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1 Introduction

The fractional differential equations have received
increasing attention, because the behavior of many
physical systems can be properly described by using the
fractional order system theory; one can see the
monographs of [1, 3–5] and the references therein.
Recently, some mathematicians have considered
fractional differential equations depending on the
Hadamard fractional derivative [6–8, 10]. Nowadays,
Hilfer-Hadamard fractional derivative (for short H-H
fractional derivative) have attracted much attention to
researchers. A detailed description of H-H fractional
derivative can be found in [2, 9, 11–14].

In [15], K. Balachandran et al. studied the fractional
nonlinear neutral pantograph equations. Due to its
importance in many fields, it is interesting to study the
fractional model of the pantograph equations. Such model
can be suitable to be applied when the corresponding
process occurs through strongly anomalous media.

In this paper, we discuss mainly the existence and
Ulam stability of solution for Hilfer-Hadamard fractional
neutral pantograph equation with nonlocal condition of
the following type



















HD
α,β

1+ x(t) = f(t, x(t), x(λt),H D
α,β

1+ x(λt)),

t ∈ J := [1, b],

HI
1−γ

1+ x(1) =
∑m

i=1 cix(τi),

α ≤ γ = α+ β − αβ < 1, τi ∈ [1, b],

(1)

where α, λ ∈ (0, 1), β ∈ [0, 1], HD
α,β

1+ is the H-H
fractional derivative of order α and type β, introduced by
Hilfer in [1]. Let X be a Banach space, f : J ×X3 → X

is given continuous function and HI
1−γ

1+ is the left-sided
mixed Hadamard integral of order 1 − γ. For brevity of

notation, we shall take HI
1−γ

1+ as I
1−γ

1+ .

In passing, we remark that the application of nonlocal

condition I
1−γ

1+ x(1) =
∑m

i=1 cix(τi) in physical problems

yields better effect than the initial condition I
1−γ

1+ x(1) =
x0.

We adopt some ideas from [16,17]. For sake of brevity,
let us take

HD
α,β

1+ x(t) := gx(t) = f(t, x(t), x(λt), gx(t)).

A new and important equivalent mixed type integral
equation for our system (1) can be established. We adopt
some ideas in [13] to estabilish an equivalent mixed type
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integral equation:

x(t) =
Z(log t)γ−1

Γ (α)

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
(2)

+
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s
,

where

Z :=
1

Γ (γ)−
∑m

i=1 ci(log τi)
γ−1

, (3)

if Γ (γ) 6=

m
∑

i=1

ci(log τi)
γ−1.

In this regard, in Section 2, we recall some basic
definition, lemmas and results concerning with H-H
fractional derivative. In section 3, we study the existence
results for the problem (1). In Section 4, we prove the
stability of solution of the problem (1).

2 Elementary definitions and lemmas

For convenience, this section summarizes some concepts,
definitions and basic results from fractional calculus,
which are useful for the further developments in this
paper.

Let C[J,X ] be the Banach space of all continuous
functions with the norm

‖x‖c = max {|x(t)| : t ∈ [0, b]} .

For 0 ≤ γ < 1, we denote the space Cγ,log[J,X ] as

Cγ,log[J,X] := {f(t) : [0, b] → X|(log t)γf(t) ∈ C[J,X]} ,

where Cγ,log[J,X ] is the weighted space of the
continuous functions f on the finite interval [0, b].

Obviously, Cγ,log[J,X ] is the Banach space with the
norm

‖f‖Cγ,log
= ‖(log t)γf(t)‖C .

Meanwhile,
Cn

γ,log[J,X ] :=
{

f ∈ Cn−1[J,X ] : f (n) ∈ Cγ,log[J,X ]
}

is the Banach space with the norm

‖f‖Cn
γ,log

=

n−1
∑

i=0

∥

∥fk
∥

∥

C
+
∥

∥

∥
f (n)

∥

∥

∥

Cγ,log

, n ∈ N.

Moreover,C0
γ,log[J,X ] := Cγ,log[J,X ].

Definition 1.The Hadamard fractional integral of order α
for a continuous function h is defined as

Iα1+h(t) =
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

h(s)
ds

s
, α > 0,

provided the integral exists.

Definition 2.The Hadamard derivative of fractional order
α for a continuous function h : [1,∞) → X is defined as

HD
α

1+
h(t) =

1

Γ (n − α)

(

t
d

dt

)n ∫ t

1

(

log
t

s

)n−α−1

h(s)
ds

s
,

n − 1 < α < n, n = ⌈α⌉ + 1,

where ⌈α⌉ denotes the integer part of real number α and

log(·) = loge(·).

We review few basic properties of H-H fractional
derivative that are needed for this work. For details,
see [1, 9, 10, 12, 13] and references therein.

Definition 3.The H-H fractional derivative of order 0 <
α < 1 and 0 ≤ β ≤ 1 of function h(t) is defined by

HD
α,β

1+ h(t) =
(

I
β(1−α)
1+ D

(

I
(1−β)(1−α)
1+ h

))

(t),

where D := d
dt

.

Remark. 1.The operator HD
α,β

1+ also can be written as

HD
α,β

1+ = I
β(1−α)
1+ DI

(1−β)(1−α)
1+ = I

β(1−α)
1+ HD

γ

1+ ,

γ = α+ β − αβ.

2.Let β = 0, the Hadamard Riemann-Liouville
fractional derivative can be presented as

HD
α
1+ := HD

α,0
1+ .

3.Let β = 1, the Hadamard Caputo fractional derivative
can be presented as c

HD
α
1+ := I1−α

1+ D.

Lemma 1.If α > 0 and β > 0 and 0 < α < b < ∞,

there exist

[

Iα1+(log s)
β−1

]

(t) =
Γ (β)

Γ (β + α)
(log t)β+α−1

and

[

HD
α
1+(log s)

α−1
]

(t) =
Γ (β)

Γ (β − α)
(log t)β−α−1, .

In particular, if β = 1 and α ≥ 0, then the Hadamard

fractional derivative of a constant is not equal to zero:

(HD
α
1+1) (t) =

1

Γ (1− α)
(log t)

−α
, 0 < α < 1.

Lemma 2.If α > 0, β > 0, and h ∈ L1 {R+}, for t ∈
[0, T ] there exist the following properties

(

Iα1+I
β

1+h
)

(t) =
(

I
α+β

1+ h
)

(t),

and

(HD
α
1+I

α
1+h) (t) = h(t).

In particular, if h ∈ Cγ,log[J,X ] or h ∈ C[J,X ], then

these equalities hold at t ∈ [0, b].
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Lemma 3.Let 0 < α < 1, 0 ≤ γ < 1. If h ∈ Cγ,log[J,X ]

and I1−α
1+ h ∈ C1

γ,log[J,X ], then

I
α

1+ HD
α

1+
h(t) = h(t) −

(

I
1−α

1+
h
)

(1)

Γ (α)
(log t)

α−1
, ∀ t ∈ [0, b].

Lemma 4.For 0 ≤ γ < 1 and h ∈ Cγ,log[J,X ], then

(Iα1+h) (1) := lim
t→1+

Iα1+h(t) = 0, 0 ≤ γ < α.

Lemma 5.Let α > 0, β > 0, and γ = α + β − αβ. If
h ∈ C

γ
1−γ,log[J,X ], then

I
γ

1+
HD

γ

1+
h = I

α

1+ HD
α,β

1+
h, HD

γ

1+
I
α

1+
h = HD

β(1−α)

1+
h(t).

Lemma 6.Let h ∈ L1 {R+} and HD
β(1−α)
1+ h ∈ L1 {R+}

existed, then

HD
α,β

1+ Iα1+h = I
β(1−α)
1+ HD

β(1−α)
1+ h.

3 Existence results

In this section, we introduce spaces that helps us to
solve and reduce the problem (1) to an equivalent integral
equation (2).

C
α,β

1−γ,log =
{

f ∈ C1−γ,log[J,X],H D
α,β

1+
f ∈ C1−γ,log[J,X]

}

,

and

C
γ

1−γ,log =
{

f ∈ C1−γ,log[J,X],H D
γ

1+
f ∈ C1−γ,log[J,X]

}

.

It is obvious that

C
γ
1−γ,log[J,X ] ⊂ C

α,β
1−γ,log[J,X ].

