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Abstract: In this paper, the estimation of stress-strength parameter 𝑅 = 𝑃(𝑌 < 𝑋) is considered when 𝑋, 𝑌 the strength and 
stress respectively are two independent random variables of Rayleigh distribution. The samples taken for X and Y are 
progressively censoring of type II. Maximum likelihood estimator (MLE), uniformly minimum variance unbiased estimator 
(UMVUE)and Bayes estimator of 𝑅 = 𝑃(𝑌 < 𝑋) are obtained. The exact confidence interval of R based on MLE is 
obtained. The performance of the proposed estimators is compared using computer simulation.  

Keywords: Rayleigh distribution; progressive type-II censoring; stress-strength model; unbiased estimator; maximum-
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1 Introduction  

Rayleigh distribution was first considered by Lord Rayleigh [1]. It used in modeling lifetime data and reliability. The 
Rayleigh distribution has the following distribution function for 𝑋 > 0:  

 𝐹(𝑥) = 1 − 𝑒123/563; 	 𝜎 > 0, 𝑥 ≥ 0                                                                           (1.1) 

 where, the density function of Rayleigh for 𝑋 > 0 denoted by Ray (𝜎) is  

 𝑓(𝑥; 𝜎) = 2
63
𝑒123/563; 	 𝜎 > 0                                                                                             (1.2) 

   Rayleigh distribution is related to other distributions such as Weibull distribution where Rayleigh (𝜎) =Weibull (2, 𝜎√2). 
In life-testing experiments, one often encounters situations where it takes a substantial amount of time to obtain a 
reasonable number of failures necessary to carry out reliable inference, so censored samples are used for analyzing lifetime 
data. Among various censoring schemes, the Type-II progressive censoring scheme has become very popular one in the 
last decade. It can be described as follows: let 𝑛 units be placed on test at time zero with m failures to be observed. At the 
first failure a number 𝑟@ of the surviving units (𝑛 − 1) are randomly selected and removed from the experiment. At the 
second observed failure, 𝑟5 of the surviving units (𝑛 − 𝑟@ − 2) are randomly selected and removed from the experiment, 
and so on until the m-th failure is observed in which all remaining surviving units 𝑟A = 𝑛 −𝑚 − 𝑟@ − 𝑟5−. . . −𝑟A1@ are 
removed.We denote to progressively Type-II censoring with scheme (𝑛,𝑚, 𝑟@, 𝑟5, . . . , 𝑟A). Traditional Type-II censoring 
scheme is included when (𝑟@ = 𝑟5 =. . . = 𝑟A1@ = 0) and (𝑟A = 𝑛 −𝑚) and complete sampling scheme when (𝑛 = 𝑚) and 
(𝑟@ =. . . = 𝑟A1@ = 𝑟A = 0). Balakrishnan and Aggarwala [2] and Balakrishnan [3] presented a study on different features 
of progressive censoring schemes.  

 In stress-strength model, the stress (Y) and the strength (X) are treated as random variables and the reliability of a 
component during a given period is taken to be the probability that its strength exceeds the stress during the entire interval, 
i.e. the reliability R of a component is 𝑅 = 𝑃(𝑌 < 𝑋). For a particular situation, if we consider Y as the pressure of a 
chamber generated by ignition of a solid propellant and X as the strength of the chamber. Then R represents the probability 
of successful firing of the engine. Stress-strength model can be used as a general measure of the difference between two 
populations and has applications in many areas. For example, comparing two treatments X and Y, then 𝑅 = 𝑃(𝑌 < 𝑋) is 
the measure of the response of treatment X. For other applications see Kotz et al. [4]. Many authors considered the problem 
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of estimating the stress-strength parameter based on complete samples, it first considered by Birnbaum [5]. Johnson [6] 
present a good review on stress-strength model in reliability. Awad and Charraf [7] studied the case when X and Y are 
independent Burr random variables of type XII, they obtained maximum likelihood, uniformly minimum variance unbiased 
estimator (UMVUE) and Bayesian estimates of R. Fathipour et al. [8] obtained the estimation of R in the generalized 
Rayleigh distribution with different scale parameters. Ahmed et al. [9] consider this problem when X and Y are two 
independent random variables have Burr Type X distribution. Based on censored samples, Saraço𝑔Elu et al. [10] obtained 
the estimation for R based on exponential distribution with type II progressive censoring. Abd-Elfattah et al. [11] get the 
estimation of R based on Burr type XII distribution with type II progressive censoring, they discussed two cases the first 
when X and Y have common shape parameter and different scale parameters while the second case when X and Y have 
common scale parameter and different shape parameters. For some of the recent references, the readers may refer to [12-
14].  

  In the present paper, the study the estimation of 𝑅 = 𝑃(𝑌 < 𝑋) when X and Y are two independents but not identically 
random variables belonging to Rayleigh distribution with parameters 𝜎@ and 𝜎5 respectively. In Section (2), maximum 
likelihood estimator of 𝑅 and exact confidence interval are obtained. Also, UMVUE of R is obtained in section (3). In 
section (4) Bayes estimator for R is obtained based on conjugate priors. Numerical results and simulations are presented in 
section (5). Finally, some concluding remarks are given in section (6).  

2 MLE of 𝑹 
 In this section the MLE of R is obtained. Let X, Y are two independent random variables such that 𝑋~𝑅𝑎𝑦(𝜎@) and 
𝑌~𝑅𝑎𝑦(𝜎5) then 𝑅 is:  

 		𝑅 = 𝑃(𝑌 < 𝑋) = ∫ ∫ 𝑓(𝑥)𝑓(𝑦)𝑑𝑦𝑑𝑥2
L

∞
L  

 						= ∫ ∫ 2
6M3

2
L

∞
L 𝑒123/56M3. N

633
𝑒1N3/5633𝑑𝑦𝑑𝑥 

 = 6M3

6M3O633
                                                                                                                                                              (2.1) 

 Now to get MLE of 𝑅 we first get the MLE of parameters 𝜎@ and 𝜎5. 

Let 𝑋@:AM:QM, . . . . , 𝑋AM:AM:QM be a progressive censored sample from 𝑅𝑎𝑦(𝜎@) with progressive censoring scheme 
(𝑛@,𝑚@, 𝑟@, . . . , 𝑟AM), and let 𝑌@:A3:Q3, . . . . , 𝑌A3:A3:Q3 be a progressive censored sample from 𝑅𝑎𝑦(𝜎5) with progressive 
censoring scheme (𝑛5,𝑚5, 𝑠@, . . . , 𝑠A3), then the jointly likelihood function 𝐿(𝜎@, 𝜎5) is  

           𝐿(𝜎@, 𝜎5) = [𝑘@ ∏ 𝑓(𝑥W)
AM
WX@ [1 − 𝐹(𝑥W)]Z[].		[𝑘5 ∏ 𝑓\𝑦]^

A3
]X@ _1 − 𝐹\𝑦]^]`ab	  

 												= cMc3
6M
3dM63

3d3 \∏ 𝑥W
AM
WX@ ^\∏ 𝑦]

A3
]X@ ^ × 𝑒𝑥𝑝 g 1@

56M3
∑ (1 + 0𝑟W)𝑥W5
AM
WX@ j 𝑒𝑥𝑝 g 1@

5633
∑ (1 + 𝑠])𝑦]5
A3
]X@ j                 (2.2

  

 Where 𝑘@ and 𝑘5 are:  

𝑘@ = 𝑛@(𝑛@ − 1 − 𝑟@)(𝑛@ − 2 − 𝑟@ − 𝑟5)… \𝑛@ −𝑚@ + 1 − 𝑟@ −⋯− 𝑟AM1@^	 
𝑘5 = 𝑛5(𝑛5 − 1 − 𝑠@)(𝑛5 − 2 − 𝑠@ − 𝑠5). . . \𝑛5 − 𝑚5 + 1 − 𝑠@−. . . −𝑠A31@^                               (2.3) 

 Now the jointly log-likelihood function ℓ is:  

(2.4) ℓ = 𝑙𝑛(𝑘@𝑘5) − 2𝑚@𝑙𝑛𝜎@ − 2𝑚5𝑙𝑛𝜎5 + ∑ 𝑙𝑛𝑥W
AM
WX@ + ∑ 𝑙𝑛𝑦] 	−

@
56M3

∑ (1 + 𝑟W)𝑥W5
AM
WX@ − @

5633
∑ (1 + 𝑠])𝑦]5
A3
]X@

A3
]X@ 

 By differentiation on equation (2.4) with respect to 𝜎@ and 𝜎5. Then we get:  

 nℓ
n6M

= − 5AM
6M

+ @
6Mo
∑ (1 + 𝑟W)𝑥W5	
AM
WX@                                                                     (2.5) 

  nℓ
n63

= − 5A3
63

+ @
63o
∑ \1 + 𝑠]^𝑦]5	
A3
]X@                                                                                    (2.6) 

 By putting equations (2.5) and (2.6) equal to zero then we get:  

            𝜎p@ = q @
5AM

∑ (1 + 𝑟W)𝑥W5
AM
WX@ r

L.s
			                                                                                          (2.7)      
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𝜎p5 = q @
5A3

∑ (1 + 𝑠])𝑦]5
A3
]X@ r

L.s
                                                                                   (2.8) 

 Then MLE of R is  

 𝑅t = @

@OdMu
d3v

= @

@O
w3
3

wM
3x

                                                                                                 (2.9) 

 where 𝑇 = ∑ (1 + 𝑟W)𝑥W5
AM
WX@ , 𝐸 = ∑ (1 + 𝑠])𝑦]5

A3
]X@  and 𝜆 = 6M3AM|

633A3}
. 

 consider the following transformations:  

 𝑍@ = 𝑛@𝑋@5 

 𝑍5 = (𝑛@ − 𝑟@ − 1)[𝑋55 − 𝑋@5] 

 . 

 . 

 𝑍AM = (𝑛@ − 𝑟@ − 𝑟5−. . . −𝑟AM1@ −𝑚@ + 1)[𝑋AM
5 − 𝑋AM1@

5 ]                                                                          (2.10) 

 Balakrishnan and Aggarwala [2] show that 𝑍W�𝑠 are independent and identically distributed exponential random variables 
with mean 𝜎@, moreover 

 𝑇 = ∑ 𝑍W
AM
WX@ = ∑ (1 + 𝑟W)

AM
WX@ 𝑇W = ∑ (1 + 𝑟W)

AM
WX@ 𝑋W5~𝐺𝑎𝑚𝑚𝑎(𝑚@, 𝜎@).                                             (2.11) 

 Similarly, 𝐸 has a gamma distribution with the shape parameter 𝑚@ and scale parameter 𝜎@. Hence, 𝜆 follow F-distribution 
with degrees of freedom 2𝑚5 and 2𝑚@. Using the fact That:  

�
@1�

× @1�t

�t
~𝐹5A3,5AM					                                                                   (2.12)  

 Then the 100(1 − 𝛼)% exact confidence interval of R is:  

 𝑃 � @
@O�3dM,3d3,�/3(

M
��1@)

< 𝑅 < @
@O�3dM,3d3,M��/3(

M
��1@)

� = 1 − 𝛼	  

 Where 𝛼 is the level of significance and 2𝑚@, 2𝑚5 are the degree of freedom of F. 

3 UMVUE of R 

 In this section the uniformly minimum variance unbiased estimator (UMVUE) is obtained for stress-strength parameter R. 
Let 𝑋@:AM:QM, . . . . , 𝑋AM:AM:QM be a progressive censored sample from 𝑅𝑎𝑦(𝜎@) with progressive censoring scheme 
(𝑛@,𝑚@, 𝑟@, . . . , 𝑟AM), and the progressive censored sample 𝑌@:A3:Q3, . . . . , 𝑌A3:A3:Q3 from 𝑅𝑎𝑦(𝜎5) with progressive censoring 
scheme (𝑛5,𝑚5, 𝑠@, . . . , 𝑠A3), then from the jointly log-likelihood function of X,Y that given in equation (2.4), we obtained 
that 𝑇 = ∑ (1 + 𝑟W)

AM
WX@ 𝑥W5 is a sufficient statistics for 𝜎@ and 𝐸 = ∑ (1 + 𝑠])𝑦]5

A3
]X@  is a sufficient statistics for 𝜎5. From 

equation (2.11)  

 𝑓}(𝑡) =
@

6M
dM�(AM)

𝑡AM1@𝑒𝑥𝑝(1�
6M
), 	 0 < 𝑡 < ∞                                                           (3.1) 

Lemma 3.1 The conditional pdf. of 𝑇@ = 𝑋@5 given 𝑇 is:  

 𝑓}M|}(𝑥) =
�vM,v(2)

�v(�)
= 𝑛@(𝑚@ − 1)

(}1QM}M)dM�3

}dM�M
, 	 0 < 𝑇@ < 𝑇/𝑛@                               (3.2) 

Proof. Let 𝑊 = ∑ 𝑍W
AM
WX5  then clearly 𝑊 & 𝑍@ are independent. Then the joint pdf. of 𝑇@&𝑇, 𝑓}M,}(𝑥) can be easily obtained 

from the jointly distribution of 𝑊&𝑍@ using the transformations 𝑍@ = 𝑛@𝑇@ & 𝑊 = 𝑇 − 𝑍@ = 𝑇 − 𝑇@ then  

 𝑓�,�M = 𝑓�. 𝑓�M =
@

6M
dM�(AM1@)

𝑊AM15𝑒𝑥𝑝(−�O�M
6M

)                                                  (3.3) 

 And  

 𝑓}M,} =
QM

6M
dM�(AM1@)

(𝑇 − 𝑛@𝑇@)AM15𝑒𝑥𝑝(− }
6M
)                                                 (3.4) 

 From equations (3.4), (3.1), we get the result.  
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 Similarly, if 𝐸 = ∑ (1 + 𝑠])
A3
]X@ 𝐸] where 𝐸] = 𝑌]5 Then  

 𝑓|M||(𝑦) = 𝑛5(𝑚5 − 1)
(|1Q3|M)d3�3

|d3�M
, 	 0 < 𝐸@ < 𝐸/𝑛5                                         (3.5) 

Lemma 3.2 The unbiased estimator of R is:  

 𝜑(𝑇@, 𝐸@) = �
1	 𝑖𝑓	 𝑛5𝐸@ < 𝑛@𝑇@
0	 𝑖𝑓	 𝑛5𝐸@ ≥ 𝑛@𝑇@

                                                                       (3.6) 

 Where 𝐸@ = 𝑌@5 and 𝑇@ = 𝑋@5.  

