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Abstract: A new reduction algorithm for differential-algebraic systems with power series coefficients has been presented in this

paper. In this algorithm, the given system of differential-algebraic equations is transformed into another simpler system having same

properties. Maple implementation of the proposed algorithm is discussed and sample computations are presented to illustrate the

proposed algorithm.
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1 Introduction

A first-order matrix differential system can be represented
as

A (z)Du(z)+B(z)u(z) = f (z), (1)

where z is a complex variable, A (z),B(z) are m × n

matrices of analytic functions, f (z) is an m-dimensional
vector of analytic functions, u(z) is an n-dimensional

unknown vector to be determined and D = d
dz

is a
differential operator. In operator notations, the first-order
matrix differential system (1) can be represented by an
equation of the form

Lu = f ,

where L = A D+B is a matrix differential operator. If
m = n and A is regular (i.e., det(A ) 6= 0), then the
system (1) is called a system of linear ordinary

differential equations or linear differential system (LDS).
If A ≡ 0, then the system (1) becomes a purely algebraic
system and there are several methods available in the
literature to find all possible solutions. If m 6= n or A is
singular matrix, then the system (1) turns out to be a
system of differential-algebraic equations or simply,
differential-algebraic system (DAS).
Differential-algebraic system is a composed system of
ordinary differential equations coupled with purely

algebraic equations, hence DAS differ from LDS in many
aspects. This paper mainly focused on DAS with some
necessary conditions.

DAS of the form (1) arise naturally in many
applications of science and engineering, for example in
mechanics, control theory. Many scientists and engineers
have studied the DAS intensively from a numerical point
of view and developed new approaches to solve DAS, see,
for example, [2–4, 6–11, 26, 28, 29]. Generally speaking,
most of authors handled the DAS to separate the ordinary
differential system from the given DAS which is a
first-order system of ODEs expressing u′ in terms of u

and z, computed by differentiating (1) successively and
then using basic algebraic techniques. The number of
differentiations of the initial DAE required to generate the
underlying ODE is called the differential index. There are
other alternative index definitions available, see for
example, [4, 9, 10]. Some authors used the notion of
differential index and some authors solve the DAS using
the techniques of reduction algorithms [2, 6, 8, 9]. W. A.
Harris et. al. developed an algebraic algorithm in [30] to
reduce the given DAS of the form (1) into a similar
system which produces first-order systems of ODEs and
algebraic systems of lower sizes with some necessary
conditions on the right-hand side. They handled DAS
with coefficient matrices holomorphic at z = 0 and
discussed about the existence of solutions and the number
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of solutions which are holomorphic at z = 0. Carole El
Bacha et. al. discussed in [2] the importance of such
systems in science and engineering, and proposed new
algorithms for decoupling them into a purely differential
part and a purely algebraic one. The authors recalled the
first and basic reduction algorithm for
differential-algebraic systems developed by W. A. Harris
et. al. [30], and proposed an alternate algorithm to reduce
the given system [5]. The aim of this paper is to develop a
new algebraic reduction algorithm which reduces the
given DAS to another simpler and equivalent system
where we can easily apply the classical theory of
differential equations. Various symbolic algorithms are
available in [11–25] for solving system of differential
equations and system of DAEs

The rest of paper is organized as follows: Section 2
recalls the basic concepts of the reduction algorithms and
Section 2.1 presents a new reduction algorithm for DAS
and Certain examples are solved in Section 2.2 to
illustrate the algorithm. Section 3 discusses the Maple
implementation of the proposed algorithm with sample
computations.

2 A New Reduction Algorithm

Let K be a subfield of the field of complex numbers C.
Note that Q ⊆ K ⊆ C. We denote the ring of formal
power series by K[[z]] in the variable z and K((z)) denote
its quotient field, i.e., K((z)) = K[[z]][z−1]. The ring of
differential operators is denoted by K[[z]][D] with
coefficients in K[[z]], i.e., the set of finite sums ∑aiD

i

with ai ∈ K[[z]] is equipped with the addition and the
multiplication defined by

DiD j = Di+ j
, i, j ∈ N,

D f = f D+
d f

dz
,

where f ∈K[[z]]. In this paper, we consider a system of the
following form

A (z)Du(z)+B(z)u(z) = f (z), (2)

where A (z),B(z) ∈ K[[z]]n×n, f (z) ∈ K[[z]]n and
u(z) ∈ K[[z]]n. The corresponding matrix differential
operator of the system (2) is L = A D+B ∈K[[z]][D]n×n.
We recall the basic concepts of the matrix differential
operators, see [1, 2, 5, 27, 30] for further details.

