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Abstract: The accuracy of a model is required to represent the integrated device in any electrical system for quality assurance. This

article intends to measure the accurate and realistic impedance of the inductor, called pseudo-inductance. For this purpose, we have

applied fractional-order modeling and a simple scheme to estimate the impedance value of the inductor (or inductive coils). Also, the

approach does not require any high-end measurement device like the impedance meter. The complexity of the fractional-order derivative

for identification purpose is simplified using the block-pulse-operational-matrix. The complexity of the fractional-order derivative for

identification purpose is simplified using the block-pulse operational matrix to approximate the time response behaviour in terms of the

inductor model’s parameters. The study goes on to highlight the importance of fractional derivative and its interpretation in terms of

the phase difference. The proposed model can be used to accurately model any inductor based on its time response data. The purpose

of the study is validated through the experimental results.
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1 Introduction

Electrical passive elements are widely used in various systems such as wireless or wired systems, power transfer systems,
transformers for high frequencies, intrabody communications, and many more [1]. The most common passive element is
an inductor that is usually designed by winding the wire into a coil around a core, which can act as a storage device for
energy, line filter for powerline and frequency selector for oscillator [2,3]. In principle, it is activated by applying voltage
or current source and takes advantage of the wire windings to induce a magnetic field within the core resulting in a flow of
current through the core windings. Thus, the inductor’s impedance varies with the resistance of the wire or material type
used or the input signal. It is found commonly the impedance of an inductor can be modelled by a simple series circuit, a
resistor (R) and an inductor (L). It is written as [4].

Z(s) = Ls+R (1)

In theory, an inductor introduces an input/output phase shift of π/2 rads but this is not always true in reality. Therefore,
it is a practical question to know the inductor’s impedance equivalently same as its real value. With the knowledge of
fractional theory in recent years, the integer order transfer function of a circuit can be converted equivalently to any
real order for both the inductor and capacitor based circuits [5]. Fractional calculus has become a very popular concept
nowadays in system modeling, especially in science and engineering. The mathematical phenomena of fractional-order
calculus describe real systems more accurately compared to the normal integer-order methods [6,7]. It considers complex
systems involving impedance modeling, quantum mechanics, and memristor systems as fractional-order system has an
unlimited memory [8]. The fractional transfer function determined from the response of the system closely features the
original response [9, 10]. In fact, fractional calculus helps to improve accuracy in control engineering and better portrays
dynamic behavior [11]. Taking this into account, the impedance model represented in (1) for the inductor can be rewritten
using fractional calculus as given below.

Z(s) = Lα sα +R, (2)
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where, α is a real number (0 < α ≤ 1), sα is defined as fractional derivative and Lα is a fractional inductance. In theory,
Lα is called the pseudo-inductance in units of H/sec1−α . It is found in the literature that there is a huge ongoing effort to
build fractal elements for various applications [5, 6].

Inductors are being conventionally modeled with resistance in series and parallel. These resistances represent coil and
core losses. Also, there is a parasitic capacitance that is formed in separating insulating layers for the coil windings. Since
there is a frequency dependent resistance loss induced, it makes the conventional model less easy to analyze regarding
the amplitude response interval [12]. Similar work conducted by Abuaisha and Kertzscher [13] studied the conventional
and fractional method of modeling an interchangeable core for an electrical coil. It is made known that to precisely model
electrical machines, the present electrical coil (non-linear inductor) must also be accurately modeled over a broad range
of frequencies. Moreover, the conventional method of modeling was sufficient for only a lower range of frequency due to
its existing losses. The analysis of the conventional and fractional order methods concluded that through the calculation
of the errors, the fractional-order modeling was a better method and shows the realistic behavior of the electrical coils.
Correspondingly, parallel research states that according to the losses in a ferromagnetic inductor coil, there is a certain
saturation of the hysteresis model that can accurately represent the behavior of the nonlinear coil [14]. The fractional-
order model of the ferromagnetic coil has more range and accuracy compared to the conventional (integer) model. In [15],
a non-linear inductor was modelled focusing on the characteristics and behavior of the inductor. The research used an
intelligent electrical impedance spectroscopy technique. Schafer and Kruger [12], states coils that possess a much higher
and significant loss can be described realistically through a fractional-order model. The focus on fractional-order modeling
is beneficial for electrical machines and magnetic core coils, as it looks at non-linear systems. The impedance is considered
to be very significant for electrical machines and elements. Hence, considering all losses such as hysteresis, copper core,
core, and eddy current, fractional calculus is suitable for describing realistic and accurate circuit models.

