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Abstract: The two parameter generalized exponential distribution (which is denoted by GE(α,λ )) was introduced by Gupta and

Kundu (1999). In this article, maximum likelihood estimators (MLE’s) for the two unknown parameters of the generalized exponential

(GE) distribution are obtained based on lower record values. Also, we obtained the Bayes Estimators of the unknown parameters of the

generalized exponential distribution using Lindley’s approximation (L-approximation) under symmetric and asymmetric loss functions.

Further, we have derived the Bayesian prediction for the future record values. Numerical computations are presented to illustrate the

results of estimation and prediction using R software.
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1 Introduction

Record values and their basic properties were first introduced by Chandler [1]. The study of record values and associated
statistics are of great significance in multiple real life situations such as meteorology, seismology, athletic events,
economics and life testing. Numerous papers on record values and their distributional properties have appeared in the
statistical literature, among them [2,3,4,5,6]. Moreover, Raqab and Ahsanullah [7] studied the properties of order and
record statistics, and their inferences, respectively.

Let X1,X2, ... be a sequence of independent and identically distributed (iid) random variables (rv’s) with a cumulative
distribution function (cdf) F(x) and a probability density function (pdf) f (x). Let Yn = min{X1,X2, ...,Xn} , for n ≥ 1;
then, the observation X j is a lower record value of {Xn,n ≥ 1} , if it is smaller than all the preceding observations; in other
words, if Yj < Yj−1, j > 1. By definition, X1 is a lower, as well as an upper record value, called the base record value.

The two parameter generalized exponential has a distribution function of the form

F(x) = (1− e−λ x)α , x ≥ 0, α,λ > 0, (1)

and the density function corresponding to (1) is

f (x) = αλ e−λ x(1− e−λ x)α−1, x ≥ 0, α,λ > 0. (2)

Here, α is the shape parameter, and λ is the scale parameter. When α = 1, the GE distribution coincides with the
exponential distribution. It was observed that the GE distribution can be used in situations where a skewed distribution
for a non-negative random variable is needed. The GE is a unimodal density function. and for a fixed scale parameter, as
the shape parameter increases, it becomes more and more symmetric. In addition, the GE distribution has a good
physical interpretation. It has been studied extensively by Gupta and Kundu [8,9,10,11,12].
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For Bayesian inference, a frequent choice of loss function is a squared error loss function (SELF), because it is
symmetric, and easy to implement and tractable. An asymmetric loss function is also found useful in many situations.
A useful asymmetric loss function, known as the linear-exponential (LINEX) loss function, was introduced by Varian
[13] and has been widely used by several authors, [14,15,16,17,18,19]. Moreover, we use a more flexible loss function,
General entropy loss function (GELF), because different choices of parameter values involved in the loss function can
produce both symmetric and asymmetric loss functions.

However, Bayesian estimation under the loss function is not frequently discussed, perhaps, because the estimators
under symmetric and asymmetric loss function involve integral expressions, which are not analytically solvable.
Therefore, one has to use the numerical techniques or certain approximation methods for the solution. Lindley’s
approximation and Tierney and Kadane approximation technique are the methods suitable for solving such problems.
There has been a significant amount of research done in statistical inference of several distributions based on lower
record values, see, [20,21,22,23,24,25]. For GE distribution, Sarhan and Tadj [26] presented the Bayesian inferences of
the unknown parameters of the GE distribution based on upper record values.

Also, prediction of future records becomes a problem of great interest. For example, while studying the record rainfalls
or snowfalls, having observed the record values until the present time, we will be naturally interested in predicting the
amount of rainfall or snowfall that is to be expected when the present record is broken for first time in the future, See [2].
We may be interested in predicting (either point or interval) the value of the next record (Xm+1), or more generally, the
value of the s− th record (Xs), for some s > m. Prediction of future records has been studied by a number of statisticians,
See [5,27,28,29,30,31]. The prediction of future record value based on given records is a useful research component
involved in many applications.

In this paper, the maximum likelihood estimators of the parameters are obtained. Here we observed that the MLE’s
cannot be obtained in a closed form, we, therefore, propose to use the Newton-Raphson numerical approximation
method to compute the MLE’s via the Taylor series, and the proposed method works quite well. The Bayes estimators of
the parameters of the generalized exponential distribution based on lower record values are obtained under the linear
exponential loss function, general entropy loss function and squared error loss function using Lindley’s approximation
technique. Bayesian prediction of the s− th lower record, either point or interval, is also presented. Moreover, Numerical
computations using R software are given to illustrate the results.

2 Estimation of The Parameters

In this section, we are going to derive the MLE’s of the parameters from a record data. We will also obtain the Bayes
estimators under symmetric and asymmetric loss functions.

2.1 Maximum Likelihood Estimator

Suppose we observe m lower record values XL(1) = x1,XL(2) = x2, ...,XL(m) = xm, arising from a sequence of iid GE(α,λ )

with pdf f (x) (2), Arnold [2] gives the likelihood function as

l(α,λ |x) = f (xL(m);α,λ )
m−1

∏
i=1

f (xL(i);α,λ )

F(xL(i);α,λ )
. (3)

Substituting (1) and (2) in (3), we get

l(α,λ |x) = αmλ mexp(αlog(1− e−λ xm))t(x), (4)

where

t(x) = ∏m
i=1

e−λxi

(1−e−λxi )
and x = (x1,x2, ...,xm).

The log-likelihood function is

L(α,λ |x) = m(logα + logλ )+αlog(1− exp(−λ xm))

−λ
m

∑
i=1

xi −
m

∑
i=1

log(1− exp(−λ xi)). (5)
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By differentiating the equation (5) with respect to α and λ and equating to zero, we get

∂L(α,λ |x)

∂α
=

m

α
+ log(1− exp(−λ xm)) = 0, (6)

∂L(α,λ |x)

∂λ
=

m

λ
−

m

∑
i=1

xi +α
xmexp(−λ xm)

(1− exp(−λ xm))

−
m

∑
i=1

xiexp(−λ xi)

(1− exp(−λ xi))
= 0. (7)

From equation (6), we get

α̂ =−
m

log(1− exp(−λ xm)
. (8)

First, we shall find λ̂ so that α̂ can be determined. Note that the estimators of α and λ are not in closed form. So that we
propose to find λ̂ by using Newton-Raphson method as given below.
Let f (λ ) be the same as equation (7), and taking the first differential of f (λ ), we have

f ′(λ ) =−
m

λ 2
−

αx2
mexp(−λ xm)

(1− exp(−λ xm))2
+

m

∑
i=1

x2
i exp(−λ xi)

(1− exp(−λ xi))2
. (9)

By substituting equation (8) into equation (7), we call f (λ ) as

f (λ ) =
m

λ
−

mxmexp(−λ xm)

(1− exp(−λ xm))log(1− exp(−λ xm))

−
m

∑
i=1

xi −
m

∑
i=1

xiexp(−λ xi)

(1− exp(−λ xi))
. (10)

Substituting equation (8) into equation (9), we obtain

f ′(λ ) =−[
m

λ 2
−

mx2
mexp(−λ xm)

(1− exp(−λ xm))2log(1− exp(−λ xm))

−
m

∑
i=1

x2
i exp(−λ xi)

(1− exp(−λ xi))2
]. (11)

Therefore, λ is obtained from the equation below by carefully choosing an initial value λ as λi and iterating the process
till it converges:

λi+1 = λi −

m
λ −∑m

i=1 xi −
mxme−λxm

(1−e−λxm )log(1−e−λxm )
−∑m

i=1
xie

−λxi

(1−e−λxi )

−

[

m
λ 2 −

mx2
me−λxm

(1−e−λxm )2log(1−e−λxm )
−∑m

i=1

x2
i e−λxi

(1e−λxi )2

] . (12)

We find the MLE’s of the parameters of GE(α,λ ) distribution by using R software.

2.2 Bayes Estimator

In this subsection, we investigate the Bayes estimators for parameters α and λ . Under the assumption that both parameters
α and λ are unknown, the priors for parameters α and λ may be taken as [32]

g1(α) ∝
1

α
, 0 ≤ α < ∞

and

g2(λ ) ∝
bcλ c−1exp(−bλ )

Γ c
, λ ≥ 0, b,c > 0,
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respectively, to give the joint prior distribution for α and λ as

g(α,λ ) =
bcλ c−1exp(−bλ )

αΓ c
, α,λ ≥ 0, b,c > 0, (13)

where b and c are positive real numbers.
By Bayes Theorem, the posterior density function of (α,λ ) is given by

Π(α,λ |x) =Cl(α,λ |x)g(α,λ ), (14)

where C is a normalizing constant.
Using (4), (13) and applying Bayes Theorem, the joint posterior density function of α and λ is given by

Π(α,λ |x) =
1

Γ mφ(b,c− 1,xm)
αm−1λ m+c−1t(x)exp(αlog(1− e−λ xm)− bλ ), (15)

where

φ(b,c− 1,xm) =

∫ ∞

0

λ m+c−1t(x)exp(−bλ )

(log(1− exp(−λ xm))−1)m
dλ . (16)

Now, the Bayes estimators of the parameters with different loss functions are given below:

Linear Exponential (LINEX) Loss Function

This loss function according to Soliman [33] rises approximately exponentially on one side of zero and approximately
linearly on the other side. There is an overestimation if c1 > 0 and an underestimation if c1 < 0, but when c1

∼= 0, LINEX
Loss Function is approximately the squared error loss function. LINEX loss function with parameter c1 is given by

L(θ̂ −θ ) ∝ exp(c1(θ̂ −θ ))− c1(θ̂ −θ )− 1, (17)

where θ̂ is the estimate of the parameter θ .
Under the above loss function, the Bayes estimator θ̂BL of θ is given by

θ̂BL =−
1

c1

lnEθ (e
−c1θ |x), (18)

where Eθ stands for posterior expectation. The sign of shape parameter (c1) reflects the direction of asymmetry, and its
magnitude reflects the degree of asymmetry. The Bayes estimators for the parameters α and λ of the GE distribution
under LINEX loss function may be defined as

α̂BL =−
1

c1

lnEα(e
−c1α |x), (19)

where

Eα(e
−c1α |x) =

∫

(α ,λ )
e−c1α Π(α,λ |x)d(α,λ ) (20)

and

λ̂BL =−
1

c1

lnEλ (e
−c1λ |x), (21)

where

Eλ (e
−c1λ |x) =

∫

(α ,λ )
e−c1λ Π(α,λ |x)d(α,λ ), (22)

respectively, provided that Eα(e
−c1α |x) and Eλ (e

−c1λ |x) exist and are finite.
From equation (15), it can be shown that

Eα(e
−c1α |x) =

1

φ(b,c− 1,xm)

∫ ∞

0

λ m+c−1t(x)exp(−bλ )

[log(1− e−λ xm)−1 + c1]m
dλ

and

Eλ (e
−c1λ |x) =

1

φ(b,c− 1,xm)

∫ ∞

0

λ m+c−1t(x)exp(−λ (b+ c1))

[log(1− e−λ xm)−1]m
dλ .
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Using (19) and (21), we obtain the Bayes estimator of α and λ as

α̂BL =−
1

c1

ln

[

1

φ(b,c− 1,xm)

∫ ∞

0

λ m+c−1t(x)exp(−bλ )

[log(1− e−λ xm)−1 + c1]m
dλ

]

and

λ̂BL =−
1

c1

ln

[

1

φ(b,c− 1,xm)

∫ ∞

0

λ m+c−1t(x)exp(−λ (b+ c1))

[log(1− e−λ xm)−1]m
dλ

]

.

General Entropy Loss Function

This is another useful asymmetric loss function that is used to determine whether there is an overestimation or an
underestimation. It is a generalization of the entropy loss function. The general entropy loss function with parameter k is
given by

L(θ̂ −θ ) ∝

(

θ̂

θ

)

− kln

(

θ̂

θ

)

− 1, (23)

where θ̂ is the estimate of the parameter θ .
Under the above loss function, the Bayes estimator θ̂BG of θ is given by

θ̂BG = [Eθ (θ
−k|x)]−

1
k , (24)

where Eθ stands for posterior expectation. The proper choice for k is a challenging task for an analyst, because it reflects
the asymmetry of the loss function. The Bayes estimators for the parameters α and λ of the GE distribution under general
entropy loss function may be defined as

α̂BG = [Eα(α
−k|x)]−

1
k , (25)

where

Eα(α
−k|x) =

∫

(α ,λ )
α−kΠ(α,λ |x)d(α,λ ) (26)

and
λ̂BG = [Eλ (λ

−k|x)]−
1
k , (27)

where

Eλ (λ
−k|x) =

∫

(α ,λ )
λ−kΠ(α,λ |x)d(α,λ ), (28)

respectively, provided that Eα(α
−k|x) and Eλ (λ

−k|x) exist and are finite.
From equation (15), it can be shown that

Eα(α
−k|x) =

Γ (m− k)

Γ mφ(b,c− 1,xm)

∫ ∞

0

λ m+c−1t(x)exp(−bλ )

[log(1− e−λ xm)−1]m−k
dλ

and

Eλ (λ
−k|x) =

1

φ(b,c− 1,xm)

∫ ∞

0

λ m+c−k−1t(x)exp(−bλ )

[log(1− e−λ xm)−1]m
dλ .

