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1 Introduction

The following generalized Gronwall inequality for fractional differential equations (of constant order) was established
in [1]:

Theorem 1. Suppose that a(t) is a nonnegative function locally integrable on [0,T ) (for some T ≤ ∞), g(t) is a
nonnegative, nondecreasing, and bounded continuous function defined on [0,T ) and β0 > 0. If u(t) is nonnegative and
locally integrable on [0,T ) satisfying

u(t)≤ a(t)+ g(t)

∫ t

0
(t − s)β0−1u(s)ds, 0 ≤ t < T, (1)

then

u(t)≤ a(t)+

∫ t

0

{

∞

∑
n=1

[

Γ (β0)g(t)
]n

Γ (nβ0)
(t − s)nβ0−1a(s)

}

ds, 0 ≤ t < T, (2)

where Γ (·) is the Gamma function.

The idea of the proof is to introduce the Volterra-type (linear) operator

Bφ(t) := g(t)

∫ t

0
(t − s)β0−1φ(s)ds, 0 ≤ t < T, (3)

so that (1) can be written as

u(t)≤ a(t)+Bu(t), 0 ≤ t < T, (4)

and hence, by repeated iteration of (4),

u(t)≤
n−1

∑
k=0

Bka(t)+Bnu(t), 0 ≤ t < T. (5)

The remaining part of the proof of Theorem 1 [1] is the inductive justification of the inequality

Bnφ(t)≤

[

Γ (β0)g(t)
]n

Γ (nβ0)

∫ t

0
(t − s)nβ0−1φ(s)ds, 0 ≤ t < T, n = 1,2, . . . , (6)
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for any function φ(t)≥ 0 which is locally integrable on [0,T ). An immediate implication of (6) is that

Bnφ(t)→ 0 as n →+∞ for any t ∈ [0,T ), (7)

and the validity of (2) follows, by using (6) and (7) in (5).

Remark 1. In the statement of Theorem 1, the assumption that g(t) is bounded is not necessary, since for any fixed
t ∈ [0,T ) the monotonicity of g implies that g(s) ≤ g(t) < ∞ for 0 ≤ s ≤ t. Also, the assumption that g(t) is continuous
is not used in the proof of the theorem, hence it, too, is not necessary. Therefore, the theorem remains true for any
nonnegative increasing function g(t) defined on [0,T ). Actually, there is an immediate extension of Theorem 1 to the case
where g(t) is any function which is locally bounded in [0,T ). In this case we can just set

G(t) := sup
s∈[0,t]

{g(s),0}, 0 ≤ t < T, (8)

so that G(t) is nonnegative, increasing, and satisfies G(t) ≥ g(t) for t ∈ [0,T ), and then apply Theorem 1 with G(t) in
place of g(t).

2 Main results

In this short note we propose an extension of Theorem 1 to the case where the constant order β0 is replaced by a strictly
positive variable order β (t). Our motivation came from the recent monograph [2], which contains an extensive discussion
on fractional integrals and derivatives of variable order and their applications.

Theorem 2. Suppose that a(t) is a nonnegative function locally integrable on [0,T ) for some T < ∞, g(t) is a
nonnegative and nondecreasing function defined on [0,T ), and β (t) is a (Lebesgue) measurable function satisfying

0 < β0 ≤ β (t)≤ A < ∞, 0 ≤ t < T. (9)

If u(t) is nonnegative and locally integrable on [0,T ) satisfying the inequality

u(t)≤ a(t)+ g(t)

∫ t

0
(t − s)β (s)−1u(s)ds, 0 ≤ t < T, (10)

then

u(t)≤ a(t)+
∞

∑
k=1

Lka(t)

≤ a(t)+

∫ t

0

{

∞

∑
n=1

[

Γ (β0)Kg(t)
]n

Γ (nβ0)
(t − s)nβ0−1a(s)

}

ds, 0 ≤ t < T, (11)

where L is the Volterra-type (linear) operator

Lφ(t) := g(t)

∫ t

0
(t − s)β (s)−1φ(s)ds, 0 ≤ t < T, (12)

and
K := max{1,T}A−β0 . (13)

Proof. Observe that from (9) we get (since β (s)≥ β0)

(t − s)β (s)−1

(t − s)β0−1
= (t − s)β (s)−β0 ≤ max{1,T}A−β0 , 0 ≤ s < t < T,

that is
(t − s)β (s)−1 ≤ max{1,T}A−β0(t − s)β0−1

, 0 ≤ s < t < T. (14)

Therefore, (10) implies

u(t)≤ a(t)+Kg(t)

∫ t

0
(t − s)β0−1u(s)ds, 0 ≤ t < T, (15)
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where K is given by (13). Since β0 > 0 is a constant, we can apply Theorem 1 to (15), where the operator B now has the
slightly different form:

Bφ(t) = Kg(t)

∫ t

0
(t − s)β0−1φ(s)ds, 0 ≤ t < T. (16)

As in the proof of Theorem 1,
lim

n→+∞
Bnu(t) = 0, 0 ≤ t < T. (17)

Now, it is clear from (12), (14), and (16) that for u(t)≥ 0 we have

0 ≤ Lu(t)≤ Bu(t), 0 ≤ t < T. (18)

Hence, by using (17) in (18) we get
lim

n→+∞
Lnu(t) = 0, 0 ≤ t < T, (19)

and since (10) can be written as
u(t)≤ a(t)+Lu(t), 0 ≤ t < T, (20)

formula (11) follows easily from (19), (18) and Theorem 1. �

Notice that, as in the standard Gronwall inequality, the value of (11) lies in the fact that it gives a bound for u(t) in
terms of a(t), g(t), and β (t).

As explained in Remark 1, in the case where g(t) is any locally bounded function in [0,T ), Theorem 2 holds by
replacing g(t) with G(t) of (8).

Corollary 1. All as in Theorem 2 with g(t) = b ≥ 0 constant. If

u(t)≤ a(t)+ b

∫ t

0
(t − s)β (s)−1u(s)ds, 0 ≤ t < T, (21)

then

u(t)≤ a(t)+
∞

∑
k=1

Lk
1a(t)

≤ a(t)+

∫ t

0

{

∞

∑
n=1

[

Γ (β0)Kb
]n

Γ (nβ0)
(t − s)nβ0−1a(s)

}

ds, 0 ≤ t < T, (22)

where L1 is the Volterra operator

L1φ(t) := b

∫ t

0
(t − s)β (s)−1φ(s)ds, 0 ≤ t < T. (23)

Corollary 2. All as in Theorem 2 with a(t) be a nondecreasing function on [0,T ). Then

u(t)≤ a(t)Eβ0

(

Kg(t)Γ (β0)t
β0

)

, 0 ≤ t < T, (24)

where Eβ0
(·) is the Mittag-Leffler function defined by

Eβ0
(z) :=

∞

∑
k=0

zk

Γ (kβ0 + 1)
.

Proof. The assumptions of Theorem 2 and (11) imply

u(t)≤ a(t)

(

1+

∫ t

0

{

∞

∑
n=1

[

Γ (β0)Kg(t)
]n

Γ (nβ0)
(t − s)nβ0−1

}

ds

)

= a(t)
∞

∑
n=0

[

Γ (β0)Kg(t)tβ0
]n

Γ (nβ0 + 1)
= a(t)Eβ0

(

Kg(t)Γ (β0)t
β0

)

. (25)

�

Gronwall inequality of fractional variable order is expected to find wide applications in the forthcoming studies of
fractional differential equations of variable order.
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