Then, 2 € 1 — [Cr 7+ (Ym,7,8) A
Cryvrs Wm,ry8)] = [L — Cry rr (Y, 7,8)] V [L — Cry 25 (Y, 7, 8)], this implies that
4 €1 —Cr 7r (Ym,1,8) or 24 € L — Cry 75 (Y 75 9).

Therefore, 2:GC7, 77 (Ym,7,5) Of £4GCr, r3 (Ym,7,s). Since (X, (11,77), (2, 75))
is IFPRy, we have y,qCr, r+(ws,7,8) or y,qCr, - (x¢,7,5) this implies that
ymﬁ[C’ﬁ,Tf (x¢,7ry8) A Cryry (z¢,7,8)] = Cia(zg,r,s) = Crours, (z¢,7,8), so,
(X, (11, 717), (12, 75)) is [FP*Ry,.

(2) Let (X, (11,77), (12,75)) be an IFPT,y and z G Yy, Then there exist A, 1 € x
with 7;(A) > 7, 77(A) < sand 7;(u) > 7, 77 (p) < sfori,j € {1,2}, 7 # j such that
Ty € A\, Ym € pand CTj_,T;«()\,r, 8)qCxr, 7+ (1,7, 8). Since Cr, 7 < O, ov fori = 1,2
we have, Cr_, 7 (A, 7, 8)q Cr,, 7s, (17, 8). Then (X, (71, 77), (72,73)) is IFP*T;1.

(3) Let (X, (11,77), (72, 75)) be an IFP*T; and x;qy,,. Then there exists A € X
such that ; € A, 75, (A) > 7, 75,(A) < s and yy, gA. Since, 75, (A) > r, 725,(A) < s
there exist A1, Ao € IX such that 74, (A) = 71 (A1) A 2 (A2), 725,(N) = 77 (A1) V 75 (\2)
and A = Ay V Ag, then 7y (A1) > 7, T2(A2) > rand 77 (A1) < s, 75 (A2) <s. And 2y € A
implies that z; € Ay or x; € As. Also, y,,q A implies that y,,, § A1 and y,, ¢ A2. Thus
(xe € M, 1(AN) > r,77(N) < sand gy, § A1) o1 (x4 € Ag, T2o(N) > 1, 5(N\) < sand yp,
q A2). Hence, (X, (11, 77), (12,75)) is IF PT}.

(4) and (5) obvious from the definition. Other parts are similarly proved. O

Lemma 3.1. Let (X, (11, 77), (T2, 75)) be an ifbts. Then

D) If (X, 71,717) or (X, 10,75) is IFT;, then (X, (11,7]), (12,75)) is IFP*T;,i =
0,1,2,2.5,3.

Q) If (X, n1,717) or (X, 72,75)) is IFR;, then (X, (71,71 ), (T2,75)) is IFP*R;, i =
0,1,2.

Proof. (2) Let (X, 7y, 7{) or (X, 72, 75) be an IF'Ry. For any two fuzzy points x; # ym
such that 2; § Cr,, 7= (4m, 7, s) this implies that z; G [Cr, 7 (Ym, 7, 8) A Cry rs (Y 75 5)]
implies ¢ § Cr, 7+ (Ym, 7, 8) ot &4 § Cry 75 (Ym, 7, 8). Then y, @ Cry o (24,7, 5) OF Y G
Cry,r; (4,7, 8) this implies that y,,, G [Cr, 75 (24,7, 8) A Cry 5 (24,7, 5)] = Cra(xt,7,5)
= Cy,, 7x, (w4, 7, 8). This implies that (X, (71, 77), (72,75)) is [FP* Ry. O
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Example 3.1. Let X = {a,b}. Define 7;, 77 : [X — 1,7 € {1,2,3,...,12} as follows:

7

1 if A=0,1
- ()\) . 0.5 if e {aa vV b0,5, ags V ba}, o€ (0, 1) — {05}
YT 05 i A=, ae(0,1)
0 otherwise,
0 if x=0,1
7_*()\) _ 0.5 if Ae {aa 4 b0.57a0‘5 \ ba}; (e RS (0, ].) — {05}
! 05 if A=a, ae(0,1)
1  otherwise,
1 if A=0,1 0 if Ax=0,1
(A=< 05 if A=04 s\ ={ 05 if A=04,05
0 otherwise, 1  otherwise,
0 if A=0,1
1 if A=0,1 ? NS
. 0.5 if 0#X<0.5
05 if 0£A)X<0.5 N .
T3(A) = 04 if 05<A£1 T3(A)=<¢ 0.6 if 05 <A A#1
) . - 0.6 if A=0.5
0 otherwise, .
1 otherwise,
1 if A=0,1 0 if A=0,1
T4(A) =12 04 if A=0.5 mw(A)=4¢ 06 if A=05
0 otherwise, 1  otherwise,
1 if A=0,1
0.5 if A b b
7s(A) = 1 S {a1, 1,00.4, 0.4}

06 if Me {M, ag.4 V b17 a1 V bo_4}
0 otherwise,

0 if A=0,1
() = 0.5 if A& {a1,b1,a0.4,b0.4,006,b0.6,004 V bos,a0eV boa}
° 0.4 if Xe{0.4,0.6,a0.4V b1,a1Vbog,a0eVbi,a1Vbogs}
1  otherwise,
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. 0 if Xx=0,1
1 #A=01 04 if A=07
4 i =
A)=4¢ 06 if A=0.7 S(A) = —
() goATEd TN=Y 06 i A—03
0  otherwise,
1 otherwise,
1 if A=0,1
() = 0.5 if A€ {aa,ba}, a € (0,1)
V) 06 i A=a, ae(0,1)
0 otherwise,
0 if x=0,1
“(0) 0.5 if X€{an,ba,taVbi,arVbs}, a € (0,1)
7- =
’ 04 if A=aqa, e (0,
1 otherwise,
0 if A=0,
L i A=01 0.5 Tf A 6
. Do = 0.6
78(A) =< 0.5 if A=0.6 Ta(A) = 06 if )—04
0 otherwise, ) —
1  otherwise,
1 if A=0,1 0 if Xx=0,1
T9(A)=<¢ 0.5 if 0#A<1 Tg(A)=4¢ 05 if 0#A<1
0 otherwise, 1  otherwise,
1 if A=0,1 0 if A=0,1
0 otherwise, 1  otherwise,
1 if A=0,1
T11(>\) = 05 if Xe {Q, Ao V bl, ar V ba}, o € (0, 1)
0 otherwise,
0 if A=0,1
- 0.5 if Xe{a,1},{1,a}, a € (0,1)
W) 04 if A=aq, ae (0,1

1  otherwise,
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. 0 if A=0,1

Lt A=01 05 if A=0.3

. 1 = U.

N={ 05 if A=03 = () = 2o
T12(M) 1 V.0 T5(M) 06 if A=04

0  otherwise, .
1 otherwise.

(I) For0 < r <0.5, 05 <s <1, (X,(r1,77), (12, 75)) is I[FP*Ry, but it is neither
IFPRynor IFPR,.

(2) For0 < r <04, 06 < s <1, (X,(r3,75),(72,75)) is IFP* Ry, but it is not
IFPR,.

(3) For0 < r <04, 06 <s <1, (X,(15,7),(76,7¢)) is IFP*Ty, but it is not
IFPT;.

(4) For0 < r <04, 06 <s <1, (X,(77,77),(78,7§)) is IFP*T},y, but it is not
IFPT,;.

(5) For0 < r <04, 06 <s <1, (X,(19,75), (110, T19)) is IFP*T3, but it is not
[FPT;.

(6) For0 <r <04, 06 <s <1, (X,(m1,74), (112, T1%)) is [F'P* Ry, but it is not
IFP*R;.

Lemma 3.2. [12] Let (X, (11, 77), (72,75 )) be an ifbts. Forr € Iy, s € I;, we have
(1) For A € I with 75, (\) > 7, 75,(N) < s, Aqu iff \¢C12(, 7, 8), € IX.
(2) 21qC12(\, 7, 8) iff A\qu for all i € I with 74, (p) > r, 75,(1) < sand z, € p.

Theorem 3.2. Let (X, (11,7}), (T2, 73)) be an ifbts. Then, VA € IX, r € Iy, s € Iy, the
following statements are equivalent:

) (X, (r1,77), (12,75)) is [F P*Ry,.

2) Cia(xe,r,8) < Awith 75, (X) > 1, 725,(A) <5, 24 € .