Lemma 7. [24] Let f : J×X → X be a function such that

f(·, x(·)) ∈ C1−γ,log[J,X ] for any x ∈ C1−γ,log[J,X ].
A function x ∈ C

γ
1−γ,log[J,X ] is a solution of fractional

initial value problem:

{

HD
α,β

1+ x(t) = f(t, x(t)), 0 < α < 1, 0 ≤ β ≤ 1, t ∈ J,

I
1−γ

1+ x(1) = x0, γ = α+ β − αβ,

if and only if x satisfies the following Volterra integral
equation:

x(t) =
x0(log t)

γ−1

Γ (γ)
+

1

Γ (α)

∫ t

1

(

log
t

s

)α−1

f(s, x(s))
ds

s
.

Further details can be found in [24]. From Lemma 7
we have the following result.

Lemma 8.Let f : J×X3 → X be a function such that f ∈
C1−γ,log[J,X ] for any x ∈ C1−γ,log[J,X ]. A function x ∈
C

γ
1−γ,log[J,X ] is a solution of the system (1) if and only if

x satisfies the mixed type integral (2).

Proof.According to Lemma 7, a solution of system (1) can
be expressed by

x(t) =
I
1−γ

1+ x(1)

Γ (γ)
(log t)γ−1 (4)

+
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s
.

Next, we substitute t = τi into the above equation,

x(τi) =
I
1−γ

1+ x(1)

Γ (γ)
(log τi)

γ−1 (5)

+
1

Γ (α)

∫ t

1

(

log
τi

s

)α−1

gx(s)
ds

s
,

by multiplying ci to both sides of (5), we can write

cix(τi) =
I
1−γ

1+ x(1)

Γ (γ)
ci(log τi)

γ−1

+
1

Γ (α)
ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
.

Thus, we have

I
1−γ

1+ x(1) =

m
∑

i=1

cix(τi)

=
I
1−γ

1+ x(1)

Γ (γ)

m
∑

i=1

ci(log τi)
γ−1

+
1

Γ (α)

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
,

which implies

I
1−γ

1+ x(1) =
Γ (γ)

Γ (α)
Z

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
.(6)

Submitting (6) to (4), we derive that (2). It is probative that
x is also a solution of the integral equation (2), when x is
a solution of (1).

The necessity has been already proved. Next, we are

ready to prove its sufficiency. Applying I
1−γ

1+ to both sides
of (2), we have

I
1−γ

1+ x(t) =I1−γ

1+ (log t)γ−1 Z

Γ (α)

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
+ I

1−γ

1+ Iα1+gx(t),

using the Lemmas 1 and 2,

I
1−γ

1+ x(t) =
Γ (γ)

Γ (α)
Z

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s

+ I
1−β(1−α)
1+ gx(t).
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Since 1− γ < 1− β(1 − α), Lemma 4 can be used when
taking the limits as t→ 1,

I
1−γ

1+ x(1) =
Γ (γ)

Γ (α)
Z

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
.(7)

Substituting t = τi into (2), we have

x(τi) =
Z

Γ (α)
(log τi)

γ−1

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s

+
1

Γ (α)

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
.

Then, we derive

m
∑

i=1

cix(τi) =
Z

Γ (α)

×

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

gx(s)
ds

s

m
∑

i=1

ci(log τi)
γ−1

+
1

Γ (α)

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

gx(s)
ds

s

=
1

Γ (α)

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

gx(s)
ds

s

×

(

1 + Z

m
∑

i=1

ci(log τi)
γ−1

)

=
Γ (γ)

Γ (α)
Z

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
,

that is

m
∑

i=1

cix(τi) =
Γ (γ)

Γ (α)
Z

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
.(8)

It follows (7) and (8) that

I
1−γ

1+ x(1) =

m
∑

i=1

cix(τi).

Now by applying HD
γ

1+ to both sides of (2), it follows
from Lemma 1 and 5 that

HD
γ

1+x(t) = HD
β(1−α)
1+ gx(t) (9)

=H D
β(1−α)
1+ f(t, x(t), x(λt),H D

α,β

1+ x(λt)).

Since x ∈ C
γ
1−γ,log[J,X ] and by the definition of

C
γ
1−γ,log[J,X ], we have HD

γ

1+x ∈ C1−γ,log[J,X ], then,

HD
β(1−α)
1+ f = DI

1−β(1−α)
1+ f ∈ C1−γ,log[J,X ]. For

f ∈ C1−γ,log[J,X ], it is obivious that

I
1−β(1−α)
1+ f ∈ C1−γ,log[J,X ], then

I
1−β(1−α)
1+ f ∈ C1

1−γ,log[J,X ]. Thus f and I
1−β(1−α)
1+ f

satisfy the conditions of Lemma 3.

