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Abstract: The Tutte polynomial has an essential rule in several applications such as networks and many areas of science, for example,

combinatorics, biology, and statistical mechanics. In this paper, we investigate a two-variable polynomial graph invariant of the Tutte

polynomial of a graph. Using the two new models, an established form of the Farey graph is given, and a modification of the basic

theory for these two new models is introduced. The Tutte polynomial is used to determine the number of spanning trees, as well as

the number of connected spanning subgraphs. A deduction of the exact expressions for the chromatic polynomial and the reliability

polynomial of graphs are presented. Moreover, we apply our models to establish the form of the Koch curve.
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1 Introduction

In 1952, Potts in [1], introduced the initiated model for
partition function for analyzing the properties of graphs
and networks. It had the inquiry into graph polynomials
and their applications with the Tutte polynomial. The
model was developed by Potts [2]. Y. Wang (2019)
investigated a few enumeration and combinatorial issues
related to the self-similar structure of the Farey graphs.
Also determined the independence, matching, and
dominance numbers. C. Beke (2023) concentrates on
Brylawski’s identities concerning the Tutte polynomial. F.
Bencs (2022) studied the asymptotic behavior of the Tutte
polynomial of large girth regular graphs. M. Kocho
(2019) characterized the Tutte polynomial by means of
Ehrhart polynomials, thus we can apply a reciprocity law
and obtain analogous interpretations for positive values of
the Tutte polynomial. M. Kochol (2020) discuss
modifications of duality and convolution formulas known
for the Tutte polynomial [3,4,5,6]. Aboutahoun and
El-Safty [7] investigated a self-similar network model and
derived the Tutte polynomial. In addition, they evaluated
exact explicit formulas for the number of acyclic
orientations and spanning trees of it as applications of this

Tutte polynomial. Gong and Jin [8] introduced a family of
recursively constructed self-similar graphs whose inner
duals are of the self-similar property. By combining the
dual property of the Tutte polynomial and the
subgraph-decomposition trick, they showed that the Tutte
polynomial of this family of graphs can be computed in
an iterative way and in particular the exact expression of
the formula of the number of their spanning trees is
derived. Liao et al. [9] studied the Tutte polynomials of
the diamond hierarchical lattices and a class of
self-similar fractal models that can be constructed
through graph operations. Kahl [10] determined more
generally compression’s effect on the Tutte polynomial,
recovering the results of the graph transformation called
the compression of a graph which is known to decrease
the number of spanning trees, the all-terminal reliability,
and the magnitude of the coefficients of the chromatic
polynomial of a graph and obtaining similar results for a
wide variety of other graph parameters derived from the
Tutte polynomial. Moreover, The two-variable Tutte
polynomial [11,12,13] is crucial in a number of scientific
fields, including combinatorics, statistical mechanics, and
biology. In a broad sense, it includes any graphical
invariants that can be computed using deletion and
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contraction operations, which are standard contractions
for models of many networks. The number of spanning
trees, the number of connected spanning subgraphs, and
the dimension of the bicycle space can all be determined
by evaluating the Tutte polynomial T (G;x1,y) at specific
positions (x1,y1).
Two-variable graph polynomial which has several areas
of applications in sciences such as combinatorics [14],
statistical mechanics [15], engineering [16], optimization
[17], physics [16] and biology [18]. For lattice strips of
varied fixed widths and arbitrarily long lengths, with
various boundary conditions, an exact computation of
flow polynomials F(G,q) is made. Triangle, square, and
honeycomb lattice strips are all taken into consideration
in [19]. the chromatic polynomials that Given in [20] are
the zero-temperature antiferromagnetic Potts-model
partition functions PG(q) for m× n rectangular subsets of
the square lattice, with m ≤ 8 (free or periodic transverse
boundary conditions) and arbitrary n (longitudinal
boundary terms free), using a transfer matrix In the
Fortuin-Kasteleyn representation. The Farey graph
contains some interesting graphical properties of the
variable graph that have been studied over the past years,
which can be summarized as follows: It is a small world
with average distances that increase logarithmically with
its vertex number, whose cluster coefficient converges to a
large constant ln 2, It is 3-colors with a minimum, unique
Hamiltonian, outerplanar and perfect, see [21,22,23,24].
Matula and Kornerup 1979 introduced the Farey graph
and Colbourn studied it in 1982. The Farey graph has
been used as a deterministic network model by Zhang and
Comellas [21,25]. The importance of these networks is
due to the fact that they display some properties of
networks in the real world. Here, there are some
interesting graphical properties of the variable chart that
have been studied over the past years. In this paper, we
study a two-variable polynomial graph invariant of
considerable called the Tutte polynomial of a graph,
which is essential in statistical physics and combinatorics.
In section 1, it gives a historical overview of the research
topic. In section 2, the construction for Hn and Dn graphs
and their properties (Algorithm, Deletion and
Contraction) are introduced. In section 3, the Tutte
polynomial of a class of self-similar fractal models N (t)
and its number of spanning trees are proposed. In section
4, a few spanning trees of Hn is given. In section 5, the
chromatic polynomial P(H;γ) is present. In section 6, the
reliability polynomialR(H; p) is given. In section 7, we
study the Tutte polynomial of a class of self-similar
fractal models N (t) and its number of spanning trees. In
section 8, we deduce an analytics and dissection for our
results in this research, finally, section 9 contains the
conclusions.