Definition 1. 1. A matrix differential operator

T ∈ K[[z]][D]n×n is said to be unimodular matrix if

there exists a V ∈ K[[z]][D]n×n such that

V T = TV = In. In other words, it is two-sided

invertible matrix in K[[z]][D]n×n i.e. det(T ) =
constant 6= 0 in K.

2. Let L = A D + B ∈ K[[z]][D]n×n be a matrix

differential operator. Then the rank of L defined to be

the rank of leading coefficient matrix of A i.e., rank

(L) = rank (A ).

3. Two matrix differential operators L, L̃ ∈ K[[z]][D]n×n

are said to be equivalent if there exist two unimodular

matrices S,T ∈K[[z]][D]n×n such that L̃ = SLT.

Example 1. Consider the following two matrices in z.

A =

(
z2− 2z+ 1 −2z5 + 2z4 + 3z3− 4z2 + z

−2z3 + 5z2− 4z+ 1 2z6− 8z4 + 7z3− z

)

and

B =

(
z2− 2z+ 1 0

0 z6− 3z5 + 2z4 + 2z3− 3z2 + z

)
.

There are two unimodular matrices S and T such that B =
SA T , where

S =

(
1 0

−z4 + z3 + z2− 2z+ 1
2
− 1

2

)
,

and

T =

(
2z3 + 2z2− z+ 1 2z3 + 2z2− z

1 1

)

with det(S) =− 1
2

and det(T ) = 1.

Remark. Let L ∈ K[[z]][D]n×n be a matrix differential
operator and T ∈ K[[z]][D]n×n be an unimodular matrix
differential operator. Then Rank of L = Rank of LT =
Rank of TL.

Definition 2. Let S ⊆ C be a subset of the set of complex

numbers. Let z ∈ S. Then z is an isolated point of S if and

only if there exists a neighborhood of z in C which contains

no points of S except z: ∃ ε ∈ R>0 : Nε(z)∩S = {z}.

2.1 Reduction Algorithm for

Differential-Algebraic Systems

In order to develop a reduction algorithm for a given
differential operator L ∈ K[[z]][D]n×n, the following
lemma (see, for example, [2, 5, 30]) is one of the essential
steps for the algorithm. The lemma shows that any matrix
of formal power series centered at origin (i.e., the entries
of A are formal power series at z = 0) can be transformed
into a block matrix.

Lemma 1. Let A ∈ K[[z]]n×n be the matrix whose entries

are holomorphic (analytic) power series at non-isolated

point z = 0. Then there exist two unimodular matrices

S,T ∈K[[z]]n×n such that

SA =

(
A 11

0

)
, A T =

(
A 11 0

)
, SA T =

(
A 11 0

0 0

)
,

where A 11 ∈ K[[z]]r×r is a block matrix and r being the

rank of the matrix A .
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For the sake of completeness, we include a sketch of the
proof similar to [30, Lemma 1].

Proof. Suppose the rank of A is r. For a given
A ∈ K[[z]]n×n, the rank of A can change only at isolated
points. Hence there exists a r× r submatrix with non-zero
determinant. Denote this submatrix A 11. Assume that A

has the block partition form

A =

(
A 11

A 21

)
or A =

(
A 11 A 12

)
or A =

(
A 11 A 12

A 21 A 22

)
.

We should show that there are two unimodular matrices S

and T such that

SA =

(
A

11

0

)
, A T =

(
A 11 0

)
, SA T =

(
A

11 0
0 0

)
.

Suppose S =

(
S11 S12

S21 S22

)
, then SA =

(
A 11

0

)
gives that

S =

(
I 0

−zαA 21(A 11)−1 zα I

)
, similarly if

T =

(
T 11 T 12

T 21 T 22

)
, then A T =

(
A 11 0

)
gives that

T =

(
I −zα(A 11)−1A 12

0 zα I

)
. If we denote

G =−zα(A 11)−1 ∈K[[z]]r×r, then we have

S =

(
I 0

A 21G zα I

)
and T =

(
I GA 12

0 zα I

)
,

such that

SA =

(
A 11

0

)
, A T =

(
A

11 0
)

and SA T =

(
A 11 0

0 0

)
,

where A 11 ∈ K[[z]]r×r and r being the rank of the matrix
A .

Remark. The matrices SA and A T in Lemma 1, may also
have the form

SA =

(
0

A
21

)
, A T =

(
0 A 12

)
.

Remark. Recall that f is said to be holomorphic at the
point z0 if f is complex differentiable on some
neighborhood of z0. If the elements of A are
holomorphic, then rank of A (z) can change only at
isolated points. Hence the rank of A (z) is constant in a
deleted neighborhood of z = 0.

Remark. If there is no isolated point in the domain of the
functions in the matrix A of Lemma 1, then
G =−(A 11)−1 ∈K[[z]]r×r, and hence

S =

(
I 0

A 21G I

)
and T =

(
I GA

12

0 I

)
.

Example 2. Consider

A =




1− z 2− z 1 0
2z 0 1 z

2 4− 2z 3 z

1− 5z 2− z −1 −2z


 .

Following Lemma 1, one can construct two unimodular
matrices S and T as follows.

Suppose A =

(
A 11 A 12

A 21 A 22

)
. Then G =

(
0 − 1

2z
1

z−2
z−1

2z(z−2)

)
∈

K[[z]]2×2, and hence

S =

(
I 0

A 21G I

)
=




1 0 0 0
0 1 0 0
−2 −1 1 0
−1 2 0 1


 and

T =

(
I GA

12

0 I

)
=




1 0 − 1
2z

− 1
2

0 1 3z−1
2z(z−2)

z−1
2(z−2)

0 0 1 0
0 0 0 1


 .

such that

SA =




1− z 2− z 1 0

2z 0 1 z

0 0 0 0

0 0 0 0


 ,A T =




1− z 2− z 0 0

2z 0 0 0

2 4−2z 0 0

1−5z 2− z 0 0


 and

SA T =




1− z 2− z 0 0

2z 0 0 0

0 0 0 0

0 0 0 0


 ,

where A
11 =

(
1− z 2− z

2z 0

)
∈ K[[z]]2×2 and 2 being the

rank of the matrix A .

Suppose rank(A ) = r and rank(B) = k. By applying
Lemma 1 to the matrix A of the matrix differential
operator L, we can construct an unimodular matrix SA

such that

SA L = A1D+B1, (3)

where A1 = SA A =

(
A 11

0

)
, B1 = SA B =

(
B11

B21

)
.

Now using Lemma 1 to the matrix B1 of the matrix
differential operator SA L in equation (3), we have an
unimodular matrix SB such that

SBSA L = A2D+B2, (4)

where A2 = SBSA A =

(
Â 11

0

)
and B2 = SBSA B =

(
0

B̂21

)
. If we denote S⋆ = SBSA and L̂ = S⋆L, then we

have, from equation (4), that L̂ = A2D+B2.
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Again by applying Lemma 1 to the matrix A2 of the

matrix differential operator L̂, we can construct an
unimodular matrix TA such that

L̂TA = A3D+B3, (5)

where A3 = A2TA =
(
A11 0

)
and

B3 = B2TA =
(
B11 B12

)
. Now using Lemma 1 to the

matrix B3 of the matrix differential operator L̂TA in
equation (5), one can construct an unimodular matrix TB

such that

L̂TA TB = A4D+B4, (6)

where A4 = A2TA TB =
(
Â11 0

)
and B4 = B2TA TB =

(
0 B̂21

)
. If we denote T ⋆ = TA TB and L⋆ = L̂T ⋆, then we

have, from equation (6),

L⋆ = A
⋆D+B

⋆
, (7)

where L⋆ = S⋆LT ⋆, A ⋆ = S⋆A T ⋆, B⋆ = S⋆BT ⋆, and S⋆=
SBSA , T ⋆ = TA TB. If rank(L), number of non-zero rows
in L⋆ and number of non-zero columns in L⋆ coincide, then
the given matrix differential operator is in reduced form.
If do not coincide, then we multiply operator L⋆ on the
left and right by two suitable matrices, say P and Q of
GLn(K[[z]]) to obtain the reduced form. The reduced form
of the given DAS is in the following form

L̃ = Ã D+ B̃, (8)

where L̃ = SLT , Ã = SA T , B̃ = SBT , and S = PSBSA ,
T = TA TBQ. One can easily check that
S,T ∈ GLn(K[[z]]). We can decompose the reduced
system (8) into two systems, one is in purely differential
system and other one is in purely algebraic system, with
some necessary conditions, based on the ranks of A and
B as in the following theorem.

Theorem 1. Let L = A D+B ∈K[[z]][D]n×n be a matrix

differential operator with rank(A ) = r and rank(B) = k.

Then we can construct two unimodular matrices

S,T ∈ GLn(K[[z]]) such that the system (2), can be

decomposed

(i) for r+ k = n, as

Ã
11v′1 = f̃1,

B̃
22v2 = f̃2,

where Ã 11 ∈ K[[z]]r×r,B̃22 ∈ K[[z]]k×k are invertible

matrices, v = T−1u =

(
v1

v2

)
, f̃ = S f =

(
f̃1

f̃2

)
.

(ii) for r+ k < n, as

Ã
11v′1 = f̃1,

B̃
22v3 = f̃3,

where Ã 11,B̃22 are invertible matrices over K[[z]] of

order r,k respectively, v = T−1u =




v1

v2

v3


 , f̃ = S f =




f̃1

f̃2

f̃3


 with some necessary conditions on right hand

side expressed by f̃2 = 0.

Proof. Applying Lemma 1 to the matrix differential
operator L, one can construct two unimodular matrices
S,T ∈ GLn(K[[z]]). By substituting u(z) = T v(z) in
equation (2) and left multiplying the resultant equation
with S, we have the following reduced form

SLTv(z) = SA T Dv(z)+ SBTv(z) = S f (z) or (9)

L̃v = Ã Dv+ B̃v = f̃ ,

where L̃ = SLT ∈ K[[z]][D]n×n, Ã = SA T ∈ K[[z]]n×n,

B̃ = SBT ∈K[[z]]n×n and f̃ = S f ∈K[[z]]n×1.

(i) If r+ k = n, then the reduced DAS (9) has the form

L̃v = Ã Dv+ B̃v = f̃ ,

where L̃ =

(
Ã 11D 0

0 B̃22

)
,Ã =

(
Ã 11 0

0 0

)
,B̃ =

(
0 0

0 B̃22

)
,v =

(
v1

v2

)
, f̃ =

(
f̃1

f̃2

)
, and

Ã 11 ∈ K[[z]]r×r, B̃22 ∈ K[[z]]k×k. Hence, the DAS in
equation (2) is decomposed into two systems, one is
purely differential system and second is purely
algebraic system given by

Ã
11v′1 = f̃1,

B̃
22v2 = f̃2.

In particular, if r = k, then Ã 11,B̃22 ∈K[[z]]
n
2×

n
2 .

(ii) If r+ k < n, then the reduced DAS (9) has the form

L̃v = Ã Dv+ B̃v = f̃ ,

where

L̃ =




Ã 11D 0 0
0 0 0

0 0 B̃22


 ,Ã =




Ã 11 0 0
0 0 0
0 0 0


 ,B̃ =




0 0 0
0 0 0

0 0 B̃22


 ,v =




v1

v2

v3


 , f̃ =




f̃1

f̃2

f̃3


, and

Ã 11 ∈ K[[z]]r×r, B̃22 ∈ K[[z]]k×k. Hence, the DAS in
equation (2) is decomposed into two systems, one is
purely differential system and second is purely
algebraic system given by

Ã
11v′1 = f̃1,

B̃
22v3 = f̃3,
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with some necessary conditions on the right hand side

expressed by f̃2 = 0.

2.2 Examples

The following examples illustrate the proposed method,
presented in Theorem 1.

Example 3.Consider a matrix differential operator of DAS

L = A D+B

=




D+1 (1− z)D+ z (2− z)D D−1 1

1 2zD 2 D+1 zD

2D 2D+ z (4−2z)D 3D−2 zD+1

D+1 (1−5z)D+ 1
2 z (2− z)D+1 −D 1

2 −2zD

D+5 (1+ z)D+2z (2− z)D+6 2D+1 zD+2


 ,

(10)

where A =




1 1− z 2− z 1 0
0 2z 0 1 z

2 2 4− 2z 3 z

1 1− 5z 2− z −1 −2z

1 1+ z 2− z 2 z


, and

B =




1 z 0 −1 1
1 0 2 1 0
0 z −2 −2 1

1 1
2
z 1 0 1

2
5 2z 6 1 2


.

Applying Lemma 1 to the matrix A , we can construct
an unimodular matrix SA . This can be achieved by finding
a basis of left null space of A ,

left null space of A =



−2 −1 1 0 0
−1 2 0 1 0
−1 −1 0 0 1




and the unimodular matrix SA is

SA =




1 0 0 0 0
0 1 0 0 0
−2 −1 1 0 0
−1 2 0 1 0
−1 −1 0 0 1


 .

Thus, multiplying operator L on the left by SA yields the
operator

SA L = A1D+B1

=




D+ 1 (1− z)D+ z (2− z)D D− 1 1
1 2zD 2 D+ 1 zD

−3 −z −4 −1 −1

2 − 1
2
z 5 3 − 1

2
3 z 4 1 1


 ,

where

A1 = SA A =

(
A 11

0

)
=




1 1− z 2− z 1 0
0 2z 0 1 z

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 and

B1 = SA B =

(
B11

B
21

)
=




1 z 0 −1 1
1 0 2 1 0
−3 −z −4 −1 −1

2 − 1
2
z 5 3 − 1

2
3 z 4 1 1


 .

Applying Lemma 1 to the matrix B1, we can construct an
unimodular matrix SB (it is computed using a basis of left
null space of B1) as follows

SB =




1
2
− 5

2
0 1 0

−1 −2 0 0 1
1 2 1 0 0
0 0 0 1 0
0 0 0 0 1




such that

SBSA L = A2D+B2

=




1
2
D 1

2
(1− 11z)D (1− 1

2
z)D −2D − 5

2
zD

−D −(1+ 3z)D (z− 2)D −3D −2zD

D (1+ 3z)D (2− z)D 3D 2zD

2 − 1
2
z 5 3 − 1

2
3 z 4 1 1


 ,

where

A2 = SBSA A =

(
Â 11

0

)
=




1
2

1
2
(1−11z) 1− 1

2
z −2 − 5

2
z

−1 −1−3z z−2 −3 −2z

1 1+3z 2− z 3 2z

0 0 0 0 0

0 0 0 0 0


 and

B2 = SBSA B =

(
0

B̂21

)
=




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 − 1
2

z 5 3 − 1
2

3 z 4 1 1


 .

In the matrix differential operator SBSA L, third row is
depending on second row, hence we can multiply left
SBSA L by the matrix (elementary row transformations
matrix)

P =




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

the resultant system is

PSBSA L = PA2D+PB2

=




1
2
D 1

2
(1− 11z)D (1− 1

2
z)D −2D − 5

2
zD

−D −(1+ 3z)D (z− 2)D −3D −2zD

0 0 0 0 0

2 − 1
2
z 5 3 − 1

2
3 z 4 1 1


 .
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Thus, we have

S = PSBSA =




− 1
2
− 1

2
0 1 0

−2 −3 0 0 1
−3 −2 1 0 1
−1 2 0 1 0
−1 −1 0 0 1


 .

Repeating the procedure, one can construct the unimodular
matrix T similar to that of S, and T is given by

T = TA TBQ =




0 −3 z3−4z2+2
2z2−z−1

1−3z
2z

1−z
2

− 1
z

4
z

z
1−z

− 1
2z
− 1

2

0 1 1 0 0

0 1 −z3+2z
2z2−z−1

1 0

1 0 5z2+2z−2
2z2−z−1

0 1



.

Now the reduced form of the given DAS (10) is

L̃ = SLT

=




− 1
2z
(5z2−11z+1)D − 1

2z
(z2 +49z−4)D 0 0 0

− 1
z
(2z2−3z−1)D 1

z
(z2−14z−4)D 0 0 0

0 0 0 0 0

0 0 0 4+z
4z

2−3z
4

0 0 0 3−8z
2z

5−4z
2


 .

Example 4. Consider a matrix differential operator of DAS

L =A D+B

=




1− z 2− z 1 0
2z 0 1 z

2 4− 2z 3 z

1− 5z 2− z −1 −2z


D+




z 0 −1 1
0 2 1 0
z −2 −2 1
z
2

1 0 1
2


 (11)

Following the Theorem 1 similar to Example 3, we can
construct two unimodular matrices S and T as

S=



− 1

2
− 1

2
0 1

−1 1 1 0
−2 −1 1 0
−1 2 0 1


 and T =




− 1
z

1
z
− 1

2z
− 1

2

0 − 1
2

3z−1
2z(z−2)

z−1
2(z−2)

0 1 1 0
1 0 0 1


 .

Now the reduced form of the given DAS (11) is

L̃ = SLT

=




− (5z2−11z+1)D
2z

(z2−32z+2)D
4z

0 0
(2z2−3z−1)D

z

(z2+10z+2)D
2z

0 0

0 0 − z2+10z−4
2z(z−2)

z2−8z+8
2(z−2)

0 0 13z2+4z−10
4z(z−2)

z2+6z−6
4(z−2)



.

Example 5.Consider a DAS similar to the Example 5.3.1
of [2, pp. 132].

L =




1 1− z 2− z 0 −1 1
0 1 0 1 0 0
z 1 1 0 z 1

1+ z 1− z 3− z −1 z− 1 2
2+ 2z 4− 2z 6− 2z 0 2z− 2 4

1 −z 2− z −1 −1 1




D

+




0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 0 2 0 −2 0
1 z 2+ z 0 −2 0
1 1 3 0 −2 0




(12)

Using the proposed algorithm in Theorem 1, we can
construct two unimodular matrices S and T as

S =




− 1
z

1
z

1+z
z

1−z
z
− 1

z
1

−1 1 0 0 0 0
0 0 1 0 0 0
−1 1 −1 1 0 0
−2 0 −2 0 1 0
−1 1 0 0 0 1




and

T =




− 2
z−1

2(z2+1)
(z−1)2 −2 − 1

(z−1)2 −
z2−2z−1
(z−1)2 −

1
z−1

− 1
z−1

2z

(z−1)2 −1 −1 0 0

1
z−1

− 2z

(z−1)2 1 z2−z+1
(z−1)2 − 2z

(z−1)2
1

z−1

0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1




.

The reduced form of the given DAS (12) is

L̃ = SLT

=




2(2−z)
z(z−1) D −

2(z2+1)
z((z−1)2)

D 2
z
D 0 0 0

−D −D 0 0 0 0

−
(1+z)
z−1 D −

z(3z2−2z+3)
(z−1)2 D −2zD 0 0 0

0 0 0 2z2−2z+1
(z−1)2 − 3z2−2z+1

(z−1)2
1

z−1

0 0 0 z2+2z−1
(z−1)2 − 5z2−2z+1

(z−1)2
1+z
z−1

0 0 0 2z2−z+1
(z−1)2 − 3z2+1

(z−1)2
2

z−1




.

Remark. In [2], C. E. Bachaa et. al. have presented a
reduction algorithm for linear differential-algebraic
equations of first-order. In the Example 5.3.1 of [2, pp.
132], authors have solved this type examples by reducing
the differential operator L using a row-reduction
algorithm and then again using a column-reduction
algorithm to obtain the reduced matrix differential
operator. However, in this paper, we use single algorithm
to obtain the reduced algorithm as discussed above.

3 Maple Implementation

Now we discuss the Maple implementation of the
proposed algorithm by creating different data types. The
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implemented Maple package, DAS Reduction, of the
proposed algorithm is provided with Maple worksheet at
www.srinivasaraothota.webs.com/research.
Using the Maple package, one can obtain the two
unimodular matrices S, T and the reduced DAS of the
given system. In Maple implementation, z is complex
variable and D = d

dz
is the differential operator.

Pseudo-Code of Proposed Algorithm

1: A,B← coe f f icient matricies

2: n← size o f A

3: LNS A← le f t null space o f A

4: Sa← identity matrix with LNS A

5: Aa← Sa.A, Ba← Sa.B

6: LNS Ba← le f t null space o f Ba

7: Sb← identity matrix with LNS Ba

8: A1← Sb.Aa, B1← Sb.Ba, S1← Sb.Sa

9: RNS A1← right null space o f A1
10: Ta← identity matrix with RNS A1
11: A1a← A1.Ta, B1a← B1.Ta

12: RNS B1a← right null space o f B1a

13: T b← identity matrix with LNS B1a

14: A2← A1a.Tb, B2← B1a.Tb, T 1← Ta.T b

15: P← le f t elementary matrix

16: Q← right elementary matrix

17: S← P.S1, T ← T 1.Q

Example 6.Consider the following matrix differential
operator

L = A D+B

=




D+ 1 (1− z)D+ z (2− z)D D− 1
1
2

2zD+ 1
2
z 0 D− 1

2
2D+ 2 2(D+ z) (4− 2z)D 3D− 2
D+ 3 (1− 5z)D+ 3z (2− z)D −(D+ 3)


 ,

(13)

where A =




1 1− z 2− z 1
0 2z 0 1
2 2 4− 2z 3
1 1− 5z 2− z −1


, B =




1 z 0 −1
1
2

z
2

0 − 1
2

2 2z 0 −2
3 3z 0 −3


.

Using Maple implementation, DAS Reduction, of the
proposed algorithm, we have

> A :=

Matrix([[1,1-x,2-x,1],[0,2x,0,1],

[2,2,4-2x,3],[1,1-5x,2-x,-1]]);

> B :=

Matrix([[1,x,0,-1],[ 1
2
,

x
2
,0,- 1

2
],

[2,2x,0,-2],[3,3x,0,-3]]);

A :=




1 1− x 2− x 1
0 2x 0 1
2 2 4− 2x 3
1 1− 5x 2− x −1




B :=




1 x 0 −1
1
2

x
2

0 − 1
2

2 2x 0 −2
3 3x 0 −3




> S,T,Lreduced:=DAS Reduction(A, B);




1
6

18x−1
6x−1

− 2
3(6x−1) 0 − 1

6
1

12x
1
3x

0 − 1
12x

− 13
6

− 2
3

1 1
6

−1 2 0 1


 ,




− 1
2

− 1
2

3
2
− 1

2
3x−1

x
1
2x

1
2x

− 1
2x

− 1
2x

− 1
2

6x−1
x(x−2) −

1
2

2x−1
x(x−2)

1
2

6x−1
x(x−2) 0

0 0 1 1


 ,




D 2x−1
6x−1

D 0 0
1
2x

D 1
2x

D 0 0
0 0 0 0

0 0 0 − 3
2

6x−1
x


 ,

From Maple implementation, we have two unimodular
matrices, S,T ∈ GLn(K[[z]]),

S =




1
6

18z−1
6z−1

− 2
3(6z−1) 0 − 1

6
1

12z
1
3z

0 − 1
12z

− 13
6

− 2
3

1 1
6

−1 2 0 1


 ,

T =




− 1
2

− 1
2

3
2
− 1

2
3x−1

z
1
2z

1
2z

− 1
2z

− 1
2z

− 1
2

6z−1
z(z−2)

− 1
2

2z−1
z(z−2)

1
2

6z−1
z(z−2)

0

0 0 1 1


 ,

and the reduced matrix differential operator of the given
DAS (13) is

L̃ =




D 2z−1
6z−1

D 0 0
1
2z

D 1
2z

D 0 0

0 0 0 0

0 0 0 − 3
2

6z−1
z




4 Conclusion

In this paper, we discussed a new reduction algorithm for
differential-algebraic system with power series
coefficients. Using the proposed algorithm, one can
transform the given system of differential-algebraic
equations into another simpler system having the same
properties. Maple implementation of the proposed
algorithm is also discussed and sample computations are
presented to illustrate the algorithm. The implemented
Maple package, DAS Reduction, is provided at
www.srinivasaraothota.webs.com

/research with Maple worksheet. The proposed
algorithm may be helpful to implement this method in
commercial packages such as Mathematica, Matlab,
Singular, Scilab etc.
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