Next, by applying I
β(1−α)
1+ to both sides of (9) and

using Lemma 3, we can obtain

HD
α,β

1+ x(t) = gx(t)−

(

I
1−β(1−α)
1+ gx

)

(1)

Γ (β(1− α))
(log t)β(1−α)−1,

where
(

I
β(1−α)
1+ gx

)

(1) = 0 is implied by Lemma 4.

Hence, it reduces to

HD
α,β

1+ x(t) = gx(t) = f(t, x(t), x(λt),H D
α,β

1+ x(λt)).
The results are proved completely.

To study the existence and uniqueness of solutions to
(1) we require the following assumptions:

(A1)The function f : J ×X3 → X is continuous.
(A2)There exist l, p, q, r ∈ C1−γ,log[J,X ] with

l∗ = supt∈J l(t) < 1 such that

|f(t, u, v, w)| ≤ l(t) + p(t) |u|+ q(t) |v|+ r(t) |w|

for t ∈ J , u, v, w ∈ X .
(A3)There exist positive constants K > 0 and L > 0 such

that

|f(t, u, v, w)− f(t, u, v, w)| ≤ K (|u − u| + |v − v|)+L |w − w|

for any u, v, w, u, v, w ∈ X and t ∈ J .

Our first theorem is based on the Banach contraction
principle.

Theorem 1.Assume that (A1) and (A3) hold. If

(

2K

1 − L

)

1

Γ (α + 1)

(

|Z|

m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

< 1(10)

then the problem (1) has a unique solution.

Proof.Let the operator
N : C1−γ,log[J,X ] → C1−γ,log[J,X ].

(Nx)(t) =
Z

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s

+
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s
.

By Lemma 8, it is clear that the fixed points of N are
solutions of system (1).
Let x1, x2 ∈ C1−γ,log[J,X ] and t ∈ J , then we have

∣

∣((Nx1)(t)− (Nx2)(t)) (log t)
1−γ

∣

∣

≤
|Z|

Γ (α)

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

|gx1(s)− gx2(s)|
ds

s

+
(log t)1−γ

Γ (α)

∫ t

1

(

log
t

s

)α−1

|gx1(s)− gx2(s)|
ds

s
(11)

and

∣

∣gx1 (t) − gx2 (t)
∣

∣

=
∣

∣f(t, x1(t), x1(λt), gx1 (t)) − f(t, x2(t), x2(λt), gx2 (t))
∣

∣

≤ K (|x1(t) − x2(t)| + |x1(λt) − x2(λt)|) + L
∣

∣gx1 (t) − gx2 (t)
∣

∣

≤

(

2K

1 − L

)

|x1(t) − x2(t)| . (12)
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By replacing (12) in the inequality (11), we get

∣

∣

∣
((Nx1)(t) − (Nx2)(t)) (log t)

1−γ
∣

∣

∣

≤
|Z|

Γ (α + 1)

m
∑

i=1

ci

(

2K

1 − L

)

(log τi)
α ‖x1 − x2‖C1−γ,log

+

(

2K

1 − L

)

1

Γ (α + 1)
(log b)

1−γ+α
‖x1 − x2‖C1−γ,log

≤

(

2K

1 − L

)

1

Γ (α + 1)

×

(

|Z|
m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

‖x1 − x2‖C1−γ,log
.

Hence,

‖Nx1 − Nx2‖C1−γ,log

≤

(

2K

1 − L

)

1

Γ (α + 1)

×

(

|Z|
m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

‖x1 − x2‖C1−γ,log
.

From (10), it follows that N has a unique fixed point
which is solution of system (1). The proof of the Theorem
1 is complete.

The existence result for the problem (1) will be proved
by using the Schaefer’s fixed point theorem.

Theorem 2.Assume that (A1),(A2) hold. Then, the

problem (1) has at least one solution in

C
γ
1−γ,log[J,X ] ⊂ C

α,β
1−γ,log[J,X ].

Proof.For sake of clarity, we split the proof into a
sequence of steps.

Consider the operator
N : C1−γ,log[J,X ] → C1−γ,log[J,X ].