2 Construction for Hn and Dn graphs and

their properties

We generate two new self-similar copies created from
Farey Graph, we donate these two graphs as Hn and Dn

where n ∈ {1,2,3, · · ·}. The first one Hn can be donated in
the following iterative way: For n = 0, H0 has two
vertices and two parallel edges joining them. For n ≥ 1,
Hn is obtained from Hn−1 by adding to every outer face
edge introduced at step n− 1 a new two edges connected
with a new vertex that forms a path of length two. see
figure 2. The second one Dn

2.1 Algorithm

–Step 1. At n = 0, H0 will have two vertices and two
parallel edges joining them, as in H0. It will be possible
to put H0 = {e1,e2},V0 = {v0,v0}.

–Step 2. begin with H0, and from e1, its endpoint can
be connected with vertex v3 edges e11 and
e12.Similarly, e2 can be joined to vertex e4 and edges
e21 and e22. In this case, we get H1 =
{e1,e2}

⋃{e11,e12,e21,e22},V1 = {v1,v2,v3,v4}.
–Step 3. From H1, we get H1 =
{e1,e2}

⋃{e11,e12,e21,e22}
⋃{e111,e112,e121,e122,e21

,e21,e22},V1 = {v1,v2,v3,v4,v5,v6,v7,v8}. see Figer
–Step 4. Counting for step 3. Generally, for each n ∈ N,
we have Hn.

Step 1. At n = 0, H0 will be two vertices and two parallel
edges joining them as in H0. It will be possible to put H0 =
{e1,e2},V0 = {v0,v0}.

Definition 1.Deletion and Contraction Edge deletion and

contractions are essential for studying the Tutte

polynomial. The graph by deleting an edge e ∈ E is just

G− e. The graph obtained by contracting an edge e in G

results from selecting endpoints of e followed by removing

e. see figure 1 for more explanation.

2.2 Deletion and Contraction

Edge deletion and contractions are essential for studying
the Tutte polynomial. The graph was obtained by deleting
the edge of e. which is denoted by the symbol G− e, In
different words, deletion means deleting an edge e from
the set of edges E(e). e.i.G− e = G(V (G),E(G)− e). The
graph obtained by contracting an edge e in G results from
deleting the edge e and merging the two endpoints of e to
one vertex. and is denoted G/e. See figure. 1.
The Tutte polynomial of a finite graph by contraction and
deletion by the following terminologies:

The following recursive definition of the function
T (G;x1,y1) of a graph G and two independent variables
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Fig. 1: Diagrams of G−e and G/e.

