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Abstract: Let Mg be the moduli space of smooth algebraic curves of genus g over C. In this paper, we prove that the set Sr⊆ M3

of moduli points of smooth plane quartic curves (nonhyperelliptic curves of genus 3) having at least one sextactic point of sextact
multiplicity r, where r ∈ {1, 2, 3}, is an irreducible, closed and rational subvariety of codimensional r − 1 of M3 − H3 (where
H3 ⊂ M3 is the hyperelliptic locus ).
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1. Introduction

On an algebraic plane curve C ⊂ P2(C) of degree d ≥ 3,
we say that a flex point P ∈ C is i-flex if the contact or-
der with the tangent line TP at P is equal to i + 2, i.e.,
i = IP (C, TP ) − 2. This positive integer i is called the
flex multiplicity of C at P . Vermeulen in [7] studied
the subvariety V ⊆ M3, where Mg is the moduli space
of smooth algebraic curves of genus g over the complex
field C, corresponding to plane smooth quartics C having
at least one hyperflex (2-flex). He proved that V is an ir-
reducible, closed subvariety of dimensional 5 (recall that
dim Mg = 3g − 3).

In analogy with the tangent lines and the flexes of plane
curves, one can consider the osculating conics and the sex-
tactic points. Let P be a non-flex smooth point on a plane
curve C of degree d ≥ 3. Then, there is a unique irre-
ducible conic DP with IP (C,DP ) ≥ 5. Such conic DP is
called the osculating conic of C at P .

Definition 1(Cf.[1]). A smooth, but not a flex, point P on a
plane curve C is called a sextactic point if the osculating
conic DP meets C at P with contact order at least six.
Furthermore, a sextactic point P is called s-sextactic, if
s = IP (C,DP ) − 5. This positive integer s is called the
sextact multiplicity of C at P .

Definition 2.A sextactic point P on a plane curve C of
degree d ≥ 3 is said to be total sextactic point if the os-
culating conic DP of C at P meets C only at P , i.e., if
IP (C,DP ) = 2d.

Historically, the term sextactic points have been intro-
duced by Cayley around 1859 in [2]. Cayley remarked that
sextactic points has been studied before him by Plüker and
Steiner without giving concrete references. He is certainly
referring to papers in Crelle’s Journal 32 (1847) by Plüker.
One can add a paper by Hesse in volume 36 (1848) of
the same journal. In all of these papers it is claimed that
there are 27 sextactic points on a cubic and clearly all of
them are total sextactic points. In [3], Cayley proved that
a curve with ordinary flex points (1-flex points) has ex-
actly 3d(4d − 9) sextactic points counted with multiplici-
ties. In [6], Thorbergsson and Umehara showed that, if C
is a curve of degree d and has k flex points with multiplic-
ities µ1, ..., µk, then C has 3d(5d− 11)−

∑k
i=1(4µi − 3)

sextactic points counted up to their multiplicities.

2. Smooth plane quartics

LetC be a smooth plane quartic curve and P be a sextactic
point on C. Then either P is a total sextactic point
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(3-sextactic point) or hypersextactic point (2-sextactic point)
or ordinary sextactic point (1-sextactic point).

Remark.It is well known that sextactic points on C are
nothing but 2-Weierstrass points. Geometrically, P is a 2-
Weierstrass point if and only if there is a unique conic DP

with IP (C,DP ) ≥ 6. It turns out that either DP = 2TP
(P is a flex and TP is the tangent line at P ), or DP is
an irreducible conic (P is a sextactic point and DP is the
osculating conic at P ). For more details see [1].

Let d ∈ Z+ be given and put N = 1
2d(d+3). Identify

the homogenous forms of degree d in C[X,Y, Z] with the
points PN (C). Let, under this identification △ ⊂ PN (C)
be the closed subvariety corresponding to the forms which
define singular plane curves of degree d. Hence there exists
for each d ≥ 3 a morphism

ϕ : PN (C)−△ −→Mg,

where N = 1
2d(d + 3), g = 1

2 (d − 1)(d − 2). Assigning
to a smooth plane curve of degree d its moduli point. We
remark that

ϕ(PN (C)−△)∩Hg = ∅,

where Hg ⊂ Mg is the hyperelliptic locus. If g = 3, there
is the following well known result.

Proposition 1(Cf.[7]). The morphism

ϕ : P14(C)−△ −→M3 −H3

is surjective. Moreover it is closed.

