
Inf. Sci. Lett. 10, No. 2, 255-261 (2021) 255

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/100209

Shrink: An Efficient Construction Algorithm for Minimum

Vertex Cover Problem

Wael Mustafa

Department of Computer Science, An-Najah National University , Nablus, Palestine

Received: 20 Jan. 2020, Revised: 12 Feb 2020, Accepted: 4 Mar. 2021

Published online: 1 May 2021

Abstract: The minimum vertex cover (VC) problem is to find a minimum number of vertices in an undirected graph such that every

edge in the graph is incident to at least one of these vertices. This problem is a classical NP-hard combinatorial optimization problem

with applications in a wide range of areas. Hence, there is a need to develop approximate algorithms to find a small VC in a reasonable

time. This paper presents a new construction algorithm for the minimum VC problem. Extensive experiments on benchmark graphs

show that the proposed algorithm is extremely competitive and complementary to existing construction algorithms for minimum VC

problem.

Keywords: minimum vertex cover, construction algorithm, combinatorial optimization, NP-hard

1 Introduction

Graph is a basic data structure with with many operations
and applications in various domains. Given an undirected
graph G with a set of vertices V and a set of edges E, a
vertex cover for G is a subset S of V, such that each edge
in E is incident to at least one vertex in S. Given a graph
G, the minimum vertex cover (VC) problem is to find a
cover containing the least number of vertices. The
minimum VC problem is a well-known combinatorial
optimization problem. It has applications in a wide range
of fields including sensor networks [1], parallel machine
scheduling [2], financial networks [3], economics [4, 5],
social networks [6], and biotechnology [7, 8]. This paper
proposes an effective algorithm for minimum VC
problem.

Minimum VC problem is NP-hard problem. Previous
work related to the minimum VC problem focused on
approximate methods to obtain “reasonable” vertex
covers in an admissible time. Existing algorithms for
minimum VC problem can be classified into two
categories. The first category is known as construction
methods, and the second category is known as local
search methods [9].

Construction algorithms for minimum VC problem
typically begin with an empty cover and repeatedly add
vertices into the cover. A construction algorithm usually

ends when all all edges in the graph become covered.
Examples of common construction algorithms for
minimum VC problem are maximal matching, greedy
vertex [10], and edge greedy [11].

In practice, construction algorithms for minimum VC
problem are mainly employed to obtain a “good” cover
that will be used as a starting cover in local search
methods. The structure of a local search method for
minimum VC problem often starts with using a construct
algorithm to obtain a VC. Then, a vertex is removed from
the initial cover. Later, small modifications are applied to
the vertex set until it becomes a VC. Examples of these
modifications include insertion of a new vertex, deleting a
vertex, and exchanging a vertex in the cover with a vertex
outside the cover. Modifications to the vertex set continue
until either a satisfactory cover is found or a specific
period of execution time expires. [12–17].

This paper presents a new construction algorithm,
Shrink, for the minimum VC problem. Extensive
experiments on benchmark graphs show that Shrink is
extremely competitive with existing constructive
minimum VC algorithms. The remainder of the paper is
as follows. Section two reviews existing construction
algorithms for minimum VC problem. Section three
presents the proposed algorithm. Section four provides
the results of applying the proposed algorithm to

∗ Corresponding author e-mail: wamustafa@yahoo.com

© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/isl/100209

256 W. Mustafa: Shrink: an efficient construction algorithm for...

benchmark graphs and discusses the results. Finally,
section five concludes the paper.

2 Background

An undirected graph G = (V,E), where
V = {v1,v2, ...,vn} is a set of vertices and
E = {e1,e2, ...,em} is a set of edges. An edge connecting
vertex vi with vertex v j is represented by the set {vi,v j}
and this edge is said to be incident to vi and v j. For a
vertex v in G, the neighborhood of v, denoted by N(v), is
the set containing all vertices adjacent to v, i.e.,
N(v) = {u ∈ V |{u,v} ∈ E}. The degree of a vertex v is
the number of edges incident to v. G\T denotes a
sub-graph obtained from G by removing all vertices of T
and all edges with at least one vertex in T. A vertex cover
of graph G is a subset S of V such that each edge in E is
incident to at least one vertex in S. An edge that is
incident to a vertex in S is said to be covered by S. The
minimum VC problem is to find a VC with minimum
number of vertices.