Using (24) and (27), we obtain the Bayes estimator of α and λ as

α̂BG =

[

Γ (m− k)

Γ mφ(b,c− 1,xm)

∫ ∞

0

λ m+c−1t(x)exp(−bλ )

[log(1− e−λ xm)−1]m−k
dλ

]− 1
k

,

and

λ̂BG =

[

1

φ(b,c− 1,xm)

∫ ∞

0

λ m+c−k−1t(x)exp(−bλ )

[log(1− e−λ xm)−1]m
dλ

]− 1
k

.

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


66 Sana, M. Faizan: Bayesian estimation and prediction based on..

Squared Error loss function

This loss function is symmetric in nature as it gives equal weightage to both over and under estimation. In real life, we
encounter many situations where over estimation may be more serious than under estimation or vice versa. The squared
error loss function is given by

L(θ̂ −θ ) ∝ (θ̂ −θ )2, (29)

where θ̂ is the estimate of the parameter θ .
Under the above loss function, the Bayes estimator θ̂BS of θ is given by

θ̂BS = [Eθ (θ |x)], (30)

where Eθ stands for posterior expectation. The Bayes estimators for the parameters α and λ of the GE distribution under
squared error loss function is the posterior mean, we have

α̂BS = [Eα(α|x)] =

∫

(α ,λ )
αΠ(α,λ |x)d(α,λ ), (31)

and

λ̂BS = [Eλ (λ |x)] =
∫

(α ,λ )
λ Π(α,λ |x)d(α,λ ). (32)

From equation (15), it can be shown that

[E(α|x)] = α̂BS = m
φ(b,c− 2,xm)

φ(b,c− 1,xm)

and

[E(λ |x)] = λ̂BS =
φ(b,c,xm)

φ(b,c− 1,xm)
.

Because the Bayes estimators under symmetric and asymmetric loss functions involve the complicated integral function
φ(b,c− 1,xm), we consider using the Lindley’s approximation to calculate the approximate Bayes estimators.

Lindley [34] proposed an approximation procedure to evaluate the ratio of two integrals such that

I(x) = E[u(α,λ |x)] =

∫

(α ,λ )u(α,λ )eL(α ,λ )+G(α ,λ )d(α,λ )
∫

(α ,λ ) eL(α ,λ )+G(α ,λ )d(α,λ )
, (33)

where
u(α,λ ) = function of α and λ only;
L(α,λ )= log of likelihood;
G(α,λ ) = log of joint prior of α , and λ
can be evaluated as

I(x) = u(α̂, λ̂ )+
1

2
[(ûλ λ + 2ûλ p̂λ )σ̂λ λ +(ûαλ + 2ûα p̂λ )σ̂αλ

+(ûλ α + 2ûλ p̂α)σ̂λ α +(ûαα + 2ûα p̂α)σ̂αα ]

+
1

2
[(ûλ σ̂λ λ + ûασ̂λ α)(L̂λ λ λ σ̂λ λ + L̂λ αλ σ̂λ α + L̂αλ λ σ̂αλ + L̂ααλ σ̂αα)

+(ûλ σ̂αλ + ûα σ̂αα)(L̂αλ λ σ̂λ λ + L̂λ αα σ̂λ α + L̂αλ ασ̂αλ + L̂ααα σ̂αα)], (34)

where
α̂= MLE of α;
λ̂ = MLE of λ ;

ûλ = ∂u(α̂ ,λ̂ )

∂ λ̂
; ûα = ∂u(α̂,λ̂ )

∂ α̂ ; ûλ α = ∂ 2u(α̂ ,λ̂ )

∂ λ̂ ∂ α̂
; ûαλ = ∂ 2u(α̂ ,λ̂ )

∂ α̂∂ λ̂
;

ûλ λ = ∂ 2u(α̂,λ̂ )

∂ λ̂ 2
; ûαα = ∂ 2u(α̂,λ̂ )

∂ α̂2 ; L̂λ λ α = ∂ 3L(α̂ ,λ̂ )

∂ λ̂∂ λ̂ ∂ α̂
; L̂λ λ λ = ∂ 3L(α̂ ,λ̂ )

∂ λ̂∂ λ̂ ∂ λ̂
;

L̂λ αλ =
∂ 3L(α̂ ,λ̂ )

∂ λ̂ ∂ α̂∂ λ̂
; L̂ααλ =

∂ 3L(α̂ ,λ̂ )