B) Ifxy g A = Cr\ rn (N1, 8), there exists 1 € I with 7o, (1) > 7, 75,(0) < s
such that x; q ppand \ < p.

@ Ifzi g\ =Cr, v (N1, 5) then, Cr o= (x4,7,8) GA = Cr, 7= (A, 7,8).

Proof. (1) = (2): Let ym g Cia2(x¢,7,5). By Theorem 1.3, we have y,, ¢
Crpu,re, (21,7,5). Using (1), we obtain x; q Cr,, r= (Ym,7,5), i.e. Tt ¢ C12(Ym,T,5).
Using Lemma 3.2(2), we find that y,,, ¢ 1 Vu € I with 74, () > 7, 7%,(1) < s and
x¢ € p. Then, we have Cio(zy, 7, 8) < .

(2) = (1): By qCsr,, 7, (x4,7,5), wehave y, € 1 —Cr, -+ (w4,7,5). By (2) and
the fact 75, (1 — Cr,, 7= (w4,7,8)) > 1, 75, (L—Cr,, 7= (w4,7,5)) < 5, we get

Cl2(ym7 T, S) S l - C‘rsu,fs*u (xtv T, S) é l — T¢.

Thus, z; § C12(Ym,7,s) = Cr (Ym, 1, 8). Hence, (X, (11,77), (12,75)) is IF P*Ry.

*
susTgy
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(1) = (3): Letx g A = Cr, . (Ars). Since Cr, 7= (Ym,7,8) <

CTsuﬂ':u
Cr,, 7, (24,7, 5). Using Lemma 3.2(2), V 4, G C-r,,, .7+, (24,7, 5), there exists ) € I such
that x; g 0, Tsu(n) > v, 75,(n) < sandym € . Letp =\, \{n: 2:@qn,ym € n}.
From the definition of ISGO, we have 7, (1) > r, 72,(¢) < s. Then, z; § u, A < p,
Tsulp) 27, 75,(1) < s.

(3) = (4): Letay g A = Cr, = (X, r,s). By (3), there exists 1 € IX such that z; g
wy A < powith 75, () > 1, 725, (1) < s. Since x; G p, it follows that 2; € 1 — u, which

(A 7,8), Yym € A, we have 2y § Cr, 7x (Ym,7,8). By (1), we have y,, G

implies that

C"r (%;T,S)Scrw;;u(l—u77"73):l—uﬁl_)\-

*
susTgy

Hence, C;,, 7= (z¢,7,8) G\ = Cr,, 7= (A, 7,5).

(4) = (1): Let 2 ¢ Cr,, rr,(Ym,7,5). By (4), we have Cr . (2¢,7,5) G
Crourr, (Ym,7,5) and since yp, < Cr,, rx (Ym,7,5)s Ym G Cr,, 7z, (T4,7,5). Hence
(X, (m1,717), (12, 7%5)) is [FP*Ry. O

Theorem 3.3. An ifbts (X, (11,77), (72,73)) is an IFP* Ry iff ©1 G C12(ym, 1, S), there
exist \; € IX fori = 1,2 such that (1 — \1) @ (1 — Xo) and Cya(ws,7m,8) < Ao,
Cr2(Ym, 1, 8) < A1, Tou(Xi) =1, 75,(Ni) < s.

Proof. (=) Letx; GC12(ym, 7, 5) = Cr., 7z, (Ym,7,5). By IFP* Ry, there exist \; € 1
for ¢ = 1,2 with Ay § A2 such that

Tt € A1, Ym € A2 and 7g, (N;) =1, 7o, (i) < s.

Since (X, (71,77), (72,75)) is an IFP*Ry implies that (X, (71, 77), (72,75)) is an
IFP*Ry, by Theorem 3.2(4), x: § (1 — A1) with 75, (A1) > 7, 75,(A1) < s implies
Cra(xy,r,8) <1 — X < Ag. Similarly, C1a(ym,7,8) <1 — Ay < Ap.

(<) Straightforward. O

Theorem 3.4. Let (X, (11,77), (12, 75)) be an ifbts. Then, ¥V r € Iy, s € I, the following
statements are equivalent:

M) (X, (r1,77), (12,75)) is IF P*Rs.