Example 1. Figure 1 shows an undirected graph
G = (V,E), where V = {v1,v2,v3,v4,v5,v6} and E =
{{v1,v2},{v1,v3},{v1,v4},{v1,v5}},{v5,v6},{v2,v3},
{v2,v5}}. A minimum vertex cover for G is {v1,v2,v6}.

Fig. 1: Undirected graph G for example 1 .

A common and simple construction method for VC
problem is to obtain a matching between verities in the
graph that covers all edges. The vertices used in the
matching are returned as a solution. In this paper, we call
this algorithm Match. For a graph G = (V,E), Match
begins with initializing vertex cover C to the empty set.
Then, it visits every edge e ∈ E; if e is not incident to a
vertex in C, both endpoint vertices of e are added into C.

The pseudo code of Match algorithm is shown in
Algorithm 1. Assuming that the graph is represented as a
list of edges, the complexity of Match algorithm is O(m),

where m is the number of edges [11]. This algorithm is
often efficient with respect to execution time. However, in
most cases the algorithm returns large covers compared to
other construction algorithms.

Algorithm 1: Match algorithm for minimum VC
problem .

Input: graph G = (V,E)
Output: vertex cover of G

1 C:= /0 ;

2 foreach edge e={vi,v j} ∈ E do

3 if e is uncovered by C then

4 add vi and v j to C;

5 end

6 end

7 return C;

Another known construction algorithm for minimum VC
problem is a greedy method based on the gain in number
of edges being covered by the selected vertices [10]. It is
usually used as a construction algorithm to produce the
starting cover for local search methods of minimum VC
problem [12, 15, 16].

In this paper, the algorithm is called DegreeGreedy.
To obtain a minimum VC for a graph G = (V,E),
DegreeGreedy first initializes vertex set C to the empty
set. Then, the algorithm repeats the following until every
edge in E becomes covered by C: choose the vertex v not
currently in C that has the most uncovered edges and add
v into C. Ties between vertices with equal number of
uncovered edges are broken randomly. The pseudo code
of DegreeGreedy is shown in Algorithm 2. The time
complexity of DegreeGreedy is O(n2) , where n is the
number of vertices in the graph [11].

Algorithm 2: DegreeGreedy algorithm for
minimum VC problem .

Input: graph G = (V,E)
Output: vertex cover of G

1 C:= /0

2 foreach vertex v in V do

3 compute degree[v];

4 end

5 k:=the vertex in V with maximum degree;

6 while degree[k]!=0 do

7 add k to C;

8 degree[k]=0;

9 foreach vertex v neighboring k do

10 degree[v] - -;

11 end

12 k:=the vertex in V with maximum degree;

13 end

14 return C;

© 2021 NSP

Natural Sciences Publishing Cor.

Inf. Sci. Lett. 10, No. 2, 255-261 (2021) / www.naturalspublishing.com/Journals.asp 257

The third vertex cover construction algorithm,
EdgeGreedy, was proposed in [11]. The pseudo-code of
EdgeGreedy is given in Algorithm 3. EdgeGreedy
Algorithm consists of two stages. In the first stage, the
algorithm starts with an empty cover. Then, the algorithm
scans all edges in the graph and whenever it finds an
uncovered edge {vi,v j}, the vertex that has a higher
degree in {vi,v j} is inserted into the cover. In case vi and
v j are equal in the degree, the vertex with lower index
(first vertex) is chosen. A VC is created at the end of the
first stage of the algorithm. In the second stage, the loss
value of each vertex in the cover is calculated. After that,
the algorithm scans the vertices in the cover. Whenever
the algorithm finds a vertex v with a loss value of zero, it
deletes v from the cover and updates the loss values of all
vertices in N[v]. The time complexity of EdgeGreedy is
O(m), where m is the number of edges [11] .

Algorithm 3: EdgeGreedy algorithm for
minimum VC problem.