In describing or modeling the impedance of a system, it is essential to know accurate physical parameters, but often
some parameters are unknown [16]. These parameters can be identified with impedance meters and electrical impedance
spectroscopy, but these measuring equipment are expensive and may not be feasible for individuals/organisations that are
financially constrained. Therefore, we have opted to employ the identification scheme to model the unknown parameter
values by analysing available data that can also increase modeling precision in the design, simulation and implementation
of circuits especially in the field of controls. The technique utilised in this article involves interpreting and analyzing the
time domain response of the inductor under measurement. In this short article, a fractional inductor model is presented,
known as pseudo-inductance, through the use of block pulse operational matrix. The approach further verifies the physical
interpretation of fractional order, α , used in the modeling of the inductor through time domain response. An indirect merit
of the presented work is its electronic tuning capability.

2 Fractional-order derivative using block-pulse operational matrix

The block pulse function (BPF) has ascertained the quality in systems’ identification and synthesis [17, 18]. The key
idea was to convert the fractional derivative function into a simple algebraic format so that the long, complex calculations
faced due to fractional calculus’ long memory property can minimize. The BPF composes of a set of orthogonal piecewise
functions of constant values, which are specified over the time interval [0,τ] as

φi(t) =

{

1, i−1
M

τ ≤ t ≤ i
M

τ
0, elsewhere

(3)

where M is the number of elementary functions used and i = 1,2, . . . ,M. Let us consider a function x(t). It is differential
over the time interval [0,τ]. When it is represented in terms of BPF, we get

x(t)∼= XT φ(M)(t) =
M

∑
i−1

Xiφi(t), (4)

where T represents the transpose, XT (t) = [X1,X2, . . . ,XM] is coefficient vector and φT
(M)(t) = [φ1(t),φ2(t), . . . ,φM(t)] is

the BPF vector. As per this theory, we can obtain the fractional-order derivative (FOD)in matrix format as below.

(∂ α φ(M))(t)≈ Bαφ(M)(t). (5)
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The above equation (5) has a generalized operational matrix Bα with FOD of order α . It also satisfies Bα = (Fα)−1

and Fα is represented as below.

Fα
M×M

=
( τ

M

)α 1

Γ (α + 2)















m1 m2 m3 . . . mM

0 m1 m2 . . . mM−1

...
. . . m1 . . . mM−2

...
. . .

. . .
...

0 . . . . . . 0 m1















(M×M)

, (6)

where m1 = 1,mr = rα+1 − 2(r− 1)α+1 +(r− 2)α+1 and r = 2,3, . . . ,M.

Then, the FOD of any differential functional can be approximated using (4) and (5) as below.

(∂ α x)(t)≈ XT Bα φ(M)(t). (7)

It has been shown from the study that the FOD in form (7) will simplify the intricate calculations of fractional derivatives
into an easy algebraic operation of matrix multiplication. As studied in [17], this matrix format also allows identification
of the fractional-order system with any real-order α .

3 Impedance model and estimation

The impedance model for the inductor is considered as (2) and the concept for measurement is demonstrated by the
circuit in Fig. 1. The inductor under test is connected in series with a known resistor, RL. The pseudo-inductance Lα

and resistance, R, are unknown parameters for identification. Considering a sinusoidal input voltage as Vin and the output
voltage as Vout measured across RL, then the circuit transfer function of Fig. 1 is given by

Vout

Vin

(s) =
RL

RL +R+Lαsα
. (8)

L
a

L
R

in
V

out
V

R

Fig. 1: Fractional-order inductor model

Taking inverse Laplace and simplifying in terms of input-output (I/O) time domain signals, one can obtain,

RLvin(t) = vout(t)[RL +R]+Lα(∂
α vout)(t). (9)

Above relation can be useful to estimate impedance parameters if the I/O data is available from the circuit. However,
it is critical to handle the signal due to the non-integer derivative ∂ α presents in expression. As discussed in Section 2, the
BPF is applied to simplify the relation and arbitrary order differentiation into easy algebraic matrix multiplication steps.
Considering BPF property (7), vin, vout and ∂ α can be represented as:

vin(t) =Vin
T φm(t), (10)

vout(t) =Vout
T φm(t), (11)
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∂ α vout(t) =Vout
T Bα φm(t), (12)

where Vin
T and V T

out are the transpose of the vectors vin and vout respectively; and φm is the BPF. Then using (10), (11) and
(12), (9) can be converted as,

RL(Vin
T ·φm(t)) = (Vout

T ·φm(t))(RL +R+LBα). (13)

Rearranging and simplifying equation (13) takes the following form,

Vout
T =Vin

T ×
RL

RL +R+LBα
. (14)