Proof.It is surjective since the canonical morphism embeds
a smooth nonhyperelliptic curves of genus g = 3 in P2(C)
as a curve of degree d = 4. It is closed because ϕ estab-
lishes in fact an isomorphism(

P14(C)−△
)
/PGL(3;C)−̃→M3 −H3.

We define

Sr = {m(C) ∈ M3 −H3 : C is a smooth plane quartic
curve with at least one r-sextactic point} ,

where r ∈ {1, 2, 3}. The purpose of this paper is to prove
the following:

Theorem 1.The set Sr⊆ M3 of moduli points of smooth
plane quartic curves (nonhyperelliptic curves of genus 3)
having at least one sextactic point of sextact multiplicity r,
where r ∈ {1, 2, 3}, is an irreducible, closed and rational
subvariety of codimensional r − 1 of M3 − H3 (where
H3 ⊂ M3 is the hyperelliptic locus).

In the sequel, the triple (P, TPC,DP ) denotes to a
sextactic point P on a smooth plane quartic C with its
associated osculating conic DP : Q(X,Y, Z) = 0 and
TPC : ℓ(X,Y, Z) = 0 is the common tangent to C and
DP at P .

3. Total sextactic point

We now study
S3 = {m(C) ∈ M3 −H3 : C is a smooth plane quartic

curve with a total sextactic point}

Lemma 1.A smooth plane quartic curveC has at least one
total sextactic point (P, TPC,DP ) if and only if its defin-
ing equation F (X,Y, Z) = 0 is given by, up to scalar
multiple,

F (X,Y, Z) = αℓ4 +Q(X,Y, Z)ψ(X,Y, Z), (1)

where α ∈ C\{0} and ψ(X,Y, Z) is a complex quadratic
homogenous form.

Proof.Suppose that the defining equation of C is given by
(1). The contact order of the irreducible conic DP , whose
defining equation isQ(X,Y, Z) = 0, and C at the point P
is given by

IP (F,Q) = IP (αℓ
4 +Qψ,Q)

= IP (ℓ
4, Q)

= 4IP (ℓ,Q) = 8.

Then (P, TPC,DP ) is a total sextactic point.
Conversely, Let C be a smooth plane quartic curve has a
total sextactic point (P, TPC,DP ). Without loss of gen-
erality, we may assume that P = [0 : 0 : 1], TPC :
X = 0 and DP : Y 2 = XZ (any smooth projective
plane conic is isomorphic to Y 2 = XZ, see for exam-
ple [4]). It sufficient to prove the statement in the open
set where Z ̸= 0; other open sets the argument is simi-
lar. Here C is isomorphic to the affine plane curve defined
by f(X,Y ) = 0, where f(X,Y ) = F (X,Y, 1); more-
over DP defined by Y 2 = X. Since P is a total sextactic
point, then f(Y 2, Y ) = αY 8, for some constant α ̸= 0.
Now consider the polynomial g(X,Y ) = f(X,Y )−αX4,
then g(Y 2, Y ) = f(Y 2, Y )− αY 8 = 0, consequently the
conic Y 2 −X is a factor of g(X,Y ). Therefore

f(X,Y ) = αX4 + (Y 2 −X)ψ(X,Y ),

for some complex quadratic polynomial ψ(X,Y ). The ho-
mogenization of the previous equation is

F (X,Y, Z) = αX4 + (Y 2 −XZ)ψ(X,Y, Z). (2)

Example 1(Cf [1]). Consider the smooth plane quartic

C : X4 + Y 4 + Z4 + 14(X2Y 2 + Y 2Z2 +X2Z2) = 0.

The two points P1 = [ω : ω2 : 1] and P2 = [ω2 : ω : 1],
where ω = exp(2π

√
−1/3), are total sextactic points on

C and lie on a bitangent line L : X + Y + Z = 0. The
osculating conics at these points are the following, respec-
tively:

D1 : Q1(X,Y, Z) = (X2 + 5Y Z) + ω2(Y 2 + 5XZ)

+ ω(Z2 + 5XY ) = 0,

D2 : Q2(X,Y, Z) = (X2 + 5Y Z) + ω(Y 2 + 5XZ)

+ ω2(Z2 + 5XY ) = 0.
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Note that we can write the defining equation of C as

C :
5

9
(X + Y + Z)4 +

4

9
Q1(X,Y, Z)Q2(X,Y, Z) = 0.

Lemma 2.Let Vt be the subspace of P14(C)−△ such that
its points corresponding to the forms which define smooth
plane quartic curves having at least one total sextactic
point (P, TPC,DP ). Then the group of automorphismsGt

of Vt is given by

Gt =


 1 0 0

b a 0
b2 2ab a2

 ∈ PGL(3;C)


wlere a, b ∈ C, a ̸= 0.