Fig. 2: The graph H at n = 1,2,3.

x1,y1 is given by the recursive definition:
T (G;x1,y1) =











1 : i f G = φ
x1T (G− e;x1,y1) : i f e is a bridge

y1T (G− e;x1,y1) : i f e is a loop

T (G− e;x1,y1)+T (G/e;x1,y1) : otherwise

(1)
where e is an edge of G. This concept is not applicable to
large networks; therefore, there are several different
generating function formulations, each of which has its
advantages. Then the Tutte polynomial of G has the
following expansion: Tutte polynomial. Let G be a graph
consisting of two sets of edges E(G) and a set of vertices
V (G). In the following, we will introduce some important
symbols and concepts to clarify the Tutte polynomial.
The number of connected components of the graph G

donate as k(G). Let A = (V (A),E(A)) is a spanning
subgraph. The rank of a graph G is given as
r(G) = |V |−K(G) and the nullity of a graph G s is given
as n(G) = |E| − |V |+K(G). We introduce the definition
for the Tutte polynomial of a graph in terms of spanning
subgraphs:

T (G;x1,y1) = ∑
A⊆E

(x1 − 1)r(G)−r(A)(y1 − 1)|A|−r(A) (2)

Graph Theory Terms
|V | is the number of Vertices of graph G.
|E| is the number of Edges og graph G.
k(G) is the number of components of graph G.
The rank of a graph G is r(G) = |V |−K(G).
The nullity of graph G is n(G) = |E|− |V |+K(G).
The rank-generating function of the Tutte polynomial is
defined as

T (G;x1,y1) = ∑
A⊆E

(x1 − 1)r(G)−r(A)(y1 − 1)|A|−r(A) (3)

One of the characteristics of the graph that we will use
here is when two graphs are joined with one vertex, in

which the Tutte polynomial satisfies the following
property: T (A ∗ B;x1,y1) = T (A;x1,y1)T (B;x1,y1). such
that A ∗B is a graph formed by connecting two graphs A

and B by a single vertex v.
In this paper, assigning values to the points of the

variables (x1,y1)in the Tutte polynomial provides special
evaluations. This will enable us to conclude many
combinatorial and algebraic properties of the studied
graphs. Remember some graphic terms: A spanning forest
of a graph G is a subgraph of G containing the set of all
vertices |E(G)| which is not connected which is a forest.
A Spanning subgraph is a subgraph of G containing the
set of all vertices |E(G)| which is connected. The special
evaluations of interest are the number of spanning trees of
G, given as T (G;1,1) = NST (G); the number of
spanning forests of G is given as T (G;2,1) = NSF(G)
and the number of connected spanning subgraphs of G is
given as T (G;1,2) = NCSSG(G).

The reliability polynomial also is one graphical
polynomial as partial evaluations, the reliability
polynomial is defined as the probability of a path of active
edges in this random pattern between each pair of G

vertices (in other words there is a path between them
consisting of a sequence of connected edges of G), Let G

be a connected graph with rank r(G) and nullity n(G) and
assume that each edge is independently chosen to be
active with probability p where 0 ≤ p ≤ 1. Then the
reliability polynomial by the Tutte polynomial is given as

R(G; p) = pr(G)(1− p)n(G)T (G;1,(1− p)) (4)

One of the essential tools used to Count the number of
ways to color the constrained G vertices that do not have
adjacent pairs of vertices of the same color is called the
chromatic polynomial P(G;γ), the zero-temperature limit
of the anti-ferromagnetic Potts model is one of the most
famous complex roots uses of the chromatic polynomial.
[26,27,19,20]. then the chromatic polynomial by the Tutte
polynomial is given as

P(G;γ) = (−1)r(G)γk(G)T (G;1− γ,0) (5)

Corollary 1.For each n ≥ 1, the Tutte polynomial

Tn(Gn;x1,y1) of a small-world Farey graph G is given as

follows:

Tn(G;x1,y1) = y1T 2
n−1(Gn−1;x1,y1)

+ 2Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)N2
n−1(Gn−1;x1,y1)

+ (x1 − 1)2N2
n−1(Gn−1;x1,y1)

+ 2(x1 − 1)Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1).

with initial conditions

Tn=0(G0;x1,y1) = 1, Nn=0(G;x1,y1) = 1
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Corollary 2.The exact number of spanning trees NST (Gn)
of the graph G is given as follows:

NST (Gn) = Tn(Gn;1,1) = (2n+1 − 1)
n

∏
i=2

(2i − 1)2n−i

(6)

The order and size of the Farey graph

(Vn,En)

are readily demonstrated by induction to be, respectively,

Vn(H) = 2n+1,En(H) = 2n+2 − 2 (7)

It is not difficult to prove by induction that the order and

Fig. 3: The graph D at n = 1,2,3.

size of the Farey graph (Vn, En) are, respectively,

Vn(D) = 2n+1,En(D) = 2n+2 − 3 (8)

By using 2.2 on graph G we get the tutte polynomial as
follows:

Fig. 4: T3(G3;x1,y1) = T 2
2 (G2;x1,y1)+T2(H2;x1,y1)

Fig. 5: T2(H2;x1,y1) = T2(D2;x1,y1)+y1T 2
1 (H1;x1,y1)

Theorem 1.The Tutte polynomial of the graph H is

expressed as follows:

Tn−1(Hn;x1,y1) = y1T 2
n−1(Gn−1;x1,y1)

+ 2Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)N2
n−1(Gn−1;x1,y1)

+ 2(x1 − 1)Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)2N2
n−1(Gn−1;x1,y1)−T2

n−1(Gn−1;x1,y1).

Proof.From figure 2 we git

Tn(Gn;x1,y1) = T 2
n−1(Gn−1;x1,y1)+Tn−1(Hn−1;x1,y1)

(9)

Tn−1(Hn−1;x1,y1) = Tn(Gn;x1,y1)−T 2
n−1(Gn−1;x1,y1)

(10)
By using equation 1 in equation 10 we get

Tn−1(Hn−1;x1,y1) = y1T 2
n−1(Gn−1;x1,y1)

+ 2Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)N2
n−1(Gn−1;x1,y1)

+ 2(x1 − 1)Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)2N2
n−1(Gn−1;x1,y1)−T2

n−1(Gn−1;x1,y1).

Corollary 3.The number of spanning trees of graph H at

any time step n > 1 is given as follows:

NST (Hn) = Tn(Hn;1,1) = (2n+2 − 1)
n+1

∏
i=2

(2i − 1)2n−i+1

+(2n+1− 1)
n

∏
i=2

(2i − 1)2n−i

Theorem 2.The Tutte polynomial of the graph D is

expressed as follows:

Tn(Dn;x1,y1) = Tn(Hn;x1,y1)− y1 T 2
n−2(Hn−1;x1,y1)

(11)
where

Tn−1(Hn−1;x1,y1) = y1T 2
n−1(Gn−1;x1,y1)

+ 2Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)N2
n−1(Gn−1;x1,y1)

+ 2(x1 − 1)Tn−1(Gn−1;x1,y1)Nn−1(Gn−1;x1,y1)

+ (x1 − 1)2N2
n−1(Gn−1;x1,y1)

−T 2
n−1(Gn−1;x1,y1).

Proof.From figure 5 we get

Tn(Hn;x1,y1) = Tn(Dn;x1,y1)+ y1 T 2
n−1(Hn−1;x1,y1)

(12)

Tn(Dn;x1,y1) = Tn(Hn;x1,y1)− y1 T 2
n−2(Hn−1;x1,y1)

(13)

Corollary 4.The number of spanning trees in the graph D

at any step time n > 1 is given as follows:

NST (Dn) = Tn(Hn;1,1) = (2n+2 − 1)
n+1

∏
i=2

(2i − 1)2n−i+1

+(2n+1− 1)
n

∏
i=2

(2i − 1)2n−i − y1(Tn(Hn−1;1,1)

= (2n+1 − 1)
n

∏
i=2

(2i − 1)2n−i

+(2n − 1)
n−1

∏
i=2

(2i − 1)2n−i−1
)2
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3 Tutte polynomial of a class of self-similar

fractal models N(t) and its number of

spanning tree

To find the Tutte polynomial of graph Hn where
T (Hn;x1,y1) = ξn(x1,y1), and the Tutte polynomial of the
ferry graph is given by T (Gn;x1,y1) = Tn(x1,y1), we use
the following terminology: The recursive definition of the
function T (G;x1,y1) results in the following recursive
definition of the graph G and the two independent
variables x1,y1:
T (G;x1,y1) =