∂ α̂∂ α̂∂ λ̂
; L̂αλ λ =

∂ 3L(α̂ ,λ̂ )

∂ α̂∂ λ̂∂ λ̂
; L̂λ αα =

∂ 3L(α̂ ,λ̂ )

δ λ̂ ∂ α̂∂ α̂
;

L̂ααα = ∂ 3L(α̂ ,λ̂ )
∂ α̂∂ α̂∂ α̂ ; L̂αλ α = ∂ 3L(α̂ ,λ̂ )

∂ α̂∂ λ̂∂ α̂
; p̂α = ∂G(α̂ ,λ̂ )

∂ α̂ ; p̂λ = ∂G(α̂ ,λ̂ )

∂ λ̂
;

This approximation procedure has been used by several authors to obtain the approximate Bayes estimators for various
distributions, such as [35,36,37,38].
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2.2.1 Bayes Estimator of α Under LINEX Loss Function

We see the Bayes estimator of α under the LINEX loss function in equation (19). Now, substituting the value of Π(α,λ |x)
from (15) in equation (20), we have

Eα(e
−c1α |x) =

∫

(α ,λ )u(α,λ )eL(α ,λ )+G(α ,λ )d(α,λ )
∫

(α ,λ ) eL(α ,λ )+G(α ,λ )d(α,λ )
, (35)

where
u(α,λ ) = e−c1α ;
L(α,λ ) = m(logα + logλ )+αlog(1− exp(−λ xm))−λ ∑m

i=1 xi −∑m
i=1 log(1− exp(−λ xi));

G(α,λ ) = clogb+(c− 1)logλ − bλ − logα − logc.
It can easily be verified that
ûα =−c1e−c1α , ûαα = c2

1e−c1α , ûλ = ûλ α = ûλ λ = 0,

p̂λ = (c−1)
λ − b, p̂α =− 1

α and

L̂λ = m
λ −∑m

i=1 xi +α xmexp(−λ xm)
(1−exp(−λ xm))

−∑m
i=1

xiexp(−λ xi)
(1−exp(−λ xi))

,

L̂α = m
α + log(1− exp(−λ xm)), L̂λ λ =− m

λ 2 −
αx2

mexp(−λ xm)

(1−exp(−λ xm))2 +∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2 ,

L̂λ α = xmexp(−λ xm)
(1−exp(−λ xm))

, L̂αα =− m
α2 , L̂λ αα = L̂αλ α = L̂ααλ = 0, L̂ααα = 2m

α3 , L̂λ λ α =−
x2

mexp(−λ xm)

(1−exp(−λ xm))2

and L̂λ λ λ = 2m
λ 3 +

αx3
m(1+e−λxm )exp(−λ xm)

(1−exp(−λ xm))3 −∑m
i=1

x3
i (1+e−λxi )exp(−λ xi)

(1−exp(−λ xi))3 .

Again, because α and λ are independent, σ̂λ α = 0; σ̂λ λ =− 1

L̂λλ
and σ̂αα =− 1

L̂αα
.

Evaluating u-terms, L-terms and p-terms mentioned above at point (α̂ , λ̂ ) and using (34), we get

Eα(e
−c1α |x) = e−c1α +

1

2

α2

m
c1e−c1α





(

c1 +
2

α

)

−





2

α
−

x2
mexp(−λ xm)

(1−exp(−λ xm))2

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2









Thus, the Bayes estimator of α under the LINEX loss function is

α̂BL =−
1

c1

ln[e−c1α +
1

2

α2

m
c1e−c1α

((c1 +
2

α
)− (

2

α
−

x2
mexp(−λ xm)

(1−exp(−λ xm))2

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

))].

2.2.2 Bayes Estimator of λ Under LINEX Loss Function

We see the Bayes estimator of λ under the LINEX loss function in equation (21). Now, substituting the value of Π(α,λ |x)
from (15) in equation (22), we have

Eλ (e
−c1λ |x) =

∫

(α ,λ )u(α,λ )eL(α ,λ )+G(α ,λ )d(α,λ )
∫

(α ,λ ) eL(α ,λ )+G(α ,λ )d(α,λ )
, (36)

where
u(α,λ ) = e−c1λ ;
L(α,λ ) and G(α,λ ) are the same as those given in (35).
It can easily be verified that

ûλ =−c1e−c1λ , ûλ λ = c2
1e−c1λ , ûα = ûλ α = ûαα = 0.
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Following the procedure as discussed in (2.2.1), we get after simplification,

Eλ (e
−c1λ |x) = e−c1λ +

1

2
[(

c2
1e−c1λ − 2c1(

(c−1)
λ − b)exp(−c1λ )

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

)

−(
c1e−c1λ ( 2m

λ 3 +
αx3

m(1+e−λxm )exp(−λ xm)
(1−exp(−λ xm))3 −∑m

i=1
x3

i (1+e−λxi )exp(−λ xi)

(1−exp(−λ xi))3 )

( m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2 )2
)].