Finally, using equation (11), the time response is obtained for the estimating voltage signal across the output load
resistor. The output expression can be written as,

vout(t) =Vin
T φm(t)×

RL

RL +R+LBα
. (15)

The above equation contains the three unknown parameters namely Lα , α and R which needs to be identified to estimate
the response of the inductor. Thus, the output signal can be estimated to fit with the actual response signal, with more
flexibility to fit phase shift induced by the inductor in the circuit. To understand the fractional inductor, known as pseudo-
inductance when α 6= 1, the relationship in (15) is simulated in Fig. 2 revealing the true sense of pseudo-inductance.
All the variables were kept constant for the inductor model except for α that is varied. The figure was simulated for
L = 3.75H, R = 10, RL = 5000 and vin = 5V@1Hz and plotted output is normalized for simplicity. It is noted from the
figure that the sinusoidal wave starts to lag by an angle of απ

2
rads. In theory, the ideal phase difference induced should be

π
2

but due to unknown magnetic phenomena or material properties, this angular difference changes by a factor α . In this
work, we have attempted to capture the actual inductor behavior by taking a flexible impedance model.
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Fig. 2: Effect of changing the α value in modeling
.

4 Experimental study

The presented approach is simple and requires a simple measurement setup. As per the model considered in Fig.1, an
actual inductor test setup shown in Fig. 3. The data was collected across the known load resistor, RL using an Embest
DSO2300 USB Digital Intelligent Oscilloscope, with a sampling rate of 25000 samples per second. A sinusoidal input of
5V peak was supplied to the input of the circuit. The study was conducted on various inductor values of 3.8mH, 3.75H and
3.8H. To study the presence of fractional behaviour in an inductor, the time domain responses of the inductor are collected
for estimation purpose. The curve fitting method is applied to check the actual output with the calculated output from the
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Fig. 3: Experimental Setup

relation (15). In order to estimate the best parameter values, the non-linear least squares (NLS) approach as below was
used in this work.

min
η

∥

∥

∥v̂out(η)− vout‖
2
2 = min

η

n

∑
j

(v̂out(η) j − vouti)
2, (16)

where η = (Lα ,α,R) is the vector of unknown parameters, v̂out is the identified output signal and vout is the measured
signal. The subscript j demonstrates the current sample value from measured samples n.

Now in order to verify the method, a test data was collected for a 3.75H inductor with vi = 5V@50Hz and a load
resistance of 800 Ω . The estimated fractional-order model showed a good agreement with the actual response data as
shown in Fig. 4, yielding parameters of Lα = 3.88H, α = 0.45 and R = 23.14Ω . On the same figure, it can be seen that
a classical integer impedance model (α = 1), is unable to estimate the inductor behavior since it is not able to account
for the actual phase shift introduced by the inductor. The logarithmic absolute error performance of the proposed model
against the classical model illustrates the significance of fractional order modeling. Fig. 5 shows the better performance
of fractional-impedance model since the estimation error is very small.

0 0.01 0.02 0.03 0.04 0.05 0.06

Time (s)

-5

-4

-3

-2

-1

0

1

2

3

4

5

V
o
lt
a
g
e
 (

V
)

Voltage input

Measured output

Estimated Fractional model

Estimated Integer Model

Fig. 4: Voltage response of 3.75H inductor

Table 1 presents the results verified for other values of inductors. All tests resulted in fractional behaviour with close
estimation of inductance value to the actual rating of the inductors. A trend was seen through the results collected which
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Fig. 5: Logarithmic Absolute Error plot of 3.75H inductor

Table 1: Identified fractional-order model parameters from various inductors

Tested Inductors Estimated Parameters
Lα α R

3.8mH @ 50Hz 0.005 0.23 0.01

3.75H @ 50Hz 3.88 0.45 23.14

3.75H @ 60Hz 3.78 0.43 21.79

3.75H @ 80Hz 3.70 0.48 19.59

3.80H @ 50Hz 4.11 0.23 8.76

3.80H @ 60Hz 4.06 0.25 8.53

indicated that with the increase in frequency the estimated inductance and the internal resistance decreased. This is another
reason for the fractional order inductor representation.

5 Conclusion

A fractional order inductor for accurate impedance calculation is presented for inductor coils. The method is developed
using BPF which is simple but effective to handle computationally. The model demonstrates that the voltage and resulting
current in the circuit are not always out of phase by π

2
rads. The fractional order α is basically the multiple factor of π

2
rads by which the voltage and current are out of phase.Though the research demonstrates that with frequency the time
response parameters changes, there is a need to further study this to establish the effect of frequency change in the input
wave form on the model parameters. The presented work can be further extended on study the behaviour with different
input waveforms.
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