1 : i f G = φ
x1T (G− e;x1,y1) : i f e is a bridge

y1T (G− e;x1,y1) : i f e is a loop

T (G− e;x1,y1)+T (G/e;x1,y1) : otherwise

(14)
where e is an edge of G. by the fourth terminology in
equation 14 we get

Tn(x1,y1) = T 2
n−1(x1,y1)+ ξn−1(x1,y1) (15)

i.e. see the following equation for example which we put
n = 3 at Farey graph
we know the following from corollary 3 in [28]

Fig. 6: T3(G3;x1,y1) = T 2
2 (G2;x1,y1)+T2(H2;x1,y1)

Theorem 3.[28] For each n ≥ 1, the Tutte polynomial

Tn(x1,y1) of Gn ferry graph is given by:

Tn(x1,y1) = T1,n(x1,y1)+ (x1 − 1)Nn(x1,y1) (16)

where the polynomials Tn ,Nn satisfy the following

recursive relations

T1,n(x1,y1) = y1 ·T 2
1,n−1+2 ·T1,n−1 ·Nn−1 +(x1 −1) ·N2

n−1

(17)

Nn(x1,y1) = 2 ·T1,n−1 ·Nn−1 +(x1 − 1) ·N2
n−1 (18)

Such that T0,0 = 1,N0 = 1

Two new self-similar copies of the Farey graph are
generated and denoted as graphs Hn, where n is a positive
integer that falls between the intervals {1,2,3, · · ·}. Here,
is an iterative method for donating the first one, Hn: with
two parallel edges connecting its two vertices, H0 has two
n = 0. When n is greater than one, Hn is produced from
Hn−1 by appending a new pair of edges joined by a new
vertex to each outer face edge added at step n − 1.
Additionally, Theorem 4 is important for deducing the
number of spanning trees of Hn.

Theorem 4.

ξn(x1,y1) = (y1 − 1)T2
1,n +(x1 − 1)N2

n + 2T1,nNn(x1,y1)
(19)

s.t

T1,n(x1,y1) = y1 ·T 2
1,n−1 +2 ·T1,n−1 ·Nn−1 +(x1 −1) ·N2

n−1

(20)

Nn(x1,y1) = 2 ·T1,n−1 ·Nn−1 +(x1 − 1) ·N2
n−1 (21)

Such that T0,0 = 1,N0 = 1

Proof.Put n = n− 1 in equation 16 we get

Tn−1(x1,y1) = T1,n−1(x1,y1)+ (x1 − 1)Nn−1(x1,y1) (22)

From equations 16 and 22 in equation 15

ξn−1(x1,y1) = T1,n(x1,y1)+ (x1 − 1)Nn −T 2
1,n−1(x1,y1)

−2(x1 − 1)T1,n−1(x1,y1)Nn−1(x1,y1)
−(x1 − 1)2N2

n−1(x1,y1).
(23)

From equations 14 and 18 in equation 23 we get

ξn−1(x1,y1) = (y1 − 1)T2
1,n−1(x1,y1)+ (x1 − 1)N2

n−1

+2T1,n−1(x1,y1)Nn−1(x1,y1).
(24)

4 Number of spanning tree of Hn

The Tutte polynomial of the Ferry graph is
T (Gn;x1,y1) = Tn(x1,y1), and the Tutte polynomial of the
graph Hn is T (Hn;x1,y1) = Tn(x1,y1); to get these, we
use the following terminology. We can find the number of
spanning trees of graph Hn using the formula x1 = y1 = 1
in Theorem 4, which provides us. To obtain the number of
spanning trees of graph Hn we put x1 = y1 = 1 in
Theorem 4 we obtain:

ξn(1,1) = 2T1,n(1,1)Nn(1,1) (25)

s.t

T1,n(1,1) = T 2
1,n−1(1,1)+2 ·T1,n−1(1,1) ·Nn−1(1,1) (26)

Nn(1,1) = 2 ·T1,n−1(1,1) ·Nn−1(1,1) (27)
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From equations 25 and 27, we get

ξn(1,1) = 2T1,n(1,1)Nn(1,1) = Nn+1

= 2 ·T1,n ·2 ·T1,n−1 ·Nn−2

= 2 ·T1,n ·2 ·T1,n−1 ·2 ·T1,n−2 ·Nn−2

...

