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1 Introduction

We consider a high order partial differential equations

∂ mu
∂ tm − ∂ 3u

∂ t∂x2 +
∂u
∂ t

= f (x, t) , m∈N
∗, x∈ [0,1] , t > 0,

(1)
subject to the initial conditions

∂ iu(x,0)
∂ t i = ϕi (x) , 0≤ i ≤ m−1, x∈ [0,1] , (2)

and integral conditions

u(0, t) =
∫ 1

0
a(x)u(x, t)dx+ p(t) , t > 0, (3)

u(1, t) =
∫ 1

0
b(x)u(x, t)dx+q(t) , t > 0, (4)

where x and t are the spatial and time coordinate
respectively,f ,ϕi (0≤ i ≤ m−1),a,b, p,q are prescribed
continuous function andu(x, t) is an unknown function
wich is a solution of (1.1) and satisfies conditions
(1.2)− (1.4) at the same time.

Certain problem of modern physics and technology
can be effectively describe in terms of nonlocal problems
for partial differential equations. [2] has considered a one
dimonsional heat equation with nonlocal (Integral)
conditions. The autor has taken the Laplace transform of
the problem and then used the numeriacl technique
(Stehfest algorithm) for the inverse Laplace transforme to

obtain the solution. We first take the Laplace transform of
the equation(1.1) to reduce the problem to a second order
inhomgeneous ordinary differential equation with a set of
boundary conditions. After discretization, we use a
numeriacl method for inverting the Laplace transform to
get the solution.

2 Laplace Transform Method

Laplace transform is an efficient method for solving many
differential equations and partial differential equations,
the main difficulty with Laplace transform method is in
inverting the Laplace domain solution into the real
domain. In this section we shall apply the Laplace
transform technique to find solutions of partial differential
equations, we have the Laplace transform.

U (x;s) = {u(x, t) ; t −→ s}=
∫ ∞

0
u(x, t)e−stdt, (5)

where s is positive reel parameter. Taking the Laplace
transforms on both sides of(1.1) , we have

d2

dx2U (x;s)−
(

sm−1+1
)

U (x,s)

=− 1
s

[

F (x,s)+ (s+1)ϕ0 (x)− d2

dx2 ϕ0 (x)+ϕ1(x)+ ...+ϕm−1(x)
]

,

(6)
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whereF (x,s) = { f (x, t) ; t −→ s} . Similarly, we have

∂ i

∂ t i U (0;s) = ϕi (x) , 0≤ i ≤ m−1, (7)

U (0;s) =
∫ 1

0
a(x)U (x;s)dx+P(x) , (8)

U (0;s) =
∫ 1

0
a(x)U (x;s)dx+Q(x) , (9)

Thus, considered equation is reduced in boundary value
problem governed by second order inhomogeneous
ordinary differential equation. We obtain a general
solution of(2.2) as

U (x,s) =

− 1

s
√

sm−1+1

∫ x
0

[

F (τ,s)+ (s+1)ϕ0 (τ)− d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1(τ)
]

sinh
(√

sm−1+1[x− τ]
)

dτ +C1 (s)e−
√

sm−1+1x+C2(s)e
√

sm−1+1x,

(10)
whereC1andC2 are arbitrary functions ofs. Substitution
of (2.6) into (2.4)− (2.5) , we have

C1 (s)

[

1−
∫ 1

0
a(x)e−

√
sm−1+1xdx

]

+C2 (s)

[

1−
∫ 1

0
a(x)e

√
sm−1+1xdx

]

= − 1

s
√

sm−1+1
∫ 1

0

[[

F (τ ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
]

×
∫ 1

τ
a(x)sinh

(
√

sm−1+1[x− τ ]
)

dx

]

dτ +P(s) ,

C1 (s)

[

e−
√

sm−1+1−
∫ 1

0
b(x)e−

√
sm−1+1xdx

]

+C2 (s)

[

e
√

sm−1+1−
∫ 1

0
b(x)e−

√
sm−1+1xdx

]

= − 1

s
√

sm−1+1
∫ 1

0

[[

F (τ ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
]

×
∫ 1

τ
b(x)sinh

(
√

sm−1+1[x− τ ]
)

dx

]

dτ +Q(s) ,

where

(

C1 (s)
C2 (s)

)

=

(

a11(s) a12(s)
a21(s) a22(s)

)−1

×
(

b1(s)
b2(s)

)

, (11)

and

a11(s) = 1−
∫ 1

0
a(x)e−

√
sm−1+1xdx, a12(s)