Proof.  

                𝐸(𝜑) = 1. 𝑃(𝑛5𝐸@ < 𝑛@𝑇@) = 𝑃(𝑌@ < [QM2M
3

Q3
]@/5) = 𝑃(𝑌@ < 𝑎) 

 = ∫ ∫ 𝑓�M(𝑥)
�
L

�
L 𝑓�M(𝑦)𝑑𝑦𝑑𝑥                                                                                              (3.7) 

 Where the distributions of order statistics 𝑋@ and 𝑌@ are  

                        𝑓�M(𝑥) = 𝑛@
2
6M3
𝑒1QM23/56M3 

 𝑓�M(𝑦) = 𝑛5
N
633
𝑒1Q3N3/5633                                                                                                              (3.8) 

 Then by using equations (3.8) we get  

 𝐸(𝜑) = 6M3

6M3O633
= 𝑅                                                                                                              (3.9) 

 Theorem 3.3 Based on the sufficient statistics T and E, as defined before for 𝜎@ and 𝜎5 respectively and the unbiased 
statistics 𝜑, the UMVUE of 𝑅, say 𝑅�, for 𝑚@ ≥ 2 and 𝑚5 ≥ 2 can be expressed as follows:  

 𝑅� =

⎩
⎪
⎨

⎪
⎧1 − ∑ (−1)cA31@

cXL g}
|
j
c gA31@

c j

gAMOc1@
c j

	 𝑖𝑓	 𝑇 < 𝐸

∑ (−1)cAM1@
cXL g|

}
j
c gAM1@

c j

gA3Oc1@
c j

	 𝑖𝑓	 𝑇 ≥ 𝐸
                                                   3.10) 

Proof. For 𝑇 < 𝐸 using the Rao-Blackwell theorem  

 𝑅� = 𝐸(𝜑(𝑇@, 𝐸@)|𝑇, 𝐸) = ∫∫ 𝑓(}M|})¡ 𝑓(|M||)𝑑𝐸@𝑑𝑇@,                                                (3.11) 

 Where 𝐴 = {(𝐸@, 𝑇@): 0 < 𝑇@ <
}
QM
, 0 < 𝐸@ <

|
Q3

 and 𝑛5𝐸@ < 𝑛@𝑇@} and 𝑓(}M|})&𝑓(|M||) are defined in equations (3.2), (3.5) 
respectively. Then 𝑅� becomes:  

              𝑅� = ∫ ∫ 𝑛@(𝑚@ − 1)
QM}M/Q3
L

}/QM
L

(}1QM}M)dM�3

}dM�M
. 𝑛5(𝑚5 − 1)

(|1Q3|M)d3�3

|d3�M
𝑑𝐸@𝑑𝑇@ 

 = 1 − ∫ 𝑛@(𝑚@ − 1)
}/QM
L

(}1QM}M)dM�3

}dM�M
(|1QM}M)d3�M

|d3�M
𝑑𝑇@                                                          (3.12) 

 let 𝑐 = QM}M
}

, then 𝑅�  becomes:  

 𝑅� = 1 − ∫ (𝑚@ − 1)
@
L (1 − 𝑐)AM15 g1 − 𝑐 }

|
j
A31@

𝑑𝑐,                                                            (3.13) 

since the binomial expansion of (1 − 𝑐 }
|
)A31@ = ∑ (−1)cA31@

cXL g𝑚5 − 1
𝑘 j (¦}

|
)c, then 𝑅� is obtained as following:  

            𝑅� = 1 −∑ (−1)cA31@
cXL g𝑚5 − 1

𝑘 jg}
|
j
c
∫ 𝑐c@
L (1 − 𝑐)AM15𝑑𝑐 

 = 1 − ∑ (−1)cA31@
cXL g}

|
j
c gA31@

c j

gAMOc1@
c j

                                                                                         (3.14) 

 Similarly, if 𝑇 ≥ 𝐸 then 𝑅� becomes:  
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 𝑅� = ∑ (−1)cAM1@
cXL g|

}
j
c gAM1@

c j

gA3Oc1@
c j

                                                                                             (3.15) 

 4 Bayes Estimator of R 
 In this section, the Bayes estimator of 𝑅 = 𝑃(𝑌 < 𝑋) is obtained based on the progressive type-II censoring. Let 
𝑋@:AM:QM, . . . . , 𝑋AM:AM:QM be a progressive censored sample from 𝑅𝑎𝑦(𝜎@) with progressive censoring scheme 
(𝑛@,𝑚@, 𝑟@, . . . , 𝑟AM), and the progressive censored sample 𝑌@:A3:Q3, . . . . , 𝑌A3:A3:Q3 from 𝑅𝑎𝑦(𝜎5) with progressive censoring 
scheme (𝑛5,𝑚5, 𝑠@, . . . , 𝑠A3). Assuming that the parameters 𝜎@, 𝜎5 are random variables having a gamma prior distribution, 
for simplicity we assume that the parameters 𝜆@ = 𝜎@5 and 𝜆5 = 𝜎55. The conjugate priors for 𝜆@, 𝜆5 are:  

 𝜋(𝜆@) =
¨M
�M

�(©M)
𝜆@
1©MO@𝑒1¨M/xM                                                                                                       (4.1) 

 and  

 𝜋(𝜆5) =
¨3
�3

�(©3)
𝜆5
1©3O@𝑒1¨3/x3                                                                                                       (4.2) 

 The likelihood function 𝐿(𝜆@) = 𝑓(𝑋
1
|𝜆@) for random variable X is:  

 𝑓(𝑋
1
|𝜆@)) =

cM
xM
dM (∏ 𝑥W

AM
WX@ )𝑒𝑥𝑝[− @

5xM
∑ (1 + 𝑟W)
AM
WX@ 𝑥W5]                                                                   (4.3) 

 and the marginal distribution for 𝑋 ≥ 0 is given by:  

                 𝑓(𝑋
1
) = ∫ 𝑓(𝑋

1
|𝜆@)

�
L 𝜋(𝜆@)𝑑𝜆@ 

 = cM¨M
�M�(©MOAM15)

¡�MªdM�3�(©M)
(∏ 𝑥W

AM
WX@ )                                                                                             (4.4) 

 where 𝐴 = 𝛽@ + 0.5∑ (1 + 𝑟W)
AM
WX@ 𝑥W5, then the posterior distribution of 𝜆@ is given by:  

 𝜋(𝜆@|𝑋1) =
¡�MªdM�3­�®/¯M

xM
�MªdM�M�(©MOAM15)

                                                                                                         (4.5) 

 Similarly, for 𝑌
1

 the posterior distribution of 𝜆5 is given by:  

 𝜋(𝜆5|𝑌1) =
°�3ªd3�3­�±/¯3

x3
�3ªd3�M�(©3OA315)

                                                                                        (4.6) 

 where 𝐵 = 𝛽5 + 0.5∑ (1 + 𝑠])𝑦]5
A3
]X@ . Now the joint posterior distribution for 𝜆@, 𝜆5 is given by:  

 𝜋(𝜆@, 𝜆5|𝑋1, 𝑌1) = 𝐻 ­�®/¯M­�±/¯3

xM
�MªdM�Mx3

�3ªd3�M                                                                                    (4.7) 

 where 𝐻 = ¡�MªdM�3°�3ªd3�3

�(©MOAM15)�(©3OA315)
. Now by taking the following transformations 𝑅 = xM

xMOx3
 and 𝜉 = 𝜆@ + 𝜆5  

where 0 ≤ 𝑅 ≤ 1, 𝜉 > 0, then the joint posterior distribution for 𝑅 and 𝜉 is derived as following:  

 𝜋(𝑅, 𝜉|𝑋
1
, 𝑌
1
) = 𝐻𝜉¶1AM1A31©M1©3

­2·[1M¸(
®
�O

±
(M��))]

��MªdM�M(@1�)�3ªd3�M
                                                  (4.8) 

 Then by applying integration on equation 4.8 with respect to 𝜉, we get the posterior distribution for 𝑅  

 𝜋(𝑅|𝑋
1
, 𝑌
1
) = 𝐻 × 𝛤[𝑚@ +𝑚5 + 𝛼@ + 𝛼5 − 4]

��3ªd3�o(@1�)�MªdM�o

[¡(@1�)O°.�]dMªd3ª�Mª�3�»
                      (4.9) 

 Then under the squared error loss function the Bayes estimator of 𝑅 is given by:  

                          𝑅t¶ = ∫ 𝑅.@
L 𝜋(𝑅|𝑋

1
, 𝑌
1
)𝑑𝑅 

 = 𝐻. 𝛤[𝑚@ +𝑚5 + 𝛼@ + 𝛼5 − 4] ∫
��3ªd3�3(@1�)�MªdM�o

[¡(@1�)O°.�]dMªd3ª�Mª�3�»
@
L 𝑑𝑅                             (4.10) 
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5 Simulation Study 
   Within this section, the Monte Carlo simulation is performed to check the performance of the different estimators of R 
under several types of progressive censoring schemes. Samples are generated under progressive type-II censoring with 
many different schemes for the (n-m) removed items. These schemes are described as follows: Scheme I: complete sample 
(n=m) i.e there is no removed items. Scheme II: (𝑟@ = 0, . . . , 𝑟A1@ = 0, 𝑟A = 𝑛 −𝑚). Scheme III: (𝑟@ = 𝑛 −𝑚, . . . , 𝑟A1@ =
0, 𝑟A = 0). Scheme IV: The remaining items (n-m) are removed equally at each failure time. For example, if n=10 and 
m=5 then scheme IV become (𝑟@ = 1, 𝑟5 = 1, . . . , 𝑟s = 1). Simulation is performed 1000 times with different sample sizes 
𝑛@, 𝑛5 = 10,20,30 and the number of failures 𝑚@,𝑚5 = 5,10,15,20,30 for X and Y. Different values of parameters 
(𝜎@, 𝜎5) = (1,1), (1,2), (2,1) for the distributions of X and Y are used. The average estimates of MLE for R and the 
average of MSE’s are reported is Table 1,2,3 for each set of parameters. With each table the 95% exact confidence interval 
of R. Also, simulation is constructed 1000 times for UMVUE of R suggested in Section (3) at each set of values in table 4. 
Finally in table 5 the Bayes estimator of R is obtained using different values for the parameters 𝛼@, 𝛼5, 𝛽@ and 𝛽5 when 
𝑛@, 𝑛5 = 20,30 and 𝑚@,𝑚5 = 10,15. All tables are founded in the appendix. We note that in such cases as the effective 
sample size increases the estimates of R become better. When 𝑛 = 𝑚 i.e in case of complete samples the biased is 
decreased. Also, when (𝑛@,𝑚@) = (𝑛5, 𝑛5) the estimates are good. We note that MLE of R give results better than the 
UMVUE of R. 
  