= 2n+1 ·
n

∏
i=0

T1,i ·N0

ξn−1 = 2n+1 ·
n

∏
i=0

(2i+1 − 1)
i

∏
j=2

(2 j − 1)2i− j

(28)

5 The chromatic polynomial P(H;γ)

Since the chromatic polynomial P(H; ,γ) satisfies the
following relation:

P(H;γ) = (−1)r(H)γk(G)ξn(1− γ,0) (29)

Substituting y1 = 0 into equation 19 in theorem 4, we
obtain the following recursive equations:

ξn(x1,0) =−T 2
1,n +(x1 − 1)N2

n + 2T1,n ·Nn (30)

T1,n(x1,0) = 2T1,n ·Nn +(x1 − 1)N2
n (31)

Nn(x1,0) = 2T1,n ·Nn +(x1 − 1)N2
n (32)

From Equations 31 and 32, we obtain

T1,n(x1,0) = Nn(x1,0) (33)

From equation 33 in equation32, we obtain

Nn(x1,0) = (x1 + 1)N2
n−1 = (x1 + 1)2n−1 (34)

ξ (x1,0) = x1N2
n (x1,0) = x1(x1 + 1)2n+1−2 (35)

Put the last equation 35 in equation 29, we get

P(H;γ) =−γ · (1− γ) · (2− γ)2n+1−2 (36)

Then, it is clear that Hn is minimally 3-colorable.

6 The reliability polynomial R(H; p)

The reliability polynomial

R(H; p) = qn(H)pr(G)ξ (H;1,q−1)
From [28] we get

Tn(1,y1) =
2n+1 − yn+1

1

(2− y1)2n−1
·

n

∏
i=2

(

2i − yi
1

)2n−i

(37)

It is clear that when x1 = 1, we have Tn(1,y1) = T1,n(1,x1)
from 15 but x1 = 1 we get

ξn(1,y1) = Tn−1(1,y1)−T 2
n (1,y1) (38)

From equations 38 and 39, we get

ξn(1,y1) =
2n+2−yn+2

1

(2−y1)2n ·∏n+1
i=2

(

2i − yi
1

)2−i+n+1

−
(

2n+1−yn+1
1

(2−y1)2n−1 ·∏n
i=2

(

2i − yi
1

)2n−i
)2 (39)

ξn(1,y1) =
yn+1

1 − yn+2
1 + 2n+1

(2− y1)2n ·
n+1

∏
i=2

(

2i − yi
1

)2−i+n+1

(40)

The reliability polynomial as

R(H; p) =q2n+2−1 · p2n+2−1 · yn+1
1 − yn+2

1 + 2n+1

(2− y1)2n

·
n+1

∏
i=2

(

2i − yi
1

)2n+1−i

7 Tutte polynomial of a class of self-similar

fractal models N(t) and its number of

spanning tree

Theorem 5.Let G [29]be an outerplanar graph that can

be divided into H1;H2; · · · ;Hn sub-graph, Figure 7

shows the Tutte polynomial of each subgraph

H1;H2; · · · ;Hn is T (H1);T (H2); · · · ;T (Hn)
respectively, so the Tutte polynomial T (G) of graph G is

given by the following formula:

T (G) =
n

∏
i=1

T(Hi) (41)

Fig. 7: G = H1∩H2∩·· · ∩Hn

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 4, 767-774 (2024) / www.naturalspublishing.com/Journals.asp 773

Fig. 8: This diagrams of the graphs N(t) at t = 0,1,2

Let T (Cn) be the tutte polynomial of the cycle graph Cn

such that T (Cn){x1,y1} = xn−1
1 + xn−2

1 + · · ·+ x1 + y1 By
using mathematical simplification, we obtain

T (Cn){x1,y1} =
xn

1−x1

x1−1
+ y1,and let T (Nt ){x1,y1} be the

tutte polynomial of the self-similar fractal models N(t).

