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Pişcoran Laurian-Ioan1, Ovidiu T. Pop2, Bărbosu Dan3
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Abstract: In this paper with the help of the fundamental polynomials, from general operators, we construct Bézier-type and GBS
Bézier-type surfaces, which correspond to the given control points.
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1. Introduction

Let N be the set of positive integers and N0 = N∪{0}.
In this section we recall some notions which we will

use in this paper.
We consider I ⊂ R, I an interval and we shall use the

function sets: B(I)= { f | f : I →R, f bounded on I}, C(I)=
{ f | f : I →R, f continuous on I} and CB(I) = B(I)∩C(I).
For any x ∈ I, let the functions ψx : I → R, ψx(t) = t − x,
for any t ∈ I and e0 : I → R, e0(x) = 1 for any x ∈ I.

If I ⊂ R is a given interval and f ∈ B(I), then the first
order modulus of smoothness of f is the function ω( f ; ·) :
[0,∞)→ R defined for any δ ≥ 0 by

ω( f ;δ ) = sup
{
| f (x′)− f (x′′)| : x′, x′ ∈ I, |x′− x′′| ≤ δ

}
.

(1)
Let I1, I2,J1,J2 ⊂R be intervals, E(I1 × I2), F(J1 ×J2)

which are subsets of the set of real functions defined on
I1 × I2, respectively J1 × J2 and L : E(I1 × I2) → F(J1 ×
J2) be a linear positive operator. The operator UL : E(I1 ×
I2)→ F((I1 ∩ J1)× (I2 ∩ J2)) defined for any function f ∈
E(I1 × I2), any (x,y) ∈ (I1 ∩ J1)× (I2 ∩ J2) by

(UL f )(x,y) = L( f (x,∗)+ f (·,y)− f (·,∗))(x,y) (2)

is called GBS operator ("Generalized Boolean Sum" oper-
ator) associated to the operator L, where "·" and "∗" stand
for the first and second variable (see [2] or [7]).

If f ∈ E(I1 × I2) and (x,y) ∈ I1 × I2, let the functions
fx = f (x,∗), f y = f (·,y) : I1 × I2 → R, fx(s, t) = f (x, t),
f y(s, t) = f (s,y) for any (s, t) ∈ I1 × I2. Then, we can con-
sider that fx, f y are functions of real variable, fx : I2 → R,
fx(t) = f (x, t) for any t ∈ I2 and f y : I1 → R, f y(s) =
f y(s,y) for any s ∈ I1.

Let I1, I2 ⊂ R be given intervals and f : I1 × I2 → R be
a bounded function. The function ωtotal( f ; · ,∗) : [0,∞)×
[0,∞)→ R, defined for any (δ1,δ2) ∈ [0,∞)× [0,∞) by

ωtotal( f ;δ1,δ2) =sup
{
| f (x,y)− f (x′,y′)| : (x,y),(x′,y′) ∈

I1 × I2, |x− x′| ≤ δ1, |y− y′| ≤ δ2
}

(3)

is called the first order modulus of smoothness of function
f or total modulus of continuity of function f (see [2] or
[7]).

The first order modulus of smoothness for bivariate
functions has properties similar to the properties of the first
modulus of smoothness for univariate functions.

If (Lm)m≥1 is a sequence of operators, Lm : E(I) →
F(J), m ∈ N, for m ∈ N and i ∈ N0 define Tm,i by

(Tm,iLm)(x) = mi (Lmψ i
x
)
(x) (4)

for any x ∈ I∩J, where E(I), F(J) are subsets of the set of
real functions defined on I, respectively J.

In application, we use the fundamental polynomials
from Bernstein and Bleimann-Butzer-Hahn operators.
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For m ∈N, let Bm : C([0,1])→C([0,1]), the Bernstein op-
erators, defined for any function f ∈C([0,1]) by

(Bm f )(x) =
m

∑
k=0

pm,k(x) f
(

k
m

)
(5)

where pm,k(x) are Bernstein polynomials defined as fol-
lows

pm,k(x) =
(

m
k

)
xk(1− x)m−k (6)

for any x ∈ [0,1], and any k ∈ {0,1, ...,m} (see [3] or [8]).

In 1980, G.Bleiman, P.L.Butzer and L.Hahn introduced
in [4] a sequence of linear positive operators (Lm)m≥1, Lm :
CB([0,∞))→CB([0,∞)), defined for any function
f ∈CB([0,∞) by

(Lm f )(x) =
1

(1+ x)m

m

∑
k=0

(
m
k

)
xk f

(
k

m+1− k

)
, (7)

for any x ∈ [0,∞), and any m ∈ N, where CB([0,∞)) =
{ f | f : [0,∞) → R, f bounded and continuous on [0,∞)}.
This class of operators has been intensively studied ob-
taining various generalizations. One of the most recent ap-
proaches aimed at q-Calculus (see [1]).

2. Preliminaries

For the following constructions and the results as well, see
[7].
In this section let pm = m for any m ∈N or pm = ∞ for any
m ∈ N and similarly is defined qn, n ∈ N.

Let I1, I2,J1,J2 ⊂ R be intervals with I1 ∩ J1 ̸= /0 and
I2 ∩ J2 ̸= /0. For m,n ∈ N and k ∈ {0,1, . . . , pm}∩N0, j ∈
{0,1, . . . ,qn}∩N0, we consider φm,k : J1 →R, φm,k(x)≥ 0
for any x ∈ J1, ψn, j : J2 → R, ψn, j(y) ≥ 0 for any y ∈ J2
and the linear positive functionals Am,k : E1(I1)→R, Bn, j :
E2(I2)→ R.

For m,n∈N define the sequences of operators (Lm)m≥1
and (Kn)n≥1 by

(Lm f )(x) =
pm

∑
k=0

φm,k(x)Am,k( f ), (8)

(Kng)(y) =
qn

∑
j=0

ψn, j(y)Bn, j(g) (9)

for any f ∈ E1(I1), g ∈ E2(I2), x ∈ J1 and y ∈ J2, where
E1(I1), E2(I2) are subsets of the set of real functions de-
fined on I1, respectively I2.

In the following let s ∈ N0, s even. We suppose that
the operators (Lm)m≥1, (Kn)n≥1 verify the conditions: there
exist the smallest α j,β j ∈ [0,∞), j ∈ {0,2,4, . . . ,s+ 2},
such that

lim
m→∞

(Tm, jLm)(x)
mα j

= a j(x) (10)

for any x ∈ I1 ∩ J1,

lim
n→∞

(Tn, jKn)(y)

nβ j
= b j(y) (11)

for any y ∈ I2 ∩ J2 and if we note

γs = max
{

αs−2l+β2l
: l ∈

{
0,1, . . . ,

s
2

}}
, (12)

then αs−2l +β2l+2 − γs −2 < 0
αs−2l+2 +β2l − γs −2 < 0
αs−2l+2 +β2l+2 − γs −4 < 0

(13)

where l ∈
{

0,1,2, . . .
s
2

}
.

In the following we consider the set E(I1×I2) =
{

f | f :
I1 × I2 → R, fx ∈ E2(I2) for any x ∈ I1 and f y ∈ E1(I1) for
any y ∈ I2

}
.