Q) If vy € A with T, (N) > 7, 72,(\) < s, there exist p1 € IX with e, (p11) > 7,
7o (1) < ssuchthat vy € py < Cr | ox (p1,7,5) < A

Q) Ifzy G X with 7,(1 — X) > 1, 75,(1 = X) < s, there exists p; € IX with
Tou(pti) > 7, 75, (i) < 5,0 = 1,2 such that vy € py, X < pp and Cr,, 7= (p1,7,5) G
Cryirz, (2,7, ).
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Proof. (1) = (2): Letay € A with 75,(\) > 7, 72,(A) < s. Then z; g (1 — X). Since
(X, (11, 77), (12, 75)) is [F P* Ry, there exists y1; € I with 74, (115) > 7, 7%, (1) < s for
i =1,2suchthatzy € p1, 1 — X\ < po and py G po, which implies xy € py < 1—po < A

(2) = (3): Letx; g Awith 7, (1 —A) >r, 75,(1—A) <s. Thenz, € 1 — A\. By
(2), there exists pu € I with 74, (1) > 7, 77, (1) < s such that

T S 1% S CTS“,,TS*H (IU,T, 5) S l - >\

Since 7oy (1) > 7, 74,(p) < s and z; € p. Again by (2), there exists u; € IX with
Tsu(p1) =7, 72, (p11) < s such that

vy € pn < Crpyrr, (1,7,8) S < O 7e (py7,8) <1 — A
which implies that
A< (A =Crpprr, (o1,8) = Iy e, (L= oy 8) <1 —
Put po = I, 7= (1 — 7, s). Then,
Crowr, (2,7,8) S1—p<1—=Cr, o= (1,7, 8),

thatis, Cr, += (p1,7,5) @ Cr,, vz, (12,7, 5).

su

(3) = (1): Itis trivial. O

4 [FP*—Compactness

Definition 4.1. Let (X, 7, 7*) be an iftsand p € IX, r € Iy, s € I;. Then

(1) The family {n; : 7(n;) > r, 7*(n;) < s,j € J}is called (7, 7*)-cover of y iff for
each z; € p there exists jo € J such that z; € nj,.

(2) pis C-set iff every (7, 7*)-cover of u have a finite subcover.

(3) (X, 7,7*)is IF -compact iff YA € IX such that 7(1 — \) >, 7*(L — \) < siis
C-set.

4) An ifbts (X, (71,77), (12, 75)) is called IFP*-compact iff its associated isfts
(X, Tsu, 72,) is I F-compact.

Theorem 4.1. Let (X, (11, 7]), (12,73)) be an ifbts. If (X, 11,77) or (X, 70, 75) is IF-
compact, then (X, (11,77), (12, 73)) is I F P*-compact.

Proof. Suppose that (X, 71, 77) is [ F-compact, and A € IX such that 75, (1 — \) > 7,
5,1 =X < s, r€lys € Iyand {n; : 7eu(n;) > 7, 75,(n;) < s, j € J} be
(Tsu, 7o, )-cover of . Since 7, (1 — A) > 7, 72,(1 — A) < s, we can write

)\:)\1/\)\2, Ti(l—Ai)ZT, Ti*(l—)\i)gs, (121,2)
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Then, for every z; € A, there exists nj, € I with 75,(n;,) > 7, 75,Mj,) < s
such that 2, € n;, = 7™M v n?, for some 7V € IX with 7, (n@) > r, 72,(n") <
s, (i = 1,2). Then, z;, € M or z, € n®. Now, the family {771(1) : 71(771(1)) > r,
T (ngl)) < s,i € A}is (71, 75)-cover of A\; or {nf) : T2(17§2)) >, 72*(1752)) <s,i€ A}
is (72, 75)-cover of Ao. If (X, 7y, 7y) is I F-compact, then \; is C-set i.e., there exists
finite subset Ag of A such that A < A\ < \/ie Ao ngl). Hence, )\ is C-set. Consequently
(X, (m1,77), (12,75)) is [FP*-compact. Similarly, if (X, 72,75 ) is IF-compact, then
(X, (m1,77), (12,75)) is [ F P*-compact. O

Theorem 4.2. Let (X, (11,7), (12,75)) be an IFP*Ty, x; € PHX), \,u € IX, r €
Iy, s € I1. Then

(1) If X is C-set such that x,G), then there existn; € IX with T4, (n;) > 7, 72,(n;) < s,
(i = 1,2) such that x4 € n1, A < 1y and 11 G n2.

(2) If \, j1 are C-sets such that X G yu, then there exist p; € IX, 7o, (pi) > 1, 72,(pi) <
s, (i=1,2) suchthat A < p1, u < py and p1 G pa.

(3) If Nis C-set, then C,, ;= (\,1,5) = \.
Proof. (1): Since x; G A, then @y G Y, ¥V Ym € A. By IFP*T5 of (X, (11, 77), (T2, 73))
there exist 1, v € IX with 74, (1) > 7, 75,(m) < 8, Teu(v) > 7, 75,(v) < s such that
¢ € M1, Ym € v and n; g v. Then the family {v; : 75, (v;) > r, 725, (v;) < 5,1 € A}
is (Tsu, 72, )-cover of A. Since A is C-set, there exists a finite subset Ay of Ag such that
A< \/ier v;. Put g = \/ier v;. Then

Tsu<772) - Tsu( \/ Ui) Z /\ Tsu(vi) 2 r,

i€AQ i€Ag
o) =75, () v) <\ 7o (o) <s.
i€AQ 1€AQ

Since 11 G v;, © € Ap, then n; < 1 — v;, which implies that

m < /\ (1-v;)=1- \/ v =1—"mns.

1€EAQ 1€EAQ
Then, 11 G 12.

(2): Letzy € ppand A q u, then ; ¢ A\. By (1) there exist o, pa € IX with 74, () > 7,
T5.(0) <8, Tsu(p2) = 7, 725,(p2) < ssuch that 2 € o, A < py and o G p2. Then the
family {o; : Tou(0;) > 7, 75,(03) < 8,1 € A} is (Tsu, 72, )-cover of u, so there exists a
finite subset Ag of A such that p < vieAg o;. Put p; = Vz’er pi, then 74, (p1) > r and
72.(p1) < s. Since pa G 0y, 1 € Ag we have pa G p1.

(3): Letz; € 1 — A, then z; ¢ A\. Since A is C-set, then by (2), there exist 1y, 72 € ¥
with 75, (n;) > r, 725,(n:;) < s (i = 1,2) such that z; € n1, A < 12 and n; G 2. This
implies that z; € ;3 < 1—my < 1—X Thus, 1 — X = \/{nm : =z € 1 — A}. So,
Teu(l—A) > 1, 75,(1 — A) < s. Hence, Cr,, 7, (A, 7,5) = \. O

’su
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Theorem 4.3. Let (X, (11,71), (72, 73)) be an I F P*-compact. Then
IFP*Ty < IFP*T,.

Proof. (=): Since (X, (11,77), (12,75)) is IFP*Ty it is clear that it is ITFP*T;. We
only need to prove that (X, (71, 77), (12, 75)) is I F P*Rs,

Let \y = Cr,, 7x, (A1,7,8)q 2 = O, 7= (A2, 7, 8). Then, 7, (1 — X;) > 7, 75,(1 —
Ai) <'s, (i =1,2). Since (X, (11, 77), (12,75 )) is [ F P*-compact, \; and Ay are C-sets.
Since A1 g A2, by Theorem 4.2(2), there exist p1, p2 € IX, such that Ay < p2 and py G po.
Thus, (X, (11, 77), (72,75)) is [FP*Rs. Hence, (X, (11, 7{), (12, 75)) is IF P*Ty.

(«<): See Theorem 3.1(5). O

Theorem 4.4. Let [ : (X, (r1,77),(12,75)) — (Y, (v1,v5), (va,v3)) be an IF P*-
continuous and p € IX is C-set. Then f(u) is C-setinY.

Proof. Let {n; : i € J} be (Vsy, V5, )-cover of f(u). Then, f(u) < Vs Veu(ni) > 1,
v, (n:) < s. By IF P*-continuity of f we have

7'su(f71(77i)) > Vsu(mi) >, 7;u(f71(771')) <vg(m) <s.

Also,

p< W) < N ) =\ £ .
i€J ieJ
Then, the family {f~*(n;) : i € J} is (Tsu, 72,)-cover of f.
But 4 is C-set, there exist a finite subset Jo of .J such that u < \/; ;- f~Y(n:), which
implies that

F) <N 7)) =V rG ) <\ me

i€Jo i€Jo i€Jo

Hence, f(p)is C-setin Y. O

Corollary 4.1. The [ F P*-continuous image of an I F'P*-compact is I F P*-compact.
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