(Nx)(t) =
Z

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
(13)

+
1

Γ (α)

∫

t

1

(

log
t

s

)α−1

gx(s)
ds

s

It is obvious that the operator N is well defined.
Step 1. N is continuous.

Let xn be a sequence such that xn → x in
C1−γ,log[J,X ]. Then for each t ∈ J ,

∣

∣

∣
(log t)

1−γ
((Nxn)(t) − (Nx)(t))

∣

∣

∣

≤
|Z|

Γ (α)

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

|gxn (s) − gx(s)|
d

ds

+
(log t)1−γ

Γ (α)

∫

t

1

(

log
t

s

)α−1

|gxn (s) − gx(s)|
d

ds

≤
|Z|

Γ (α + 1)

m
∑

i=1

ci(log τi)
α ‖gxn (·) − gx(·)‖C1−γ,log

+
(log t)1−γ+α

Γ (α + 1)
‖gxn (·)− gx(·)‖C1−γ,log

≤

(

|Z|

m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

‖gxn (·) − gx(·)‖C1−γ ,log
.

Since gx is continuous (i.e., f is continuous), then we have

‖Nxn −Nx‖C1−γ,log
→ 0 as n→ ∞.

Step 2. N maps bounded sets into bounded sets in
C1−γ,log[J,X ].

Indeed, it is enough to show that η > 0, there exists a
positive constant l such that
x ∈ Bη = {x ∈ C1−γ,log[J,X ] : ‖x‖ ≤ η}, we have
‖Nx‖C1−γ,log

≤ l.

∣

∣(Nx)(t)(log t)1−γ
∣

∣

≤
|Z|

Γ (α)

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

|gx(s)|
d

ds

+
(log t)1−γ

Γ (α)

∫ t

1

(

log
t

s

)α−1

|gx(s)|
d

ds

:= A1 +A2.

and

|gx(t)| = |f(t, x(t), x(λt), gx(t))|

≤ l(t) + p(t) |x(t)| + q(t) |x(λt)| + r(t) |gx(t)|

≤ l∗ + p∗ |x(t)|+ q∗ |x(λt)| + r∗ |Kx(t)|

≤
l∗ + p∗ |x(t)|+ q∗ |x(λt)|

1− r∗
,

where

A1 =
|Z|

Γ (α)

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

|gx(s)|
ds

s

=
|Z|

Γ (α)

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

×

(

l∗ + p∗ |x(s)| + q∗ |x(λs)|

1 − r∗

)

ds

s

=
|Z|

(1 − r∗)

×

m
∑

i=1

ci

(

l∗(log τi)
α

Γ (α + 1)
+ (p∗ + q

∗)
(log τi)

α

Γ (α + 1)
‖x‖C1−γ,log

)

.

A2 =
(log t)1−γ

Γ (α)

∫

t

1

(

log
t

s

)α−1

|gx(s)|
ds

s

=
1

1 − r∗

×

(

l∗(log b)1−γ+α

Γ (α + 1)
+ (p∗ + q

∗)
(log b)1−γ+α

Γ (α + 1)
‖x‖C1−γ ,log

)

.

From A1 and A2, we have

∣

∣

∣
(Nx)(t)(log t)1−γ

∣

∣

∣

≤
l∗

(1 − r∗)Γ (α + 1)

(

|Z|

m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

+
(p∗ + q∗)

(1 − r∗)Γ (α + 1)

(

|Z|
m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

‖x‖C1−γ,log

:= l.

Step 3. N maps bounded sets into equicontinuous set of
C1−γ,log[J,X ].
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Let t1, t2 ∈ J , t2 ≤ t1 and x ∈ Bη . Using the fact f
is bounded on the compact set J × Bη (thus
sup(t,x)∈J×Bη

‖Kx(t)‖ := C0 <∞), we will get

|(Nx)(t1)− (Nx)(t2)|

≤
|Z|

Γ (α)
C0

m
∑

i=1

(log τi)
α

α

(

(log t1)
γ−1 − (log t2)

γ−1
)

+
C0

Γ (α)

∣

∣

∣

∣

∣

∫ t1

1

(

log
t1

s

)α−1
ds

s
−

∫ t2

1

(

log
t2

s

)α−1
ds

s

∣

∣

∣

∣

∣

≤
|Z|C0

∑m
i=1 ci(log τi)

α

Γ (α+ 1)

+
C0

Γ (α)

∫ t1

1

[

(

log
t2

s

)α−1

−

(

log
t1

s

)α−1
]

ds

s

+
C0

Γ (α)

∫ t2

t1

(

log
t2

s

)α−1
ds

s
.

As t1 → t2, the right hand side of the above
inequality tends to zero. As a consequence of Step 1 to 3,
together with Arzela-Ascoli theorem, we can conclude
that N : C1−γ,log[J,X ] → C1−γ,log[J,X ] is continuous
and completely continuous.
Step 4. A priori bounds.
Now it remains to show that the set

ω = {x ∈ C1−γ,log[J,X ] : x = δ(Nx), 0 < δ < 1}

is bounded set.
Let x ∈ ω, x = δ(Nx) for some 0 < δ < 1. Thus for

each t ∈ J . We have

x(t) =

δ

[

|Z|

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)

gx(s)
ds

s

+
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s

]

.

This implies by (H2) that for each t ∈ J , we have

∣

∣

∣
x(t)(log t)1−γ

∣

∣

∣

≤
∣

∣

∣
(Nx)(t)(log t)1−γ

∣

∣

∣

≤
l∗

(1 − r∗)Γ (α + 1)

(

|Z|
m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

+
(p∗ + q∗)

(1 − r∗)Γ (α + 1)

(

|Z|

m
∑

i=1

ci(log τi)
α + (log b)1−γ+α

)

‖x‖C1−γ,log
:= R.

that ‖µ‖C1−γ
≤ R.

This shows that the set ω is bounded. As a consequence
of Schaefer’s fixed point theorem, we deduce that N has a
fixed point which is a solution of problem (1). The proof
is complete.

4 Ulam-Hyers-Rassias stability

In the theory of functional equations there is some special
kind of data dependence [20, 22, 25, 26]. For the advanced
contribution on Ulam stability for fractional differential
equations, we refer the reader to [21, 28–30]. In this
paper, we pose different types of Ulam stability:
Ulam-Hyers stability, generalized Ulam-Hyers stability,
Ulam-Hyers-Rassias stability and generalized
Ulam-Hyers-Rassias stability for the implicit differential
equations with H-H fractional derivative. Moreover the
Ulam-Hyers stability for fractional differential equations
with Hilfer fractional derivative was imposed in [18, 27].

In this section, we employ the well-known definitions
of four kinds of Ulam stability. For more details, one can
refer to [17, 26].

Definition 4.The equation (1) is Ulam-Hyers stable if
there exists a real number Cf > 0 such that for each

ǫ > 0 and for each solution z ∈ C
γ
1−γ,log[J,X ] of the

inequality

∣

∣

∣HD
α,β

1+
z(t) − f(t, z(t), z(λt),H D

α,β

1+
z(λt))

∣

∣

∣
≤ ǫ, t ∈ J, (14)

there exists a solution x ∈ C
γ
1−γ,log[J,X ] of equation (1)

with

|z(t)− x(t)| ≤ Cf ǫ, t ∈ J.

Definition 5.The equation (1) is generalized Ulam-Hyers
stable if there exists ψf ∈ C1−γ([0,∞), [0,∞)), ψf (0) =
0 such that for each solution z ∈ C

γ
1−γ,log[J,X ] of the

inequality

∣

∣

∣HD
α,β

1+
z(t) − f(t, z(t), z(λt),H D

α,β

1+
z(λt)

∣

∣

∣
≤ ǫ, t ∈ J, (15)

there exists a solution x ∈ C
γ
1−γ,log[J,X ] of equation (1)

with

|z(t)− x(t)| ≤ ψf ǫ, t ∈ J.

Definition 6.The equation (1) is Ulam-Hyers-Rassias
stable with respect to ϕ ∈ C1−γ,log[J,X ] if there exists a
real number Cf > 0 such that for each ǫ > 0 and for

each solution z ∈ C
γ
1−γ,log[J,X ] of the inequality

∣

∣

∣HD
α,β

1+
z(t) − f(t, z(t), z(λt),H D

α,β

1+
z(λt)

∣

∣

∣
≤ ǫϕ(t), t ∈ J, (16)

there exists a solution x ∈ C
γ
1−γ,log[J,X ] of equation (1)

with

|z(t)− x(t)| ≤ Cf ǫϕ(t), t ∈ J.

Definition 7.The equation (1) is generalized Ulam-Hyers-
Rassias stable with respect to ϕ ∈ C1−γ,log[J,X ] if there
exists a real number Cf,ϕ > 0 such that for each solution

z ∈ C
γ
1−γ,log[J,X ] of the inequality

∣

∣

∣HD
α,β

1+
z(t) − f(t, z(t), z(λt),H D

α,β

1+
z(λt)

∣

∣

∣
≤ ϕ(t), t ∈ J, (17)

there exists a solution x ∈ C
γ
1−γ,log[J,X ] of equation (1)

with

|z(t)− x(t)| ≤ Cf,ϕϕ(t), t ∈ J.
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Remark.A function z ∈ C
γ
1−γ,log[J,X ] is a solution of the

inequality (14) if and only if there exist a function
g ∈ C

γ
1−γ,log[J,X ] such that

(i) | g(t) |≤ ǫ, ∀ t ∈ J.
(ii)

HD
α,β

1+ z(t) = f(t, z(t), z(λt),H D
α,β

1+ z(λt) + g(t), t ∈ J,

Lemma 9.If a function z ∈ C
γ
1−γ,log[J,X ] is a solution of

the inequality (14), then with

Az =
|Z|

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gz(s)
ds

s
.

From this it follows that

∣

∣

∣

∣

z(t) − Az −
1

Γ (α)

∫

t

1

(

log
t

s

)α−1

gz(s)
ds

s

∣

∣

∣

∣

≤
ǫ(log b)α

Γ (α + 1)
. (18)

Proof.The proof directly follows from Remark 4 and
Lemma 8

One can have similar remarks for the inequalities (16)
and (17).

Remark.It is clear that:

1.Definition 4⇒ Definition 5.
2.Definition 6⇒ Definition 7.

The following generalized Gronwall inequalities with
Caputo singular kernel will be widely used to deal with our
problems in the sequence.

Lemma 10. [30] Suppose 1 > α > 0, a > 0 and b > 0
and suppose u(t) is nonnegative and locally integral on

[1,+∞) with

u(t) ≤ a+ b

∫ t

1

(

log
t

s

)α−1

u(s)
ds

s
, t ∈ [1,+∞).

Then

u(t) ≤ a +

∫

t

1

[

∞
∑

n=1

(bΓ (α))n

Γ (nα)

(

log
t

s

)nα−1

a

]

ds

s
, t ∈ [1,+∞).

Remark.Under the assumptions of Lemma 10, let u(t) be
a nondecreasing function on [1,∞). Then we have

u(t) ≤ aEα,1

(

bΓ (α)(log t)α
)

,

where Eα,1 is the Mittag-leffler function defined by

Eα,1(z) =

∞
∑

k=0

zk

Γ (kα+ 1)
, z ∈ C.

Now, we are ready to state and prove the stability
results.

Theorem 3.Assume that (A3) and (10) hold. Then, the

problem (1) is Ulam-Hyers stable.

Proof.Let ǫ > 0 and let z ∈ C
γ
1−γ,log[J,X ] be a function

which satisfies the inequality (14) and let
x ∈ C

γ
1−γ,log[J,X ] the unique solution of the following

problem

HD
α,β

1+
x(t) = f(t, x(t), x(λt),H D

α,β

1+
x(λt)), t ∈ J := [0, b],

I
1−γ

1+
z(1) = I

1−γ

1+
x(1) =

m
∑

i=1

cix(τi), τi ∈ [0, b], γ = α + β − αβ,

where 0 < α < 1, 0 ≤ β ≤ 1 and λ ∈ (0, 1).
Using Lemma 8, we obtain

x(t) = Ax +
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s
,

where

Ax =
|Z|

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gx(s)
ds

s
.

On the other hand, if I
1−γ

1+ z(1) = I
1−γ

1+ x(1), and x(τi) =
z(τi) then Ax = Az .
Indeed,

|Ax − Az|

≤
|Z|

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

|gx(s) − gz(s)|
ds

s

≤
|Z|

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫

τi

1

(

log
τi

s

)α−1

×

(

2K

1 − L

)

|x(s) − z(s)|
ds

s

≤

(

2K

1 − L

)

|Z| (log t)γ−1
m
∑

i=1

ciI
α

1+
|x(τi) − z(τi)|

= 0.