The number of edge E(Nt) =
3(γt−ηt )

γ−η .

The number of vertex V (Nt ) =
3((γ−1)γt−1−(η−1)t−1)

γ−η .

where

γ =
1

2

(

5+
√

13
)

(42)

η =
1

2

(

5−
√

13
)

(43)

T (N1) = T (C3) = x2
1 + x1 + y1,

T (N2) = T 3(N1)T (C6) = T 3(C3)T (C6)

T (N3) = T 3(N2)T
3(N1)T (C12) = T 12(C3)T

3(C6)T (C12)

T (N4) = T 3(N3)T
3(N2)T

6(N1)T (C12)

T (N5) = T 219(C3)T
51(C6)T

12(C12)T
3(C24)T (C48)

·
·
·

T (Nn) = T nt−1(C3)T
nt−2(C3·2) · · ·T n

3·2t−2 (C12)T (C3·2t−1).

T (Nt ) =
t−1

∏
i=0

T nt−i−1(C3·2i)

with assumption that

ni =
(γ − 1)γ−i+t−1 − (η − 1)η−i+t−1

γ −η
(44)

In the general case, we start with a cycle of length k and
add a path of length m+1 the Tutte polynomial of Nk,m(t)

is given as follows:

T (Nk,m(t)) =
t−1

∏
i=0

T nt−i−1(Ck·(m+1)i) (45)

where

ni =
(γ − 1)γ−i+t−1 − (η − 1)η−i+t−1

γ −η
(46)

where

γ =
1

2

(

k+m+ 1+
√

(k+m+ 1)2− 4k

)

(47)

η =
1

2

(

k+m+ 1−
√

(k+m+ 1)2− 4k

)

(48)

8 Analysis and dissection

The main aim is to evaluate the Tutte polynomial for two
types of graphs Hn and Dn for n ∈ 1,2,3, · · ·. We
concentrate particularly on the Tutte polynomial of a
graph resulting from the duplication of Farey graphs. We
provide an example of how the Tutte polynomial can be
used to count spanning trees and connected spanning
subgraphs in a graph. The chromatic polynomial and
dependability polynomial of the graphs are also derivable
using exact formulations. Our findings are widely
applicable in several disciplines such as combinatorics,
biology, and statistical mechanics. The underlying theory
for the two new models built on the Farey graph was
modified. In addition, we reduce the number of network
models by contracting and deleting operators that contain
graphical invariants. The number of spanning trees of
graphs, connected subgraphs, and the dimension of the
bicycle space are given by the Tutte polynomial
T (G;x1,y) at a point (x1,y). The chromatic polynomial,
reliability polynomial, and flow polynomial are
single-variable polynomials deduced from the special
cases of the Tutte polynomial. In addition, two
self-similar-structure generators induced by Farey graphs
are generated, and Tutte polynomials for a family of
recursive graphs are investigated. Finally, we used the
Koch curve model to apply our research.

9 Conclusions

In this work, we present a technique based on the
self-similar structure of the Farey graph family to produce
recursive formulas for the Tutte polynomial. A class of
planar graphs known as Farey graphs are produced from
the Farey sequence, which is a series of fractions with
denominators less than 190 or equal to a predetermined
number and lying between 0 and 1. We obtained precise
formulas for the dependability and chromatic polynomials
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of Farey graphs, which have uses in a variety of domains
including network reliability and coding theory. We
updated the fundamental theory for the two new models
we introduced, which were based on the Farey graph.
Ultimately, the model developed from the Koch curve was
used to apply our research. Owing to its intriguing
characteristics, this fractal curve has gained popularity as
a study topic 195 across numerous disciplines. To
determine the number of spanning trees, chromatic
polynomials, reliability polynomials, and linked and
spanning subgraphs, we further examined specific
examples of these findings.
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