= 1−
∫ 1

0
a(x)e

√
sm−1+1xdx,

a21(s) = e−
√

sm−1+1 −
∫ 1

0
b(x)e−

√
sm−1+1xdx,

a22(s) = e
√

sm−1+1−
∫ 1

0
b(x)e−

√
sm−1+1xdx,

b1 (s) = − 1

s
√

sm−1+1
∫ 1

0

[(

F (τ ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
)

×
∫ 1

τ
a(x)sinh

(
√

sm−1+1[x− τ ]
)

dx

]

dτ +P(s) ,

b2 (s) = − 1

s
√

sm−1+1
∫ 1

0

[(

F (τ ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
)

×
∫ 1

τ
b(x)sinh

(√
sm−1+1×
[x− τ ]

)

dx

]

dτ +Q(s)

+
1

s
√

sm−1+1
∫ x

0

[

F (τ ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
]

×sinh
(
√

sm−1+1[x− τ]
)

dτ. (12)

It is possible to evaluate the integrals in(2.6) and
(2.8) exactly. In general, one may have to resort to
numerical integration in order to compute them, however.
For example, the Gauss’s formula(25.4.30) given in
Abramowitz and stegun [1] may be employed to calculate
these integrals numerically, we have

∫ 1

0

(

a(x)
b(x)

)

e±
√

sm−1+1xdx

≃ 1
2

N

∑
i=1

wi

(

a
( 1

2 (xi +1)
)

b
( 1

2 (xi +1)
)

)

e±
√

sm−1+1( 1
2 (xi+1)),

∫ x

0

[

F (τ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
]

×sinh
(
√

sm−1+1[x− τ]
)

dτ

≃ x
2

N

∑
i=1

wi

[

F
( x

2
(xi +1) ,s

)

+(s+1)ϕ0

( x
2
(xi +1)

)

−d2

dτ
ϕ0

( x
2
(xi +1)

)

+ϕ1

( x
2
(xi +1)

)

+ ...+ϕm−1

( x
2
(xi +1)

)

]

×sinh
(
√

sm−1+1
(

x− x
2
(xi +1)

))

,

c© 2014 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theor.2, No. 2, 65-68 (2014) /www.naturalspublishing.com/Journals.asp 67

whereτ = x
2 (xi +1) .

∫ 1

0

[(

F (τ ,s)+(s+1)ϕ0 (τ)−
d2

dx2 ϕ0 (τ)+ϕ1 (τ)+ ...+ϕm−1 (τ)
)

×
∫ 1

τ

(

a(x)
b(x)

)

sinh
(
√

sm−1+1(x− τ)
)

dx

]

dτ

≃ 1
2

N

∑
i=1

wi

[

F

(

1
2
(xi +1) ,s

)

+(s+1)ϕ0

(

1
2
(xi +1)

)

− d2

dτ
ϕ0

(

1
2
(xi +1)

)

+ϕ1

(

1
2
(xi +1)

)

+ ...+ϕm−1

(

1
2
(xi +1)

)]

×
(

1− 1
2 (xi +1)

2

)

×
N

∑
j=1

w j









a

((

1− 1
2 (xi+1)

2

)

x j +
1− 1

2 (xi+1)
2

)

b

((

1− 1
2 (xi+1)

2

)

x j +
1− 1

2 (xi+1)
2

)









×sinh

(

√

sm−1+1

((

1− 1
2 (xi +1)

2

)

x j +
1+ 1

2 (xi +1)

2
− 1

2
(xi +1)

))

,

wherexi andwi are the abscissa and weights, defined as

xi : ith zero ofPn(x) , ωi = 2/
(

1− x2
i

)

[

P
′
n(x)

]2
.

Their tabulated values can be found in [1] for different
values ofN.

2.1 Numerical inversion of Laplace transform

Sometimes, an analytical inversion of a Laplace domain
solution is difficult to obtain; therefore a numerical
inversion method must be used. A nice comparison of
four frequently used numerical Laplace inversion
algorithms is given by Hassan Hassanzadeh, Mehran
Pooladi-Darvish [16]. In this work we use the Stehfest’s
algorithm [26] that is easy to implement. This numerical
technique was first introduced by Graver [14] and its
algorithm then offered by [26].Stehfest’s algorithm
approximates the time domain solution as

u(x, t)≈ ln2
t

2m

∑
n=1

βnU

(

x;
nln2

t

)

, (13)

where,m is the positive integer,

βn = (−1)n+m∑min(n,m)

k=[ n+1
2 ]

km(2k)!
(m−k)!k!(k−1)!(n−k)!(2k−n)! ,

(14)
and[q] denotes the integer part of the real numberq.
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