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Abstract: In this work, we have investigated the evolution of diffusive pattern formation in a predator–prey model under type-III

functional response. Using stability analysis, we receive the significant specifications for Turing instability (diffusive-driven instability),

and with the help of these conditions, recognize the corresponding realm in the region of interest. Moreover, we present a qualitative

analysis of growth and development actions that involves species distribution and their interplay of the spatially distributed populace

with diffusion and obtain the conditions for spatial patterns like spots, spot-stripe, and stripes. Using weakly nonlinear analysis, we

derive the equations of amplitude for slow modulation near the Turing boundary. By the series of numerical simulations, we receive

intricate spatial patterns, particularly spot, stripe, and spot-stripe in the Turing realm. The consequences of this paper are general in the

real world and can be used to investigate the impact of self-diffusion on other predator–prey systems. It will improve our understanding

to understand the dynamical behavior of realistic models..
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1 Introduction

Diffusion-driven spatial patterns in the natural world are
universal, with examples such as stripes on zebra skin,
diffusive–driven patterns in a quantum field, or Turing
patterns in predator–prey systems [1–3]. Diffusive–driven
components of populations interplay has been identified
as a essential factor in how biological communities are
formed and biological interplay occur over a wide limit of
non-spatial and spatiotemporal scale [4]. Population
distribution is of major significance in the study of
biological models [5–7]. The distribution of diffusive
populace is affected by the proliferation power of the
populace and interplays among biological individuals [8].
The effect of diffusion may be ignored in a certain level,
especially when the populace of a given species stays
fixed in space at any moment of time. Albeit this
assumption is not completely realistic. Individuals of an
ecological species do not fixed at all times in space, and
their dispersion in space changes incessantly by the
self-movement of individuals [2, 5, 9–11].

Spatiotemporal modeling is a proper mechanism for
investigating the elementary properties of complex
population dynamical systems. A proper mathematical
organization to clarify the dynamical behavior of
diffusive phenomenon of biological population is
specified by partial differential equations
(reaction–diffusion system). Diffusion–Reaction models
were primarily applied to depict the biological diffusive
pattern development by Segel and Jackson in 1972, based
on the initial research work of Alan M. Turing [12]. Over
the past few years, large number of research paper have
been published on the diffusive patterns dynamics of
predator–prey system based on reaction–diffusion
equations, and distinct kinds of patterns have emerged
from these systems [2, 3, 5, 9–12].

Idea of diffusion may be considered as the natural
propensity for a cluster of particles at the beginning
concentrated close to a location in space to spread out in
time, slowly occupying an ever sizable area close to the
initial point. Here, the word “particles” mention not only
to physical portion of the matter, but to biological
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populations or to any other recognizable elements as well.
Moreover, the word “space” does not mention only to
general Euclidean n-space but can also be an hypothetical
living space (such as ecological space) [2, 5, 10].
Diffusion is a natural phenomenon where the movement
of physical material from high concentration to low
concentration space, that is, diffusion is a natural process
by which the particle cluster as an entire dispersions
according to the non-uniform movement of every particle.
Diffusion can be defined to be basically an invariant
process by which particle clusters, population, etc.,
diffuse inside a given space according to individual
random movement [10].

Diffusion-Reaction partial differential equation
systems can be used to represent mathematical models,
which describe how the individuals of one or more
species distributed in space changes under the effect of
two procedures, first is local interaction, in which the
species interact with each other, and second is the
diffusion, which causes the species to spread out over a
surface in space. Mathematically, reaction-diffusion
systems take the form of semi-linear parabolic partial
differential equations [5, 10, 11].

Through mathematical modeling as a viable tool,
complex biological processes are studied. Mathematical
modeling can be extremely helpful in analyzing factors
that may contribute to the complexity intrinsic in
insufficiently understood tumor–immune as well as
predator–prey interactions. Likewise, the primary
objective of the mathematical modeling of
tumor–immune and Predator–prey models are, briefly, the
analysis of the interplay inside and between biological
species and their artificial surrounding, and the
examination of the temporal transformation of clusters of
individuals of different biological species. It is however
true that space and time are indivisible “sibling
co-ordinates” and only when population densities
(tumor–immune system or predator–prey system) are
contemplated in both space and time, actual dynamics can
be understood [5, 6, 13–18].

Cooperative conduct can animate a association among
the density of populace and per capita populace
development rate [19, 20]. Environmentalists have
recognized the few components for invigorating helpful
conduct in prey, in particular supporting reproduction,
searching efficiency, etc. Cooperative conduct in prey
might be created by predation or by method natural to the
prey life expectancy history [21]. Large number of
research publications have been published to cooperative
behavior in preys [22–27] and cooperative conduct is
comparatively less analyzed in predators and poorly
accepted [28–30], specifically when spatial behavior of
population is considered clearly. Temporal model of
predator–prey interaction under cooperative behavior
through the simultaneous ordinary differential equation
has been studied by Alves et.al. [31]. Influenced by their
research work, we alter and expand the model in a spatial
area to contemplate its spatial pattern formation.

Most of the models in mathematical ecology or
tumor–immune interaction deal with non-spatial variant.
The rate of change of the number of individuals u in a
population may be manifested as the derivative with
respect to time ‘t’, du/dt. The model equations of a
biological community of interacting individuals and their
environment are then founded by equating this derivative
to another relation expressing the effect of species
interaction on population. Same is the situation with
tumor–immune interacting models. This type of
straightforward analysis is not practicable when spatial
models are considered. Directly connected to species
interplay is the net population via an arbitrary
infinitesimal piece of space rather than the spatial rate of
change of the population itself, and thus a reasonable
manifestation is unreachable without knowledge of the
mechanism of motion of the individuals.

This research work is structured as: We developed a
reaction–diffusion predator–prey model with hunting
cooperation in predators with zero-flux boundary
conditions and non-zero initial population distribution in
Section 2. Furthermore, we studied the non-spatial
dynamical behavior of the model with hunting
cooperation in predators for local stability investigation in
Section 3. In Section 4, we get the adequate conditions for
Turing bifurcation with Neumann’s condition. We have
derived the amplitude equations via weakly nonlinear
analysis in Section 5. In Section 6, we use numerical
simulations to validate the theoretical results obtained in
the previous sections. The paper ends with a discussion 7.

2 Mathematical model

By including the spatial aspect and type III functional
response in the extensive predator–prey system with
hunting cooperation [31, 32], we obtain the following
predator–prey system

dX

dt
′ =

(

1− X

K

)

rX − (λ + aY)X2Y

1+H1 (λ + aY)X2

dY

dt
′ = e

(λ + aY)X2Y

1+H1 (λ + aY)X2
−mY. (1)

Here the masses of prey and predator population at time t
′

are represented by X(t
′
) and Y (t

′
), serially. r is rate of

natural growth of prey, K is its holding efficiency, λ is the
constant invasion rate, and a is the rate of predator
hunting cooperation. e parameter represent the efficiency
of transition, and m is the predator’s natural mortality
rate. H1 is the handling time of predator. All parameters
are positive.

On the contrary, we presume that the prey and
predator populace densities spread without any order and
this random distribution of species is depicted by
diffusion. Then, we propose a spatial predator–prey
model with hunting cooperation and Allee effects in
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predators corresponding to (1) as follows:

∂X

∂ t
′ =

(

1− X

K

)

rX − (λ + aY)X2Y

1+H1 (λ + aY)X2
+ d1∇2X

∂Y

∂ t
′ = e

(λ + aY)X2Y

1+H1 (λ + aY )X2
−mY + d2∇2Y (2)

where d1 and d2 are the non-negative diffusion
coefficients of prey and predator, respectively. ∇2 is the
usual Laplacian operator in d ≤ 3 space dimensions.

Presently we non-dimensionalize the system (2) by
presenting the following dimensionless factors

t = mt
′
, u = x

√

eλ

m
, v = Y

√

λ

me
,

and dimensionless values of other parameters are given by

σ =
r

m
, N =

√

eλ

m
K, α =

a

λ

√

em

λ
, h1 =

m

e
H1.

With these changes, