A Gronwall Inequality of Fractional Variable Order

George A. Anastassiou ${ }^{1, *}$ and Vassilis G. Papanicolaou ${ }^{2}$

${ }^{1}$ Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A.
${ }^{2}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
Received: 2 Sep. 2020, Revised: 18 Oct. 2020, Accepted: 24 Oct. 2020
Published online: 1 Apr. 2021

Abstract

This paper presents the first generalized fractional variable order Gronwall inequality.

Keywords: Fractional calculus of variable order, Gronwall inequality, integral inequality.

1 Introduction

The following generalized Gronwall inequality for fractional differential equations (of constant order) was established in [1]:

Theorem 1. Suppose that $a(t)$ is a nonnegative function locally integrable on $[0, T)$ (for some $T \leq \infty$), $g(t)$ is a nonnegative, nondecreasing, and bounded continuous function defined on $[0, T)$ and $\beta_{0}>0$. If $u(t)$ is nonnegative and locally integrable on $[0, T)$ satisfying

$$
\begin{equation*}
u(t) \leq a(t)+g(t) \int_{0}^{t}(t-s)^{\beta_{0}-1} u(s) d s, \quad 0 \leq t<T \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq a(t)+\int_{0}^{t}\left\{\sum_{n=1}^{\infty} \frac{\left[\Gamma\left(\beta_{0}\right) g(t)\right]^{n}}{\Gamma\left(n \beta_{0}\right)}(t-s)^{n \beta_{0}-1} a(s)\right\} d s, \quad 0 \leq t<T \tag{2}
\end{equation*}
$$

where $\Gamma(\cdot)$ is the Gamma function.
The idea of the proof is to introduce the Volterra-type (linear) operator

$$
\begin{equation*}
B \phi(t):=g(t) \int_{0}^{t}(t-s)^{\beta_{0}-1} \phi(s) d s, \quad 0 \leq t<T \tag{3}
\end{equation*}
$$

so that (1) can be written as

$$
\begin{equation*}
u(t) \leq a(t)+B u(t), \quad 0 \leq t<T, \tag{4}
\end{equation*}
$$

and hence, by repeated iteration of (4),

$$
\begin{equation*}
u(t) \leq \sum_{k=0}^{n-1} B^{k} a(t)+B^{n} u(t), \quad 0 \leq t<T \tag{5}
\end{equation*}
$$

The remaining part of the proof of Theorem 1 [1] is the inductive justification of the inequality

$$
\begin{equation*}
B^{n} \phi(t) \leq \frac{\left[\Gamma\left(\beta_{0}\right) g(t)\right]^{n}}{\Gamma\left(n \beta_{0}\right)} \int_{0}^{t}(t-s)^{n \beta_{0}-1} \phi(s) d s, \quad 0 \leq t<T, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

[^0]for any function $\phi(t) \geq 0$ which is locally integrable on $[0, T)$. An immediate implication of (6) is that
\[

$$
\begin{equation*}
B^{n} \phi(t) \rightarrow 0 \quad \text { as } n \rightarrow+\infty \quad \text { for any } t \in[0, T) \tag{7}
\end{equation*}
$$

\]

and the validity of (2) follows, by using (6) and (7) in (5).
Remark 1. In the statement of Theorem 1, the assumption that $g(t)$ is bounded is not necessary, since for any fixed $t \in[0, T)$ the monotonicity of g implies that $g(s) \leq g(t)<\infty$ for $0 \leq s \leq t$. Also, the assumption that $g(t)$ is continuous is not used in the proof of the theorem, hence it, too, is not necessary. Therefore, the theorem remains true for any nonnegative increasing function $g(t)$ defined on $[0, T)$. Actually, there is an immediate extension of Theorem 1 to the case where $g(t)$ is any function which is locally bounded in $[0, T)$. In this case we can just set

$$
\begin{equation*}
G(t):=\sup _{s \in[0, t]}\{g(s), 0\}, \quad 0 \leq t<T, \tag{8}
\end{equation*}
$$

so that $G(t)$ is nonnegative, increasing, and satisfies $G(t) \geq g(t)$ for $t \in[0, T)$, and then apply Theorem 1 with $G(t)$ in place of $g(t)$.

2 Main results

In this short note we propose an extension of Theorem 1 to the case where the constant order β_{0} is replaced by a strictly positive variable order $\beta(t)$. Our motivation came from the recent monograph [2], which contains an extensive discussion on fractional integrals and derivatives of variable order and their applications.

Theorem 2. Suppose that $a(t)$ is a nonnegative function locally integrable on $[0, T)$ for some $T<\infty, g(t)$ is a nonnegative and nondecreasing function defined on $[0, T)$, and $\beta(t)$ is a (Lebesgue) measurable function satisfying

$$
\begin{equation*}
0<\beta_{0} \leq \beta(t) \leq A<\infty, \quad 0 \leq t<T . \tag{9}
\end{equation*}
$$

If $u(t)$ is nonnegative and locally integrable on $[0, T)$ satisfying the inequality

$$
\begin{equation*}
u(t) \leq a(t)+g(t) \int_{0}^{t}(t-s)^{\beta(s)-1} u(s) d s, \quad 0 \leq t<T \tag{10}
\end{equation*}
$$

then

$$
\begin{align*}
u(t) & \leq a(t)+\sum_{k=1}^{\infty} L^{k} a(t) \\
& \leq a(t)+\int_{0}^{t}\left\{\sum_{n=1}^{\infty} \frac{\left[\Gamma\left(\beta_{0}\right) K g(t)\right]^{n}}{\Gamma\left(n \beta_{0}\right)}(t-s)^{n \beta_{0}-1} a(s)\right\} d s, \quad 0 \leq t<T \tag{11}
\end{align*}
$$

where L is the Volterra-type (linear) operator

$$
\begin{equation*}
L \phi(t):=g(t) \int_{0}^{t}(t-s)^{\beta(s)-1} \phi(s) d s, \quad 0 \leq t<T \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
K:=\max \{1, T\}^{A-\beta_{0}} . \tag{13}
\end{equation*}
$$

Proof. Observe that from (9) we get (since $\beta(s) \geq \beta_{0}$)

$$
\frac{(t-s)^{\beta(s)-1}}{(t-s)^{\beta_{0}-1}}=(t-s)^{\beta(s)-\beta_{0}} \leq \max \{1, T\}^{A-\beta_{0}}, \quad 0 \leq s<t<T
$$

that is

$$
\begin{equation*}
(t-s)^{\beta(s)-1} \leq \max \{1, T\}^{A-\beta_{0}}(t-s)^{\beta_{0}-1}, \quad 0 \leq s<t<T \tag{14}
\end{equation*}
$$

Therefore, (10) implies

$$
\begin{equation*}
u(t) \leq a(t)+K g(t) \int_{0}^{t}(t-s)^{\beta_{0}-1} u(s) d s, \quad 0 \leq t<T \tag{15}
\end{equation*}
$$

where K is given by (13). Since $\beta_{0}>0$ is a constant, we can apply Theorem 1 to (15), where the operator B now has the slightly different form:

$$
\begin{equation*}
B \phi(t)=K g(t) \int_{0}^{t}(t-s)^{\beta_{0}-1} \phi(s) d s, \quad 0 \leq t<T . \tag{16}
\end{equation*}
$$

As in the proof of Theorem 1,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} B^{n} u(t)=0, \quad 0 \leq t<T \tag{17}
\end{equation*}
$$

Now, it is clear from (12), (14), and (16) that for $u(t) \geq 0$ we have

$$
\begin{equation*}
0 \leq L u(t) \leq B u(t), \quad 0 \leq t<T \tag{18}
\end{equation*}
$$

Hence, by using (17) in (18) we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} L^{n} u(t)=0, \quad 0 \leq t<T \tag{19}
\end{equation*}
$$

and since (10) can be written as

$$
\begin{equation*}
u(t) \leq a(t)+L u(t), \quad 0 \leq t<T \tag{20}
\end{equation*}
$$

formula (11) follows easily from (19), (18) and Theorem 1.
Notice that, as in the standard Gronwall inequality, the value of (11) lies in the fact that it gives a bound for $u(t)$ in terms of $a(t), g(t)$, and $\beta(t)$.

As explained in Remark 1, in the case where $g(t)$ is any locally bounded function in $[0, T)$, Theorem 2 holds by replacing $g(t)$ with $G(t)$ of (8).

Corollary 1. All as in Theorem 2 with $g(t)=b \geq 0$ constant. If

$$
\begin{equation*}
u(t) \leq a(t)+b \int_{0}^{t}(t-s)^{\beta(s)-1} u(s) d s, \quad 0 \leq t<T \tag{21}
\end{equation*}
$$

then

$$
\begin{align*}
u(t) & \leq a(t)+\sum_{k=1}^{\infty} L_{1}^{k} a(t) \\
& \leq a(t)+\int_{0}^{t}\left\{\sum_{n=1}^{\infty} \frac{\left[\Gamma\left(\beta_{0}\right) K b\right]^{n}}{\Gamma\left(n \beta_{0}\right)}(t-s)^{n \beta_{0}-1} a(s)\right\} d s, \quad 0 \leq t<T \tag{22}
\end{align*}
$$

where L_{1} is the Volterra operator

$$
\begin{equation*}
L_{1} \phi(t):=b \int_{0}^{t}(t-s)^{\beta(s)-1} \phi(s) d s, \quad 0 \leq t<T \tag{23}
\end{equation*}
$$

Corollary 2. All as in Theorem 2 with $a(t)$ be a nondecreasing function on $[0, T)$. Then

$$
\begin{equation*}
u(t) \leq a(t) E_{\beta_{0}}\left(K g(t) \Gamma\left(\beta_{0}\right) t^{\beta_{0}}\right), \quad 0 \leq t<T \tag{24}
\end{equation*}
$$

where $E_{\beta_{0}}(\cdot)$ is the Mittag-Leffler function defined by

$$
E_{\beta_{0}}(z):=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma\left(k \beta_{0}+1\right)} .
$$

Proof. The assumptions of Theorem 2 and (11) imply

$$
\begin{align*}
u(t) & \leq a(t)\left(1+\int_{0}^{t}\left\{\sum_{n=1}^{\infty} \frac{\left[\Gamma\left(\beta_{0}\right) K g(t)\right]^{n}}{\Gamma\left(n \beta_{0}\right)}(t-s)^{n \beta_{0}-1}\right\} d s\right) \\
& =a(t) \sum_{n=0}^{\infty} \frac{\left[\Gamma\left(\beta_{0}\right) K g(t) t^{\beta_{0}}\right]^{n}}{\Gamma\left(n \beta_{0}+1\right)}=a(t) E_{\beta_{0}}\left(K g(t) \Gamma\left(\beta_{0}\right) t^{\beta_{0}}\right) . \tag{25}
\end{align*}
$$

Gronwall inequality of fractional variable order is expected to find wide applications in the forthcoming studies of fractional differential equations of variable order.

References

[1] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (4), 1075-1081 (2007).
[2] X.-J. Yang, General fractional derivatives. Theory, methods and applications, CRC Press, Taylor \& Francis Group, Boca Raton, FL, 2019.

[^0]: * Corresponding author e-mail: ganastss@memphis.edu