Table 1: MLE, MSE and Exact 95% C.I for R=0.5 when 𝜎@ = 𝜎5 = 1 with different scheme types r, s. 

(𝑛@,𝑚@) (𝑛5,𝑚5) r s MLE 95%C.I. 
Lower   Upper 𝑅t@   MSE 

(10,10) (10,10) Comp Comp 0.499078   1.1 .1015 0.28789  0.71060 

(10,5) (10,5) 
II 
III 
IV 

II 
III 
IV 

0.501915   2.205 .1015 
0.498651   1.30 .1015 
0.506229   1.34 .1015 

0.213291  0.789268 
0.211109  0.787089 
0.216201  0.792125 

(20,20) (10,10) Comp Comp 0.50448   7.95 .101¶ 0.26163  0.677949 
(10,10) (20,20) Comp Comp 0.49126   8.92 .101¶ 0.315959  0.732939 

(20,10) (10,5) 
II 
III 
IV 

II 
III 
IV 

0.516308   1.79 .1015 
0.512684   9.64 .101¶ 
0.527223   1.10 .1015 

0.237949  0.74752 
0.235328  0.744772 
0.245972  0.755686 

(10,5) (20,10) 
II 
III 
IV 

II 
III 
IV 

0.483445   1.81 .1015 
0.486932   1.03 .1015 
0.467997   1.09 .1015 

0.252294  0.761872 
0.254936  0.764395 
0.240789  0.750452 

(20,10) (20,10) 
II 
III 
IV 

II 
III 
IV 

0.502365  1.18 .1015 
0.500906  6.55 .101¶ 
0.499608   6.44 .101¶ 

0.290589  0.713296 
0.289388   0.712101 
0.288321  0.711035 

(20,20) (20,20) Comp Comp 0.49969   6.08 .101¶ 0.347527  0.651923 

(30,15) (30,15) 
II 
III 
IV 

II 
III 
IV 

0.49626   8.27 .101¶ 
0.50307   4.16 .101¶ 
0.498426   4.58 .101¶ 

0.322042  0.671396 
0.328014  0.677373 
0.323934  0.673302 

(30,30) (30,30) Comp Comp 0.50059   3.94 .101¶ 0.37554  0.62557 
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 Table 2: MLE, MSE and Exact 95% C.I for R=0.2 when (𝜎@, 𝜎5) = (1,2) with different scheme types r, s.  

(𝑛@,𝑚@) (𝑛5,𝑚5) r s MLE 
𝑅t@   MSE 

95%C.I. 
Lower   Upper 

(10,10) (10,10) Comp Comp 0.21291   5.89 .101¶ 0.0989044  0.399994 

(10,5) (10,5) 
II 
III 
IV 

II 
III 
IV 

0.21925   1.29 .1015 
0.21216   5.74 .101¶ 
0.208308   6.16 .101¶ 

0.0702452  0.510697 
0.0675582   0.500226 
0.0661114  0.494427 

(20,20) (10,10) Comp Comp 0.21169   4.33 .101¶ 0.08547  0.35701 
(10,10) (20,20) Comp Comp 0.19994   3.72 .101¶ 0.10783  0.41797 