Thus, the Bayes estimator of λ under the LINEX loss function is

λ̂BL =−
1

c1

ln[e−c1λ +
1

2
[(

c2
1e−c1λ − 2c1(

(c−1)
λ − b)exp(−c1λ )

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

)

−(
c1e−c1λ ( 2m

λ 3 +
αx3

m(1+e−λxm )exp(−λ xm)

(1−exp(−λ xm))3 −∑m
i=1

x3
i (1+e−λxi )exp(−λ xi)

(1−exp(−λ xi))3 )

( m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2 )2
)]].

2.2.3 Bayes Estimator of α Under General Entropy Loss Function

Applying the same Lindley approach here as in (34) with

u(α̂, λ̂ ) = α−k;
ûα =−kα−k−1, ûαα = k(k+ 1)α−k−2 and ûλ = ûλ α = ûλ λ = 0.
L(α,λ ) and G(α,λ ) are the same as those given in (35).
Following the procedure as discussed in (2.2.1), we get after simplification,

Eα(α
−k|x) = α−k +

k(k+ 3)α−k

2m
+

1

2

k

m
α−k+1





x2
mexp(−λ xm)

(1−exp(−λ xm))2

m

λ 2 +
αx2

mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

−
2

α



 .

Thus, the Bayes estimator of α under the general entropy loss function is

α̂BG = [α−k +
k(k+ 3)α−k

2m
+

1

2

k

m
α−k+1

[

x2
mexp(−λ xm)

(1−exp(−λ xm))2

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

−
2

α
]]−

1
k .

2.2.4 Bayes Estimator of λ Under General Entropy Loss Function

Applying the same Lindley approach here as in (34) with

u(α̂, λ̂ ) = λ−k;
ûλ =−kλ−k−1, ûλ λ = k(k+ 1)λ−k−2 and ûα = ûλ α = ûαα = 0.
L(α,λ ) and G(α,λ ) are the same as those given in (35).
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Following the procedure as discussed in (2.2.1), we get after simplification,

Eλ (λ
−k|x) = λ−k +

1

2
[

k(k+ 1)λ−k−2 − 2kλ−k−1( (c−1)
λ − b)

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

]

+
1

2
[
−kλ−k−1( 2m

λ 3 +
αx3

m(1+e−λxm )exp(−λ xm)

(1−exp(−λ xm))3 −∑m
i=1

x3
i (1+e−λxi )exp(−λ xi)

(1−exp(−λ xi))3 )

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

].

Thus, the Bayes estimator of λ under the general entropy loss function is

λ̂BG = [λ−k +
1

2
[

k(k+ 1)λ−k−2 − 2kλ−k−1( (c−1)
λ − b)

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

]

+
1

2
[
−kλ−k−1( 2m

λ 3 +
αx3

m(1+e−λxm )exp(−λ xm)

(1−exp(−λ xm))3 −∑m
i=1

x3
i (1+e−λxi )exp(−λ xi)

(1−exp(−λ xi))3 )
{

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

}2
]]−

1
k .

2.2.5 Bayes Estimator of α Under Squared Error Loss Function

Applying the same Lindley approach here as in (34) with

u(α̂, λ̂ ) = α;
ûα = 1 and ûαα = ûλ = ûλ α = ûλ λ = 0.
L(α,λ ) and G(α,λ ) are the same as those given in (35).
Following the procedure as discussed in (2.2.1), we get after simplification,

Eα(α|x) = α̂BS = α[1−
1

m
+

α

2m

[−

x2
mexp(−λ xm)

(1−exp(−λ xm))2

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

+
2

α
]].

2.2.6 Bayes Estimator of λ Under Squared Error Loss Function

Applying the same Lindley approach here as in (34) with

u(α̂, λ̂ ) = λ ;
ûλ = 1 and ûαα = ûα = ûλ α = ûλ λ = 0.
L(α,λ ) and G(α,λ ) are the same as those given in (35).
Following the procedure as discussed in (2.2.1), we get after simplification,

Eλ (λ |x) = λ̂BS = λ +

(c−1)
λ − b

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

+
1

2







2m
λ 3 +

αx3
m(1+e−λxm )exp(−λ xm)

(1−exp(−λ xm))3 −∑m
i=1

x3
i (1+e−λxi )exp(−λ xi)

(1−exp(−λ xi))3

{

m
λ 2 +

αx2
mexp(−λ xm)

(1−exp(−λ xm))2 −∑m
i=1

x2
i e(−λ xi)

(1−e(−λ xi))2

}2






.
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3 Bayesian Prediction of Future Records

Assume that we have m lower records XL(1) = x1,XL(2) = x2, ...,XL(m) = xm, from the GE(α,λ ). Based on such sample,
prediction, either point or interval is needed for the s-th lower records, 1 < m < s. Now let Y = XL(s) be the s-th lower

record value, 1 < m < s. The conditional pdf of Y for the given parameters α and λ and that the m-th record had been
observed is [4]

f (y|xm,θ ) =
[H(y)−H(xm)]

s−m−1

Γ (s−m)

f (y)

F(xm)
, 0 ≤ y < xm < ∞, (37)

where f (.) and F(.) are, respectively, the pdf and the cdf, H(.) = −lnF(.), and ”ln” is used for the natural logarithm.
Combining the posterior density given by (15), and the conditional density given by (37), and integrating out the
parameters α and λ , one may get the Bayesian predictive density function of Y = XL(s) for the given past m records, in
the form

q(y|x) =

∫ ∞

0

∫ ∞

0
f (y|xm,α,λ )Π(α,λ |x)dαdλ

=
φ(xm,y)

B(s−m,m)φ(b,c− 1,xm)
, 0 < y < xm < ∞, (38)

where B(., .) is the complete beta function and

φ(xm,y) =

∫ ∞

0

λ m+ce−λ (y+b)t(x)

(1− e−λ y)[log(1− e−λ y)−1]s

[

ln(
1− e−λ xm

1− e−λ y
)

]s−m−1

dλ .

The Bayesian predictive bounds of Y = XL(s) are obtained by evaluating P(Y > z|x) for some given value of z. It follows
from (38) that

P(Ys > z|x) =

∫ ∞

z
φ(xm,y)dy/

∫ ∞

xm

φ(xm,y)dy. (39)

Two-sided (1− γ)100% prediction interval for Y = XL(s) is obtained by evaluating both the lower, L(x), and the upper,

U(x), limits which satisfy

P(Ys > L(x)|x) = 1− γ
2

and P(Ys >U(x)|x) = γ
2
.

Thus, one may obtain L(x) and U(x) by equating (39) to 1− γ
2

and
γ
2
, respectively, and solving, numerically, the resulting

equations.
For the special case, when s = m+ 1, it can be shown that

P(Ym+1 > z|x) =
φ(b,c− 1,z)

φ(b,c− 1,xm)
. (40)

4 Numerical Computations

In order to illustrate the usefulness of the inference procedures discussed in the previous sections, we generate five sets
of record values of sizes 10, 20, 30, 40 and 50 from the generalized exponential distribution with parameter α and λ .
The Bayes estimators of α and λ under symmetric and asymmetric loss functions are shown in Table 1 and Table 2. The
MLE’s are also discussed in the same table.
Moreover, in order to illustrate the prediction procedures obtained in section 3, using (40), the lower and upper 95%
predictive bounds for Ym+1(next upper record in the Xn sequence) at prior parameters b = 2 and c = 2 are shown in Table
3, respectively.
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Table 1. MLE’s and Bayes estimates at prior parameters b = 2 and c = 2 based on
generated record values, when the population parameters are α = 3

n m α̂ML α̂BS c1 = k α̂BL α̂BG

10 7 3.242715 2.999803 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

3.297902
3.244582
3.187298
3.126754
3.063884
2.935724
2.872862
2.812330
2.755061
2.701759

2.893620
2.872885
2.852418
2.832257
2.812442
2.773979
2.755393
2.737270
2.719634
2.702503

20 7 2.997946 2.999997 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

3.296272
3.242868
3.185511
3.124911
3.062006
2.933847
2.871020
2.810544
2.753348
2.700132

2.893811
2.873074
2.852605
2.832442
2.812625
2.774157
2.755568
2.737442
2.719803
2.702669

30 7 3.210332 2.997906 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

3.298069
3.244758
3.187482
3.126943
3.064077
2.935917
2.873051
2.812513
2.755237
2.701926

2.891758
2.871037
2.850587
2.830446
2.810652
2.772240
2.753680
2.735587
2.717982
2.700882

40 8 2.873693 2.999992 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

3.263146
3.215437
3.164610
3.111245
3.056085
2.943900
2.888739
2.835375
2.784549
2.736840

2.906975
2.888755
2.870740
2.852963
2.835451
2.801332
2.784774
2.768579
2.752766
2.737351

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


72 Sana, M. Faizan: Bayesian estimation and prediction based on..

50 7 2.992030 2.999963 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

3.298039
3.244727
3.187450
3.126910
3.064043
2.935883
2.873018
2.812481
2.755206
2.701897

2.893778
2.873041
2.852572
2.832410
2.812593
2.774126
2.755537
2.737412
2.719774
2.702640

ML: Maximum Likelihood, BS: Squared Error Loss Function,
BL: LINEX Loss Function, BG: General Entropy Loss Function

Table 2. MLE’s and Bayes estimates at prior parameters b = 2 and c = 2 based on
generated record values, when the population parameters are λ = 1

n m λ̂ML λ̂BS c1 = k λ̂BL λ̂BG

10 7 0.998754 0.998114 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

1.079375
1.063584
1.047489
1.031160
1.014675
0.981559
0.965093
0.948795
0.932741
0.917003

0.917052
0.901744
0.886901
0.872582
0.858832
0.833187
0.821339
0.810159
0.799648
0.789802

20 7 0.978359 0.998099 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

1.079357
1.063567
1.047471
1.031143
1.014659
0.981545
0.965079
0.948782
0.932729
0.916991

0.917041
0.901733
0.886892
0.872573
0.858825
0.833181
0.821334
0.810154
0.799644
0.789799

30 7 0.999989 0.998029 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

1.079271
1.063484
1.047391
1.031066
1.014585
0.981479
0.965018
0.948724
0.932676
0.916943

0.916992
0.901689
0.886852
0.872538
0.858794
0.833159
0.821315
0.810139
0.799632
0.789789
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40 8 0.999947 0.999547 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

1.080678
1.064853
1.048717
1.032344
1.015810
0.982585
0.966059
0.949699
0.933581
0.917778

0.917826
0.902452
0.887544
0.873159
0.859346
0.833579
0.821675
0.810440
0.799878
0.789984

50 7 0.999788 0.999143 -0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5

1.080614
1.064790
1.048657
1.032285
1.015754
0.982534
0.966011
0.949654
0.933539
0.917739

0.917788
0.902417
0.887512
0.873130
0.859320
0.833559
0.821658
0.810426
0.799866
0.789975

ML: Maximum Likelihood, BS: Squared Error Loss Function,
BL: LINEX Loss Function, BG: General Entropy Loss Function

Table 3. Lower and Upper 95% prediction bounds for Ym+1

Number
of
Records

m

Interval prediction for the next
record

Ym+1

L(x) U(x)

Length

3 0.02114997 0.00000117 .02114880

4 0.00926856 0.00000619 .00926237

5 0.04599991 0.00134991 .04465000

6 0.04459921 0.04456998 .00002923

7 .030254000 0.00118600 0.0290680

5 Conclusion

In this paper, we have studied the Bayesian estimator under symmetric and asymmetric loss functions, and maximum
likelihood estimation as well as prediction for the two parameter generalized exponential distribution based on generated
record values. Bayes estimators were obtained using Lindley approximation, while MLE’s were obtained using Newton-
Raphson method.
It is noted that as sample size increases, the Bayes estimators of α and λ under symmetric and asymmetric loss function
increase and decrease irregularly. Also, the MLE’s decrease and increase irregularly. Bayes estimators of α and λ under
squared error loss function are more or less than MLE’s. If the magnitude of c1 and k, i.e., the LINEX and General Entropy
loss parameter increases, then the estimator of α and λ decreases.
For negative values of c1 and k:
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(1) The Bayes estimator of λ under LINEX loss function is greater than MLE’s. However, the Bayes estimator of α under
LINEX loss function is more or less than MLE’s.
(2) The Bayes estimator of λ under General Entropy loss function is less than MLE’s. However, the Bayes estimator of α
under General Entropy loss function is more or less than MLE’s.
For positive values of c1 and k:
(1) The Bayes estimator of α and λ under LINEX loss function is more or less than MLE’s.
(2) The Bayes estimator of α and λ under General Entropy loss function is less than MLE’s.
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