Input: graph G = (V,E)
Output: vertex cover of G

1 C:= /0

2 foreach e = {vi,v j} ∈ E do

3 if e is uncovered by C then

4 add the vertex in e with higher degree to C;

5 end

6 end

7 foreach v ∈C do

8 loss(v):=0;

9 end

10 foreach e = {vi,v j} ∈ E do

11 if only one of vi and v j belongs to C then

12 v:=the vertex in e that belongs to C;

13 loss(v)++;

14 end

15 end

16 foreach v ∈C do

17 if loss(v)=0 then

18 C:=C\{v} ;

19 Update loss of vertices neighboring v;

20 end

21 end

22 return C;

3 The Proposed Minimum VC Algorithm

This section presents the proposed construction algorithm
for minimum VC problem. For convenience, the
algorithm is called Shrink. The algorithm first initializes
the cover to the entire set of vertices. Then, it reduces the
cover by deleting vertices whose removal does not reduce
the number of covered edges. The pseudo code of the
algorithm is shown in Algorithm 4. The algorithm

associates a count-value ∈ {1,2} with every edge in the
graph. A count-value of 2 indicates that the edge is
incident to two vertices in the current vertex cover C, and
a count-value of 1 indicates that the edge is incident to
only one vertex in C.

Algorithm 4: Shrink algorithm for minimum VC
problem.

Input: graph G = (V,E)
Output: vertex cover of G

1 C:=V

2 foreach e ∈ E do

3 count-value[e]=2;

4 end

5 Compute the degree of all vertices in V ;

6 N:= the list of vertices in V sorted in ascending order of

degree;

7 for i :=1 to |V | do

8 if every edge e incident to vertex N[i] has

count-value[e]=2 then

9 C:=C\{N[i]};

10 foreach edge e incident to N[i] do

11 count-value[e]=1;

12 end

13 end

14 end

15 return C;

In line 1 of the pseudo code, Shrink initializes the vertex
cover C to include the entire set of vertices V. Lines 2-4
initialize the count-value of every edge in E to 2 since
every edge is incident to two vertices in the cover. Line 5
computes the degree of all vertices in the graph. Line 6
sorts the vertices of the graph in ascending order of
degree and stores the result in the list of vertices N. The
loop in lines 7-14 removes vertices from C whenever
possible. Vertices with smaller degrees are checked for
removal earlier. So, if the graph contains isolated vertices
with degree 0, these vertices are removed from C in early
iterations. Removal of these vertices does not cause any
edge to be uncovered. In later iterations the algorithm
checks vertices with higher degrees for possibility of
removal from C. Whenever the algorithm finds that a
vertex v with all incident edges having count-value 2, it
removes v from the cover and the count values of edges
incident to v are all set to 1. If the count-vale of an edge
{vi,v j} becomes 1, the two vertices vi and v j will be
retained in the cover in later iterations. The algorithm
starts with the removal of vertices with smaller degrees
since removing these vertices has smaller effect on the
number of possibilities to cover edges in the graph.
Whenever choosing between vertices with equal degrees
for removal from the cover, Shrink always selects the first
vertex.

Example 2. To illustrate how the algorithm works, we
apply Shrink to the graph in figure 1. First, the cover C is

© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

258 W. Mustafa: Shrink: an efficient construction algorithm for...

initialized to V = {v1,v2,v3,v4,v5,v6}. Then, the
count-value of all edges is set to 2. Next, sorting the
vertices in ascending order of degree yields the list
N = [v4,v6,v3,v2,v5,v1]. Ties between v4,v6 and between
v2,v5 are broken by selecting the vertex with smaller
number. So, v4 comes before v6 and v2 comes before v5 in
the list N. The algorithm then goes through each vertex in
N in order and examines if the vertex can be removed
from C without causing edges to be uncovered. At v4, the
only incident edge to this vertex has count-value 2, v4 is
removed from the cover, and the count-value of the edge
{ v4,v1 } is set to 1. The graph at this stage is shown in
Figure 2.

Fig. 2: The graph G after removal of v4 from the cover.

Next, v6 is examined for removal from the cover.
Again, the edge incident to this vertex has a count-value

of 2, so v6 is also removed from the cover, and the
count-value of the edge {v6,v5} is set to 1. Then, v3 is
checked for removal. Since the count-value of the two
edges incident to v3 are both 2, v3 is removed from the
cover and the count-value of the two edges incident to v3

are set to 1. At this stage, the the cover C = {v1,v2,v5}
and the graph is shown in Figure 3.

Fig. 3: The graph G after removal of v4, v6, v3 from the cover.

At v2, the count-value of the edge {v2,v3} is 1, so v2

is retained in the cover. At v5, the count-value of the edge
{v5,v6} is 1, so v5 also remains in the cover. Finally, at v1

there are two edges incident to this vertex that have count-

value equal to 1, and v1 is retained in the cover. The cover
output by the algorithm is C = {v1,v2,v5}.

The algorithm always produces a minimum cover.
This can be proved as follows. At line 1, C is initialized to
all the vertices in V. By graph definition, each edge in E is
incident to some vertex in V, so the initial cover C created
at step 1 is a cover for G. The loop in the lines 7-14
reduces C to a minimum cover. The output cover can be
proved to be a minimum cover by contradiction: Assume
output cover is not minimum. This implies that there is a
vertex v in the output cover C that can be removed and C

remains a cover. Since v can be removed from C, all
edges incident to v has count-value equal to 2. However,
such a vertex will be removed from the cover in the i’th
iteration of the loop, where i is the index of vertex v in the
list N. Hence, vertex v cannot be in the output cover C.
This completes the proof by contradiction that the
algorithm returns a minimum cover.

Following is the worst-case time complexity analysis
for the proposed algorithm. In the analysis n represents
the number of vertices and m represents the number of
edges in the graph. The statement in line 2 can be
implemented in complexity O(m). In the worst-case,
when the graph is nearly complete and every edge is

connected to most other edges, m ∼=
n(n−1)

2
and the

complexity O(m) = O(
n(n−1)

2
) = O(n2). Computing the

degrees of all vertices in the graph, line 5, can be
implemented in O(n+m) by starting with an empty graph
(all the degrees are zero), complexity O(n), and then
adding the edges one by one, complexity O(m); when
adding an edge to the graph only two vertices increment
their degrees. Thus, The complexity of computing degree

of all vertices O(n+m) = O(n+ n(n−1)
2

) = O(n2). Sorting
the vertices in ascending order of degree, line 6, can be
implemented in O(n log(n)). The for loop in line 7
executes n iterations. In the i’th iteration, each of the two
statements in line 8 and line 10 requires visiting degree(i)
edges. Hence, the loop in lines 7-14 complexity is

∑u∈V (degree(u) + degree(u)) = 2∑u∈V (degree(u)) =

2(2m) = O(m) = O(
n(n−1)

2
) = O(n2). Therefore, the time

complexity of the proposed algorithm is O(n2).

4 Results and Discussion

This section reports and compares the results of the
proposed Shrink algorithm with the three existing
minimum VC construction algorithms: Match,
DegreeGreedy, and EdgeGreedy.

The four algorithms were implemented as functions in
a single program in visual C++ 2019. The resulting code
was executed on an HP computer with an i7 CPU,

© 2021 NSP

Natural Sciences Publishing Cor.

Inf. Sci. Lett. 10, No. 2, 255-261 (2021) / www.naturalspublishing.com/Journals.asp 259

Table 1: Comparing the four construction algorithms for minimum VC problem.

Match Shrink DegreeGreedy EdgeGreedy

Graph | N | | E | size time size time avg size avg time size time

3elt-dual 9000 13278 8914 2.937 4804 6.283 4857 3.834 4804 5.859

bio-celegans 453 2025 398 0.006 257 0.018 255 0.012 259 0.023

bio-diseasome 516 1188 400 0.008 285 0.022 285 0.013 285 0.02

bio-dmela 7393 25569 4076 1.599 2716 4.484 2667 2.267 2717 3.914

bio-yeast 1458 1948 800 0.066 462 0.181 464 0.868 462 0.153

brock200-1 200 14834 200 0.001 196 0.003 196 0.003 196 0.005

brock200-2 200 9876 198 0.001 192 0.003 193 0.003 192 0.005

brock800-1 800 207505 798 0.018 792 0.049 793 0.047 793 0.074

brock800-2 800 208166 800 0.019 792 0.051 794 0.048 793 0.08

brock800-3 800 207333 800 0.019 793 0.05 794 0.045 793 0.077

brock800-4 800 207643 800 0.018 793 0.048 793 0.045 793 0.077

C100-9 1000 450079 1000 0.035 997 0.078 996 0.065 997 0.131

C152-9 125 6963 124 0.004 121 0.001 122 0.001 121 0.019

C2000-5 2000 999836 1998 0.153 1988 0.326 1989 0.292 1988 0.474

C2000-9 2000 1799532 2000 0.147 1995 0.316 1996 0.258 1996 0.546

C250-9 250 27984 248 0.013 246 0.004 245 0.004 247 0.008

C4000-5 4000 4000268 3998 0.65 3987 1.295 3990 1.148 3986 1.968

C500-9 500 112332 500 0.007 496 0.018 497 0.017 496 0.032

ca-CSphd 1882 1740 1044 0.104 553 0.318 555 0.147 553 0.251

ca-Erdos992 6100 7515 594 0.797 461 3.244 461 1.206 461 2.394

ca-GrQc 4158 13422 3214 0.567 2214 1.339 2219 0.802 2214 1.285

ca-HepPh 11204 117619 9088 4.414 6562 9.444 6574 5.981 6565 9.255

ca-netscience 379 914 300 0.004 214 0.116 214 0.073 214 0.012

DSJC1000-5 1000 249826 998 0.037 991 0.079 990 0.073 990 0.118

DSJC500-5 500 62624 498 0.007 490 0.021 491 0.019 490 0.029

EX1 560 4368 560 0.01 460 0.023 468 0.019 464 0.027

EX2 560 4368 560 0.012 480 0.03 456 0.025 474 0.032

EX4 2600 35880 2600 0.352 2263 0.628 2282 0.537 2279 0.749

EX5 6545 147840 6542 1.489 5959 2.835 5965 2.551 5983 3.531

EX6 6545 147840 6542 1.456 5982 2.778 5974 2.508 6003 3.465

fe-4elt2 11143 32818 10886 4.326 8127 8.845 8155 6.552 8119 9.27

hamming10-2 1024 518656 1024 0.027 1022 0.077 1022 0.068 1022 0.134

hamming10-4 1024 434176 1024 0.029 1016 0.072 1016 0.066 1016 0.125

ia-email-univ 1133 5451 814 0.077 614 0.102 605 0.062 615 0.096

ia-enron-only 143 623 126 <0.001 87 0.002 88 0.001 87 0.002

ia-fb-messages 1266 6451 932 0.937 592 2.692 595 1.342 592 2.729

ia-infect-dublin 410 2765 372 0.006 299 0.013 298 0.01 300 0.014

ia-infect-hyper 113 2196 108 <0.001 93 0.001 93 0.001 93 0.001

ia-reality 6809 7680 114 0.916 81 4.373 81 1.4 81 2.951

inf-power 4941 6594 3736 0.807 2269 1.951 2277 1.085 2271 1.767

MANN-a27 378 70551 376 0.003 376 0.01 375 0.009 376 0.018

MANN-a45 1035 533115 1034 0.028 1033 0.076 1032 0.068 1033 0.138

MANN-a9 45 918 44 <0.001 43 <0.001 42 <0.001 43 <0.001

rt-retweet 96 117 60 <0.001 33 <0.001 33 <0.001 33 <0.001

rt-twitter-copen 761 1029 422 0.021 238 0.055 238 0.023 238 0.041

socfb-CMU 6621 249959 6290 1.597 5082 3.105 5067 2.398 5090 3.6

socfb-Duke14 9885 506437 9422 3.568 7827 6.975 7807 5.371 7838 7.999

socfb-MIT 6402 251230 6014 1.471 4744 2.963 4732 2.209 4756 3.303

socfb-Stanford3 11586 568309 10796 4.888 8671 9.559 8626 7.2 8696 10.666

socfb-UCSB37 14917 482215 14116 8.638 11488 15.676 11494 11.998 11510 18.284

soc-dolphines 62 159 50 <0.001 35 0.001 35 0.001 35 0.001

soc-karate 34 78 22 <0.001 14 <0.001 14 <0.001 14 <0.001

soc-wike-vote 889 2914 650 0.02 413 0.697 411 0.037 414 0.058

tech-routers-rf 2113 6632 1376 0.145 803 0.378 807 0.193 803 0.328

tech-WHOIS 7476 56943 3380 1.634 2304 4.794 2296 2.288 2305 4.052

web-BerkStan 12305 19500 8432 4.645 5567 12.117 5537 6.624 5565 10.737

© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

260 W. Mustafa: Shrink: an efficient construction algorithm for...

Table 2: Comparing the four construction algorithms for minimum VC problem.

Match Shrink DegreeGreedy EdgeGreedy

Graph | N | | E | size time size time avg size avg time size time

web-edu 3031 6474 2818 0.35 1451 0.742 1451 0.425 1451 0.683

web-google 1299 2773 478 0.051 499 0.141 499 0.077 499 0.12

web-indochina-2004 1358 47606 9720 4.344 7366 9.589 7366 6.51 7367 9.45

web-polblogs 643 2280 406 0.012 246 0.04 246 0.018 246 0.031

web-spam 4767 37375 3566 0.761 2351 1.814 2339 1.036 2352 1.707

web-webbase-2001 16062 25593 4284 6.339 2671 22.927 2679 8.976 2674 17.105

running Windows 10; 2.2 GHz speed; and an eight GB of
main memory. The four algorithms were applied to 62
undirected unweighted graph instances from the
NetworkRepository [18], which is often used in the
literature to benchmark algorithms for combinatorial
graph problems. Instant graphs were represented in
memory as adjacency matrices.

Tables 1 and 2 contain the size of the output cover and
execution time in seconds for each algorithm. Execution
time is calculated based on high resolution clock::now()
C++ function. To account for breaking ties randomly
between vertices with an equal degree in DegreeGreedy,
the algorithm was applied to every graph 10 times using
10 different seeds for the random function used to
implement the random selection between vertices. The
average cover size, rounded to the nearest integer, and the
average execution time in seconds over the 10 executions
is reported. The best cover size among the four algorithms
is shown in bold face for each graph. The tables also show
the size of the graphs where |N| is the number of vertices
and |E| is the number of edges.

Some observations about the quality of the output
cover and execution time of the four algorithms are as
follows.

1.The three algorithms: Shrink, DegreeGreedy, and
EdgeGreedy always find better covers than Match
algorithm and these three algorithms are almost
competitive. Furthermore, these algorithms are often
complementary; for a specific graph there is a good
chance that one of the three algorithms produces the
best cover. In numbers, when Shrink is compared to
the three other algorithms, it produces the smallest
cover for 40 graphs. DegreeGreedy finds the best
cover for 37 graphs. EdgeGreedy finds the best cover
for 33 graphs.

2.Match has least execution time in 61 out of 62 graphs.
3.When comparing execution time of the three

remaining algorithms: DegreeGreedy, EdgeGreedy,
and Shrink, DegreeGreedy has least execution time
among the three algorithms in 61 graphs, Shrink has
least execution time in 10 graphs, and EdgeGreedy
has least execution time in 6 graphs.

4.When comparing execution time of Shrink against
EdgeGreedy, Shrink finished faster in 32 instances,
while EdgeGreedy finished faster in 15 instances. In

the remaining 15 instances, the two algorithms have
similar execution time.

5.Overall, Shrink balances between quality of output
vertex cover and execution time. It is extremely
competitive and complementary to DegreeGreedy.
Shrink is better EdgeGreedy with respect to both
quality of output and execution time. Shrink is better
than Match with respect to quality of output cover.

5 Conclusion

This paper presented a new construction algorithm for
minimum VC problem. Extensive experiments on
benchmark undirected graphs show that the proposed
algorithm is highly competitive to existing algorithms.
Furthermore, the proposed algorithm balances between
solution quality and execution time. A future work is to
investigate the effectiveness of integrating the algorithm
into local search algorithms for minimum VC problem.

Competing interests

The authors declare that they have no competing interests.

References

[1] V. Kavalci, A. Ural, and Dagdeviren. Distributed vertex

cover algorithms for wireless sensor networks, International

Journal of Computer Networks & Communications (IJCNC),

6, 95–110 (2014).

[2] W. Hong, and Z. Wang. Improved Approximation Algorithm

for the Combination of Parallel Machine Scheduling and

Vertex Cover, Int. J. Found. Comput. Sci, 28, 977–992 (2017).

[3] V. Boginski, S. Butenko, and P. Pardalos. Mining market data:

A network approach, Comput. Oper. Res., 33, 3171–3184

(2006).

[4] Q. Wu, and J. Hao. A review on algorithms for maximum

clique problems, Eur. J. Oper. Res, 242, 693–709 (2015).

[5] Y. Jin, and J. Hao. General swap-based multiple

neighborhood tabu search for the maximum independent set

problem, Eng. Appl. of AI, 37, 20–33 (2015).

[6] T. Yadav, K. Sadhukhan, and A. Rao. Approximation

algorithm for n-distance minimal vertex cover problem,

CoRR, abs/1606.02889, (2016).

© 2021 NSP

Natural Sciences Publishing Cor.

Inf. Sci. Lett. 10, No. 2, 255-261 (2021) / www.naturalspublishing.com/Journals.asp 261

[7] A. Hossain, E. Lopez, S. Halper, D. Cetnar, A. Reis, D.

Strickland, E. Klavins, and H. Salis. Automated design

of thousands of nonrepetitive parts for engineering stable

genetic systems, Nature Biotechnology, 38, 1466-1475

(2020).

[8] A. Reis, S. Halper, G. Vezeau, D. Cetnar, A. Hossain, P.

Clauer, and H. Salis. Simultaneous repression of multiple

bacterial genes using nonrepetitive extra-long sgRNA arrays,

Nature Biotechnology, 37, 1294–1301 (2019).

[9] H. Hoos, and T. Stützle. Stochastic Local Search:

Foundations and Applications, Morgan Kaufmann, (2004).

[10] C. Papadimitrious, and K. Steiglitz. Combinatorial

Optimization: Algorithms and Complexity, Prentice Hall,

(1982).

[11] S. Cai, J. Lin, and C. Luo. Finding A Small Vertex Cover

in Massive Sparse Graphs: Construct, Local Search, and

Preprocess, Journal of Artificial Intelligence Research, 59,

463-494 (2017).

[12] S. Richter, M. Helmert, and C. Gretton. A stochastic local

search approach to vertex cover, In Proceedings of KI 2007,

412–426 (2007).

[13] D. Andrade, M. Resende, and R. Werneck. Fast local search

for the maximum independent set problem, In Workshop on

Experimental Algorithms, 220–234 (2008).

[14] W. Pullan. Optimisation of unweighted/weighted maximum

independent sets and minimum vertex covers, Discrete

Optimization, 6, 214–219 (2009).

[15] S. Cai, K. Su, K., and A. Sattar. Local search with

edge weighting and configuration checking heuristics for

minimum vertex cover, Artif. Intell., 175, 1672–1696 (2011).

[16] S. Cai, K. Su, K., and A. Sattar. NuMVC: An efficient local

search algorithm for minimum vertex cover, J. Artif. Intell.

Res. (JAIR), 46, 687–716 (2013).

[17] W. Luzhi, S. Hu, M. Li, and J. Zhou. An Exact Algorithm

for Minimum Vertex Cover Problem, Mathematics, 7, 603

(2019), doi:10.3390/math7070603.

[18] R. Rossi and N. Ahmed. The Network Data Repository

with Interactive Graph Analytics and Visualization, In

Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, Austin, TX, USA, 25–30 (2015).

© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Background
	 The Proposed Minimum VC Algorithm
	Results and Discussion
	Conclusion