Thus,
Ax = Az .

Then, we have

x(t) = Az +
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s
.

By integration of the inequality (14) and applying Lemma
9, we obtain
∣

∣

∣

∣

z(t) − Az −
1

Γ (α)

∫

t

1

(

log
t

s

)α−1

gz(s)
ds

s

∣

∣

∣

∣

≤
ǫ(log b)α

Γ (α + 1)
. (19)

We have for any t ∈ J ,

|z(t)− x(t)|

≤

∣

∣

∣

∣

∣

z(t)−Az −
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gz(s)
ds

s

∣

∣

∣

∣

∣

+
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

|gz(s)− gx(s)|
ds

s

≤

∣

∣

∣

∣

∣

z(t)−Az −
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gz(s)
ds

s

∣

∣

∣

∣

∣

+

(

2K

1− L

)

1

Γ (α)

∫ t

1

(

log
t

s

)α−1

|z(s)− x(s)|
ds

s
.
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By using (19), we have,

|z(t)− x(t)|

≤
ǫ(log b)α

Γ (α+ 1)

+

(

2K

1− L

)

1

Γ (α)

∫ t

1

(

log
t

s

)α−1

|z(s)− x(s)|
ds

s
,

and to apply Lemma 10 and Remark 4, we obtain

|z(t) − x(t)| ≤
1

Γ (α + 1)
(log b)

α
Eα,1

((

2K

1 − L

)

(log b)
α

)

· ǫ,

:= Cf ǫ.

Thus, the problem (1) is Ulam-Hyers stable.

Theorem 4.Assume that (A3) and (10) hold. Suppose that

there exists an increasing functionϕ ∈ C1−γ,log[J,X ] and

there exists λϕ > 0 such that for any t ∈ J

Iα1+ϕ(t) ≤ λϕϕ(t).

Then problem (1) is generalized Ulam-Hyers-Rassias

stable.

Proof.Let ǫ > 0 and let z ∈ C
γ
1−γ,log[J,X ] be a function

which satisfies the inequality (16) and let
x ∈ C

γ
1−γ,log[J,X ] the unique solution of the following

problem

HD
α,β

1+
x(t) = f(t, x(t), x(λt),H D

α,β

1+
x(λt)), t ∈ J := [0, b],

I
1−γ

1+
x(1) = I

1−γ

1+
z(1) =

m
∑

i=1

cix(τi), τi ∈ [0, b], γ = α + β − αβ,

where 0 < α < 1, 0 ≤ β ≤ 1 and λ ∈ (0, 1).
Using Lemma 8, we obtain

x(t) = Az +
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gx(s)
ds

s
,

where

Az =
|Z|

Γ (α)
(log t)γ−1

m
∑

i=1

ci

∫ τi

1

(

log
τi

s

)α−1

gz(s)
ds

s
.

By integration of (16), we obtain

∣

∣

∣

∣

∣

z(t)−Az −
1

Γ (α)

∫ t

1

(

log
t

s

)α−1

gz(s)
ds

s

∣

∣

∣

∣

∣

≤
ǫ

Γ (α)

∫ t

1

(

log
t

s

)α−1

ϕ(s)
ds

s

≤ ǫλϕϕ(t). (20)

On the other hand, we have

|z(t) − x(t)| ≤

∣

∣

∣

∣

z(t) − Az −
1

Γ (α)

∫

t

1

(

log
t

s

)α−1

gz(s)
ds

s

∣

∣

∣

∣

+

(

2K

1 − L

)

1

Γ (α)

∫

t

1

(

log
t

s

)α−1

|z(s) − x(s)|
ds

s
.

By using (20), we have

|z(t) − x(t)| ≤ǫλϕϕ(t)

+

(

2K

1 − L

)

1

Γ (α)

∫

t

1

(

log
t

s

)α−1

|z(s) − x(s)|
ds

s
,

and to apply Lemma 10 and Remark 4, we obtain

|z(t) − x(t)| ≤ ǫλϕϕ(t)Eα,1

((

2K

1 − L

)

(log b)
α

)

, t ∈ [1, b].

Thus,the problem (1) is generalized Ulam-Hyers-Rassias
stable.
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