Proof.Using Lemma 1, we can assume that

Vt = {F (X,Y, Z) ∈ P14(C)−△ : F (X,Y, Z) as in (2)}.

Then each g ∈ Gt must fix P = [0 : 0 : 1], TPC : X = 0
and DP : Y 2 = XZ.

Now, it is easy to prove the following proposition.

Proposition 2.The set S3 is an irreducible, closed and ra-
tional subvariety of codimensional two of M3 −H3.

Proof.Let C : F (X,Y, Z) = 0 be a smooth plane quar-
tic curve has a total sextactic point (P, TPC,DP ), then
F (X,Y, Z) ∈ Vt. But Vt is a 6-dimensional irreducible
closed subvariety of P14 − △. Hence S3 = ϕ(Vt) is ir-
reducible and closed in M3 −H3. Its dimension equal 4,
since each fiber of ϕ : Vt −→ S3 has dimension 2 =
dimGt. Since Gt is triangular, then S3 is rational (see for
example Theorem 1 in [5]).

4. Hypersextactic point

In this section, we study

S2 = {m(C) ∈ M3 −H3 : C is a smooth plane quartic
curve with a hypersextactic point}

LetC be a smooth plane quartic curve has a hypersextactic
point (P, TPC,DP ). In this case, the osculating conic DP

meets C transversely at another point differs from P ; say
R. Assume that the line L : ℓ1(X,Y, Z) = 0 joins P and
R. We prove the following lemma:

Lemma 3.A smooth plane quartic curveC has at least one
hypersextactic point (P, TPC,DP ) if and only if its defin-
ing equation F (X,Y, Z) = 0 is given by, up to scalar
multiple,

F (X,Y, Z) = αℓ1ℓ
3 +Q(X,Y, Z)ψ(X,Y, Z), (3)

where α ∈ C\{0} and ψ(X,Y, Z) is a complex quadratic
homogenous form.

Proof.Suppose that the defining equation of C is given by
(3). The contact order of the irreducible conic DP , whose
defining equation isQ(X,Y, Z) = 0, and C at the point P
is given by

IP (F,Q) = IP (αℓ1ℓ
3 +Qψ,Q)

= IP (ℓ1, Q) + IP (ℓ
3, Q)

= 1 + 3IP (ℓ,Q) = 7.

Then (P, TPC,DP ) is a hypersextactic point.
Conversely, Let C be a smooth plane quartic curve has a
hypersextactic point (P, TPC,DP ). Without loss of gen-
erality, we may assume that P = [0 : 0 : 1], TPC :
X = 0 and DP : Y 2 = XZ. Hence L : Y = mX
and R = [1 : m : m2]. It sufficient to prove the state-
ment in the open set where Z ̸= 0; other open sets have
the same argument. Here C is isomorphic to the affine
plane curve defined by f(X,Y ) = 0, where f(X,Y ) =
F (X,Y, 1); moreover DP defined by Y 2 = X. Since P is
a hypersextactic point, then f(Y 2, Y ) = α(1 −mY )Y 7,
for some nonzero constant α. Now consider the polyno-
mial g(X,Y ) = f(X,Y )−α(Y−mX)X3, then g(Y 2, Y ) =
f(Y 2, Y ) − α(1 − mY )Y 7 = 0, consequently the conic
Y 2 −X is a factor of g(X,Y ). Therefore

f(X,Y ) = α(Y −mX)X3 + (Y 2 −X)ψ(X,Y ),

for some complex quadratic polynomial ψ(X,Y ). The ho-
mogenization of the previous equation is

F (X,Y, Z) = α(Y −mX)X3+(Y 2−XZ)ψ(X,Y, Z).
(4)

Lemma 4.Let Vh be the subspace of P14(C)−△ such that
its points corresponding to the forms which define smooth
plane quartic curves having at least one hypersextactic
point (P, TPC,DP ). Then the group of automorphisms
Gh of Vh is given by

Gh =


 1 0 0

m(1− a) a 0
m2(1− a)2 2m(1− a)a a2

 ∈ PGL(3;C)


where a ∈ C\{0}.

Proof.Using Lemma 3, we can assume that

Vh = {F (X,Y, Z) ∈ P14(C)−△ : F (X,Y, Z) as in (4)}.

Then each g ∈ Gh must fix P = [0 : 0 : 1], TPC : X = 0,
DP : Y 2 = XZ and L : Y = mX.