(20,10) (10,5) 
II 
III 
IV 

II 
III 
IV 

0.22161   9.23 .101¶ 
0.21439   4.98 .101¶ 
0.22960   6.47 .101¶ 

0.07687  0.44124 
0.07392  0.430831 
0.08018  0.452546 

(10,5) (20,10) 
II 
III 
IV 

II 
III 
IV 

0.201719   7.44 .101¶ 
0.19692   4.26 .101¶ 
0.19005   4.27 .101¶ 

0.08349  0.463472 
0.08123  0.45601 
0.07799  0.445103 

(20,10) (20,10) 
II 
III 
IV 

II 
III 
IV 

0.20661   5.19 .101¶ 
0.20345   3.04 .101¶ 
0.20333   2.77 .101¶ 

0.09557  0.39091 
0.09390  0.38630 
0.093843  0.38613 

(20,20) (20,20) Comp Comp 0.20485   2.85 .101¶ 0.12079  0.32573 

(30,15) (30,15) 
II 
III 
IV 

II 
III 
IV 

0.20828   3.79 .101¶ 
0.20735   2.01 .101¶ 
0.20148   1.91 .101¶ 

0.11257  0.35301 
0.1120  0.35171 
0.10846  0.34353 

(30,30) (30,30) Comp Comp 0.20296   1.79 .101¶ 0.13253  0.29797 
 

Table 3: MLE, MSE and Exact 95% C.I for R=0.8 when (𝜎@, 𝜎5) = (2,1) with different scheme types r, s.  

(𝑛@,𝑚@) (𝑛5,𝑚5) r s MLE 
𝑅t@   MSE 

95%C.I. 
Lower   Upper 

(10,10) (10,10) Comp Comp 0.78995   5.84.101¶ 0.60411  0.90261 

   (10,5) (10,5) 
II 
III 
IV 

II 
III 
IV 

0.779165   1.2.1015 
0.78699   6.18.101¶ 
0.78757   6.36.101¶ 

0.48699  0.92915 
0.4985  0.93212 
0.49937  0.93234 

(20,20) (10,10) Comp Comp 0.79852   3.86.101¶ 0.57973  0.89124 
(10,10) (20,20) Comp Comp 0.78893   4.45.101¶ 0.64383  0.91482 

(20,10) (10,5) 
II 
III 
IV 

II 
III 
IV 

0.79655   7.60.101¶ 
0.79974   4.12.101¶ 
0.81033   4.22.101¶ 

0.53386  0.91568 
0.53878  0.917195 
0.55551  0.92218 

(10,5) (20,10) 
II 
III 
IV 

II 
III 
IV 

0.780636   8.89.101¶ 
0.78366   4.66.101¶ 
0.773707   6.23.101¶ 

0.56198  0.924043 
0.56634  0.9246 
0.55211  0.92119 

(20,10) (20,10) 
II 
III 
IV 

II 
III 
IV 

0.78873   5.14.101¶ 
0.79276   2.81.101¶ 
0.79387   3.31.101¶ 

0.60236  0.90197 
0.60818  0.9041 
0.60979  0.90469 
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(20,20) (20,20) Comp Comp 0.79693   2.53.101¶ 0.67666  0.88037 

(30,15) (30,15) 
II 
III 
IV 

II 
III 
IV 

0.795464   3.42.101¶ 
0.798036   1.69.101¶ 
0.79720   1.68.101¶ 

0.652201  0.889696 
0.655795  0.891244 
0.654632  0.89074 

(30,30) (30,30) Comp Comp 0.79717   1.67.101¶ 0.70220  0.86756 

Table 4: UMVUE 𝑅t5and MSE for R at different sets of values of 𝜎@, 𝜎5with different scheme types r, s. 

 
(𝑛@,𝑚@) 

 
(𝑛5,𝑚5) 

 
r 

 
s 

 
(𝜎@, 𝜎5) = (1,1) 

R=0.5 
𝑅t5   MSE 

 
(𝜎@, 𝜎5) = (1,2) 

R=0.2 
𝑅t5   MSE 

 
(𝜎@, 𝜎5) = (2,1) 

R=0.8 
𝑅t5   MSE 

(10,10) (10,10) Comp Comp 0.50808   1.35.1015 0.1979   5.29.101¶ 0.80086  5.38.101¶ 
(10,5) (10,5) II 

III 
IV 

II 
III 
IV 

0.495515  2.82.1015 
0.5045   1.52.1015 
0.49617   1.66.1015 

0.196772  1.13.1015 
0.18978   6.19 .101¶ 
0.19043  5.48 .101¶ 

0.80204  1.27.1015 
0.81112  6.29.101¶ 
0.810735 6.38.101¶ 

(20,20) (10,10) Comp Comp 0.49997   8.62 .101¶ 0.20129   4.41 .101¶ 0.80175  3.78.101¶ 
(10,10) (20,20) Comp Comp 0.50002   1.00 .1015 0.19802   3.78 .101¶ 0.80355  3.89.101¶ 
(20,10) (10,5) II 

III 
IV 

II 
III 
IV 

0.50059   2.15 .1015 
0.5036   1.15.1015 

0.52110   1.21 .1015 

0.20457   9.18 .101¶ 
0.19251   4.62 .101¶ 
0.20198   4.81 .101¶ 

0.80413  7.97.101¶ 
0.80694  4.18.101¶ 
0.81298  4.13.101¶ 

(10,5) (20,10) II 
III 
IV 

II 
III 
IV 

0.49943   2.05 .1015 
0.49673   1.15.1015 
0.47983   1.24 .1015 

0.20083   8.82 .101¶ 
0.19241   4.18 .101¶ 
0.18361   4.48 .101¶ 

0.80030  9.25.101¶ 
0.80489  4.46.101¶ 
0.80132  5.29.101¶ 

(20,10) (20,10) II 
III 
IV 

II 
III 
IV 

0.50182   1.29 .1015 
0.49939   7.09 .101¶ 
0.50416   6.80 .101¶ 

0.20285   5.59 .101¶ 
0.19574   2.93 .101¶ 
0.19113   2.64 .101¶ 

0.79938  5.39.101¶ 
0.80537  3.09.101¶ 
0.80283  2.91.101¶ 

(20,20) (20,20) Comp Comp 0.50026   6.29 .101¶ 0.20091   2.67 .101¶ 0.79727  2.74.101¶ 
(30,15) (30,15) II 

III 
IV 

II 
III 
IV 

0.50353   8.53 .101¶ 
0.49911   4.64 .101¶ 
0.50236   4.88 .101¶ 

0.19523   3.54 .101¶ 
0.19582   1.72 .101¶ 
0.19517   1.84 .101¶ 

0.79645  3.56.101¶ 
0.80565  1.88.101¶ 
0.80332  1.89.101¶ 

(30,30) (30,30) Comp Comp 0.49885   4.23 .101¶ 0.20195   1.68 .101¶ 0.80127  1.72.101¶ 
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Table 5: Bayes estimator of R, 𝑅t¶ and MSE when 𝜎@ = 1, 𝜎5 = 2  

 
(𝛼@, 𝛽@) 

 
(𝛼5, 𝛽5) 

 
r 

 
s 

 
(𝑛@, 𝑛5,𝑚@,𝑚5)=(20,20,10,10) 

𝑅t¶   MSE 

 
(𝑛@, 𝑛5,𝑚@,𝑚5)=(30,30,15,15) 

𝑅t¶   MSE 
(0,0) (0,0) II 

III 
IV 

II 
III 
IV 

0.22119   5.90.101¶ 
0.21705   3.27.101¶ 
0.21461   2.86.101¶ 

0.21197   3.57.101¶ 
0.21186   1.97.101¶ 
0.21050   1.95.101¶ 

(0,1) (0,1) II 
III 
IV 

II 
III 
IV 

0.23210   6.41.101¶ 
0.22379   3.25.101¶ 
0.22554   3.56.101¶ 

0.22299   4.10.101¶ 
0.21600   2.02.101¶ 
0.21363   2.02.101¶ 

(1,1) (1,1) II 
III 
IV 

II 
III 
IV 

0.22805   5.71.101¶ 
0.21738   2.86.101¶ 
0.22286   3.26.101¶ 

0.220073   4.31.101¶ 
0.21280   1.92.101¶ 
0.21337   1.95.101¶ 

(2,1) (2,1) II 
III 
IV 

II 
III 
IV 

0.23215   6.42.101¶ 
0.22133   3.25.101¶ 
0.22160   3.29.101¶ 

0.22391   3.91.101¶ 
0.21549   2.12.101¶ 
0.213616   2.01.101¶ 

(1,2) (1,2) II 
III 
IV 

II 
III 
IV 

0.24156   6.17.101¶ 
0.228882   3.36.101¶ 
0.22876   3.49.101¶ 

0.22672   4.29.101¶ 
0.21822   2.12.101¶ 
0.2177   2.06.101¶ 

    (𝑛@, 𝑛5,𝑚@,𝑚5)=(20,20,20,20) (𝑛@, 𝑛5,𝑚@,𝑚5)=(30,30,30,30) 
(𝛼@, 𝛽@) (𝛼5, 𝛽5) r s 𝑅t¶   MSE 𝑅t¶   MSE 

(0,0) 
(0,1) 
(1,1) 
(2,1) 
(1,2) 

(0,0) 
(0,1) 
(1,1) 
(2,1) 
(1,2) 

Comp 
Comp 
Comp 
Comp 
Comp 

Comp 
Comp 
Comp 
Comp 
Comp 

0.21128   2.80.101¶ 
0.21521   2.78.101¶ 
0.21656   2.86.101¶ 
0.21768   2.84.101¶ 
0.219668   2.84.101¶ 

0.20507   1.66.101¶ 
0.21269   2.03.101¶ 
0.20979   1.72.101¶ 
0.20784   1.73.101¶ 
0.21345   1.92.101¶ 

 

6 Conclusions 
   We have presented some efficient estimators of the stress-strength parameter R using MLE and UMVUE methods. The 
methods are very efficient. We have found that, our estimates of R using progressive censoring schemes are very close to 
estimates in case of complete samples so these estimates are better to accelerate the life testing. This work gives a general 
estimate since the case when sample sizes equal the number of failures is a special case. The exact confidence intervals 
based on MLE of Rare obtained. The choice of removing schemes effect on the estimates. Numerical results are presented 
which exhibit the performance of the proposed methods. From the mean square error (MSE) we found that UMVUE of R 
is more effective than MLE and Bayes estimator of R in many cases. 
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