For m,n∈N, let the linear positive functionals Am,n,k, j :
E(I1 × I2)→ R with the property

Am,n,k, j

(
(·− x)i(∗− y)l

)
= Am,k

(
(·− x)i)Bn, j

(
(∗− y)l

)
(14)

for any k∈{0,1, . . . , pm}∩N0, j ∈{0,1, . . . ,qn}∩N0, i, l ∈
{0,1, . . . ,s} and x ∈ I1, y ∈ I2.
Let m,n ∈ N. The operator L∗

m,n defined for any function
f ∈ E(I1 × I2) and any (x,y) ∈ J1 × J2 by

(
L∗

m,n f
)
(x,y) =

pm

∑
k=0

qn

∑
j=0

φm,k(x)ψn, j(y)Am,n,k, j( f ) (15)

is named the bivariate operator of LK-type.
In the following we consider that

(Tm,0Lm)(x) = Am,0(e0) = 1 (16)

for any x ∈ I1 ∩ J1, m ∈ N and

(Tn,0Kn)(y) = Bn,0(e0) = 1 (17)

for any y ∈ I2 ∩ J2, n ∈ N.
From (16), (17) it results immediately that

pm

∑
k=0

φm,k(x) = 1 (18)

for any x ∈ I1 ∩ J1, m ∈ N,

qn

∑
j=0

ψn, j(y) = 1 (19)

for any y ∈ I2 ∩ J2, n ∈ N and α0 = β0 = 0.
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In the following, in addition we suppose that

αs+2 < αs +2, βs+2 < βs +2 (20)

and for any f ∈ E(I1 × I2) we have

Am,n,k, j( fx) = Bn, j( fx), (21)

Am,n,k, j( f y) = Am,k( f y), (22)

Am,n,k, j( f ) = Am,k(Bn, j( fx)) = Bn, j(Am,k( f y)) (23)

for any x ∈ I1, y ∈ I2, k ∈ {0,1, . . . , pm}∩N0,
j ∈ {0,1, . . . ,qn}∩N0; m,n ∈ N.

Now, let
(
UL∗

m,m
)

m,n≥1 be the GBS operators associ-

ated to the
(
L∗

m,n
)

m,n≥1 operators. If m,n ∈ N, then UL∗
m,n

have the form(
UL∗

m,n f
)
(x,y) = (Kn fx)(y)+(Lm f y)(x)−

(
L∗

m,n f
)
(x,y)

(24)
for any (x,y) ∈ (I1 ∩ J1)× (I2 ∩ J2), any f ∈ E(I1 × I2).
Now, we recall two results from [7], which are obtained
for s = 0 and which we will use in this paper.

Theorem 1.Let f : I1 × I2 → R be a bivariate function.
If (x,y) ∈ (I1 ∩ J1)× (I2 ∩ J2) and f is continuous in

(x,y), then

lim
m→∞

(
L∗

m,m f
)
(x,y) = f (x,y) (25)

and
lim

m→∞

(
UL∗

m,m f
)
(x,y) = f (x,y). (26)

Assume that f is continuous on (I1 ∩ J1)× (I2 ∩ J2) and
there exist the intervals K1 ⊂ I1∩J1, K2 ⊂ I2∩J2 such that
there exist m(0) ∈ N and a2,b2 ∈ R depending on K1, re-
spectively K2 so that for any m ∈ N, m ≥ m(0) and any
x ∈ K1, y ∈ K2, we have

(Tm,2Lm)(x)
mα2

≤ a2 (27)

and
(Tm,2Km)(y)

mβ2
≤ b2. (28)

Then the convergence given in (25) and (26) are uniform
on K1 ×K2 and

∣∣(L∗
m,m f

)
(x,y)− f (x,y)

∣∣≤ (29)

(1+a2)(1+b2)ωtotal

(
f ;

1√
mδ0

,
1√
mδ0

)
and

∣∣(UL∗
m,m f

)
(x,y)− f (x,y)

∣∣≤ (30)

≤ (1+b2)ω
(

fx;
1√

m2−β2

)
+(1+a2)ω

(
f y;

1√
m2−α2

)
+(1+a2)(1+b2)ωtotal

(
f ;

1√
mδ0

,
1√
mδ0

)
≤

(1+b2)ω
(

fx;
1√
mδ0

)
+(1+a2)ω

(
f y;

1√
mδ0

)
+

(1+a2)(1+b2)ωtotal

(
f ;

1√
mδ0

,
1√
mδ0

)
for any (x,y) ∈ K1 ×K2 and any m ∈ N, m ≥ m(0), where

δ0 =−max
{

β2 −2,α2 −2,
1
2
(α2 +β2 −4)

}
.

3. Bézier type surfaces

Let K1, K2 be the intervals from the Theorem 1. For m,n ∈
N, let the nodes xm,k ∈ K1, yn, j ∈ K2, zm,n,k, j ∈ R where
k ∈ {0,1, ..., pm}∩N0 and
j ∈ {0,1,2, ...,qn}∩N0.

In the following, we consider a continuous function on
K1 ×K2, f : K1 ×K2 → R, so that f (xm,k;yn, j) = zm,n,k, j,
where m,n ∈ N, k ∈ {0,1, ..., pm}∩N0
and j ∈ {0,1,2, ...,qn}∩N0.

Definition 1.Let m,n ∈ N. The point
M(m,n)

k, j = (xm,k;yn, j;zm,n,k, j) ∈ K1 ×K2 ×R, where
k∈{0,1, ..., pm}∩N0 and j ∈{0,1,2, ...,qn}∩N0 is called
control point of (m,n) order.

Definition 2.Let m,n ∈ N. The LK-Bézier surface, respec-
tively GBS-Bézier surface of (m,n) order, which corre-
spond to the control points M(m,n)

k, j , k ∈ {0,1, ..., pm}∩N0

and j ∈ {0,1,2, ...,qn}∩N0 are defined by

(Bm,n)(u,v) =
pm

∑
k=0

qn

∑
j=0

φm,k(u)ψn, j(v)M
(m,n)
k, j , (31)

respectively

(Bm,n)(u,v) =
qn

∑
j=0

ψn, j(v)M
(n)
j (u)+

pm

∑
k=0

φm,k(u)N
(m)
k (v)

(32)

−
pm

∑
k=0

qn

∑
j=0

φm,k(u)ψn, j(v)M
(m,n)
k, j =

pm

∑
k=0

qn

∑
j=0

φm,k(u)ψn, j(v)(M
(n)
j (u)+N(m)

k (v)−M(m,n)
k, j ).
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where (u,v) ∈ K1 ×K2, M(n)
j (u) = (u;yn, j;z(n)1, j(u)),

N(m)
k (v) = (xm,k;v;z(m)

2,k (v)),z
(n)
1, j(u) = f (u;yn, j), z(m)

2,k (v) =
f (xm,k;v),
k ∈ {0,1, ..., pm}∩N0 and j ∈ {0,1,2, ...,qn}∩N0 .

In the following, we consider that Am,n,k, j( fu) =
Bn, j( fu) = f (u,yn, j), Am,n,k, j( f v) = Am,k( f v) = f (xm,k,v),
Am,n,k, j( f ) = f (xm,k,yn, j) for any (u,v) ∈ K1 ×K2,
k ∈ {0,1, ..., pm}∩N0 , j ∈ {0,1,2, ...,qn}∩N0 and
m,n ∈ N .
Then, from (31), (18) and (19) one obtains

(Bm,n)(u,v) = ((Lme1(u);Kne1(v);(L∗
m,n f )(u,v)), (33)

(UBm,n)(u,v) = (u;v;(UL∗
m,n f )(u,v)), (34)

for any (u,v) ∈ K1 ×K2, k ∈ {0,1, ..., pm}∩N0 ,
j ∈ {0,1,2, ...,qn}∩N0 and m,n ∈ N .
In the examples from this paper, we have that α2 = β2 = 1,
γ0 = 1 and exist the constants a2,b2 verifying (27), (28) in
every application. Taking Theorem 1 into account for the
construction above, the following theorem holds.

Theorem 2.The following convergence

lim
m→∞

(Bm,m)(u,v) = (u;v; f (u,v)) (35)

and
lim

m→∞
(UBm,m)(u,v) = (u;v; f (u,v)) (36)

are uniform in K1 ×K2

Exists m(0) ∈ N so that∣∣(L∗
m,m f )(u,v))− f (u,v)

∣∣≤
(1+a2)(1+b2)ωtotal

(
f ;

1√
m
,

1√
m

) (37)

and ∣∣(UL∗
m,m f )(u,v))− f (u,v)

∣∣≤
(1+b2)ω

(
fu;

1√
m

)
+(1+a2)ω

(
f v;

1√
m

)
+

(1+a2)(1+b2)ωtotal

(
f ;

1√
m
,

1√
m

) (38)

for any (u,v) ∈ K1 ×K2 and any m ∈ N, m ≥ m(0).
Next, in applications we consider m = n = 1 and let be the
function
f : [0,∞)×[0,∞)→R, f (u,v)= u2v for any (u,v)∈ [0,∞)×
[0,∞).
Also, we take x1,0 =−1, x1,1 = 1, y1,0 = 0, y1,1 = 2, z1,1,0,0 =
−2, z1,1,0,1 =−6, z1,1,1,0 = 2 z1,1,1,1 = 2,and then the con-
trol points of (1,1) order are M(1,1)

0,0 = (−1;0;−2), M(1,1)
0,1 =

(−1;2;−6) M(1,1)
1,0 = (1;0;2),M(1,1)

1,1 = (1;2;2). One ob-

tains M(1)
0 (u) = (u;y1,0; f (u;y1,0)) = (u;0;0), M(1)

1 (u) =
(u;y1,1; f (u;y1,1)) = (u;2;2u2),

N(1)
0 (v) = (x1,0;v; f (x1,0;v)) = (−1;v;v) and

N(1)
1 (v) = (x1,1;v; f (x1,1;v)) = (1;v;v).

In the below figure is the graphical representation of
the function f, which have the following parametric equa-
tion:

 x(u,v) = u
y(u,v) = v
z(u,v) = u2v,

where (u,v) ∈ [0,∞)× [0,∞).

Application 1
Let K1 = K2 = [0,1], φm,k(u) = pm,k(u), ψn, j(v) = pn, j(v),
u,v ∈ [0,1], m,n ∈N, k ∈ {0,1, ...,m}, j ∈ {0,1, ...,n} and
using the above conditions one obtains:

(B1,1)(u,v)= p1,0(u)p1,0(v)M
(1,1)
0,0 + p1,1(u)p1,0(v)M

(1,1)
1,0 +

p1,0(u)p1,1(v)M
(1,1)
0,1 + p1,1(u)p1,1(v)M

(1,1)
1,1

and using this, one obtains:
(B1,1)(u,v) = (−1 + 2u;2v;−2 + 4u − 4v + 4uv), u,v ∈
[0,1]

The parametric equations of the above surface are:

 x(u,v) =−1+2u
y(u,v) = 2v
z(u,v) =−2+4u−4v+4uv,

where u,v ∈ [0,1] and the graph of this surface is plotted
below:
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On the other hand, one obtains

(UB1,1)(u,v) =
(

p1,0(v)M
(1)
0 (u)+ p1,1(v)M

(1)
1 (u)

)
+

(p1,0(u)N
(1)
0 (v)+ p1,1(u)N

(1)
1 (v))−(B1,1)(u,v) =

(u;v;2−4u+5v−4uv+2u2v),

u,v∈ [0,1], and using this one obtains the parametric equa-
tions of the GBS-surface, which are x(u,v) = u

y(u,v) = v
z(u,v) = 2−4u+5v−4uv+2u2v,

where u,v ∈ [0,1] and the graph of this surface is plotted
below:

Application 2

Let K1 = K2 = [0,∞), φm,k(u) = 1
(1+u)m

(
m
k

)
uk,

ψn, j(v) = 1
(1+v)n

(
n
j

)
v j, u,v ∈ [0,∞), m,n ∈ N,

k ∈ {0,1, ...,m}, j ∈ {0,1, ...,n} and using the above con-
ditions one obtains:

(B1,1)(u,v)=φ1,0(u)φ1,0(v)M
(1,1)
0,0 +φ1,1(u)φ1,0(v)M

(1,1)
1,0 +

φ1,0(u)φ1,1(v)M
(1,1)
0,1 +φ1,1(u)φ1,1(v)M

(1,1)
1,1

and using this, one obtains:
(B1,1)(u,v) = ( u−1

1+u ; 2v
1+v ; −2+2u−6v+2uv

(1+u)(1+v) ).
The parametric equations of the above surface are:

x(u,v) = u−1
1+u

y(u,v) = 2v
1+v

z(u,v) = −2+2u−6v+2uv
(1+u)(1+v) ,

where u,v ∈ [0,∞) and the graph of this surface is plotted
below:

The GBS-surface is:

(UB1,1)(u,v) =
(

φ1,0(v)M
(1)
0 (u)+φ1,1(v)M

(1)
1 (u)

)
+

(
φ1,0(u)N

(1)
0 (v)+φ1,1(u)N

(1)
1 (v)

)
− (B1,1)(u,v) =

=

(
u;v;

2u3v+2u2v+2uv2 + v2 +7v−uv+2−2u
(1+u)(1+ v)

)
and 

x(u,v) = u
y(u,v) = v
z(u,v) = 2u3v+2u2v+2uv2+v2+7v−uv+2−2u

(1+u)(1+v) ,

where u,v ∈ [0,∞) and the graph of this surface is plotted
below:
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Application 3
Let K1 = [0,1],K2 = [0,∞), φm,k(u) = pm,k(u), ψn, j(v) =

1
(1+v)n

(
n
j

)
v j, u∈ [0,1],v∈ [0,∞), m,n∈N, k∈{0,1, ...,m},

j ∈ {0,1, ...,n} and then:

(B1,1)(u,v)=φ1,0(u)ψ1,0(v)M
(1,1)
0,0 +φ1,1(u)ψ1,0(v)M

(1,1)
1,0 +

φ1,0(u)ψ1,1(v)M
(1,1)
0,1 +φ1,1(u)ψ1,1(v)M

(1,1)
1,1

and using this, one obtains:
(B1,1)(u,v) = (2u−1; 2v

1+v ; −2+4u−6v+8uv
1+v ),

(UB1,1)(u,v) =
(

ψ1,0(v)M
(1)
0 (u)+ψ1,1(v)M

(1)
1 (u)

)
+

(
φ1,0(u)N

(1)
0 (v)+φ1,1(u)N

(1)
1 (v)

)
− (B1,1)(u,v) =

=

(
u;v;

2u2v−8uv−4u+ v2 +7v+2
1+ v

)
.

The Bézier surfaces and GBS-Bézier surfaces from this ap-
plication are given parametrically by

x(u,v) = 2u−1
y(u,v) = 2v

1+v
z(u,v) = −2+4u−6v+8uv

1+v ,

respectively
x(u,v) = u
y(u,v) = v
z(u,v) = 2u2v−8uv−4u+v2+7v+2

1+v ,

where u ∈ [0,1),v ∈ [0,∞) and the graphs of these surfaces
are plotted below:
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Pişcoran Laurian Ioan is
a lecturer at Technical Univer-
sity of Cluj-Napoca, North Uni-
versity Center of Baia Mare
(Romania). He obtained his
PhD. at “Babeş-Bolyai ” Uni-
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Professor Bărbosu Dan was
born in 21.12.1955 in Baia-
Mare, Romania.
He was a very good student of
the Faculty of Mathematics and
Informatics of the University
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