Now, it is easy to prove the following proposition.

Proposition 3.The set S2 is an irreducible, closed and ra-
tional subvariety of codimensional one of M3 −H3.

Proof.Follow the proof of Proposition 2, but note only that
each fiber of ϕ : Vh −→ S2 has dimension 1 = dimGh.
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5. Ordinary sextactic point

Finally, we study

S1 = {m(C) ∈ M3 : C is a smooth plane quartic curve
with an ordinary sextactic point}

Let C be a smooth plane quartic curve has an ordinary
sextactic point (P, TPC,DP ). In this case we have

DP · C = 6P +R1 +R2,

where R1, R2 are two points different from P but not nec-
essarily distinct. Assume that the line L1 : ℓ1(X,Y, Z) =
0 (resp. L2 : ℓ2(X,Y, Z) = 0) joins P and R1(resp. and
R2). We prove the following lemma:

Lemma 5.A smooth plane quartic curveC has at least one
ordinary sextactic point (P, TPC,DP ) if and only if its
defining equation F (X,Y, Z) = 0 is given by, up to scalar
multiple,

F (X,Y, Z) = αℓ1ℓ2ℓ
2+Q(X,Y, Z)ψ(X,Y, Z), (5)

where α ∈ C\{0} and ψ(X,Y, Z) is a complex quadratic
homogenous form.

Proof.Suppose that the defining equation of C is given by
(5). The contact order of the irreducible conic DP , whose
defining equation isQ(X,Y, Z) = 0, and C at the point P
is given by

IP (F,Q) = IP (αℓ1ℓ2ℓ
2 +Qψ,Q)

= IP (ℓ1, Q) + IP (ℓ2, Q) + IP (ℓ
2, Q)

= 1 + 1 + 2IP (ℓ,Q) = 6.

Then (P, TPC,DP ) is an ordinary sextactic point.
Conversely, Let C be a smooth plane quartic curve has
an ordinary sextactic point (P, TPC,DP ). Assume that
P = [0 : 0 : 1], TPC : X = 0 and DP : Y 2 = XZ.
Hence L1 : Y = m1X and R1 = [1 : m1 : m2

1] (resp.
L2 : Y = m2X and R2 = [1 : m2 : m2

2]). It suffi-
cient to prove the statement in the open set where Z ̸= 0.
Here C is isomorphic to the affine plane curve defined by
f(X,Y ) = 0, where f(X,Y ) = F (X,Y, 1); moreover
DP defined by Y 2 = X. Since P is an ordinary sextactic
point, then f(Y 2, Y ) = α(1 − m1Y )(1 − m2Y )Y 6, for
some nonzero constant α. Now consider the polynomial
g(X,Y ) = f(X,Y )−α(Y −m1X)(Y −m2X)X2, then
g(Y 2, Y ) = f(Y 2, Y )−α(1−m1Y )(1−m2Y )Y 6 = 0,
consequently the conic Y 2 − X is a factor of g(X,Y ).
Therefore

f(X,Y ) = α(Y−m1X)(Y−m2X)X2+(Y 2−X)ψ(X,Y ),

for some complex quadratic polynomial ψ(X,Y ). The ho-
mogenization of the previous equation is

F (X,Y, Z) = α(Y −m1X)(Y −m2X)X2

+(Y 2 −XZ)ψ(X,Y, Z). (6)

Lemma 6.Let Vo be the subspace of P14(C)−△ such that
its points corresponding to the forms which define smooth
plane quartic curves having at least one ordinary sextac-
tic point (P, TPC,DP ). Then the group of automorphisms
Go of Vo is the trivial subgroup which contains only the
identity matrix.

Proof.Using Lemma 5, we can assume that

Vo = {F (X,Y, Z) ∈ P14(C)−△ : F (X,Y, Z) as in (6)}.

Then each g ∈ Go must fix P = [0 : 0 : 1], TPC : X = 0,
DP : Y 2 = XZ, L1 : Y = m1X and L2 : Y = m2X.

Now, it is easy to prove the following proposition.

Proposition 4.The set S1 is an irreducible, closed and ra-
tional subvariety of codimensional zero of M3 −H3.

Proof.Note only that each fiber of ϕ : Vo −→ S1 has di-
mension 0 = dimGo and then follow the proof of Propo-
sition 2.

Remark.Proposition 4 tells us that there is no a smooth
plane quartic curve all its sextactic points of higher multi-
plicity.

Putting all together, we proved our main Theorem 1.
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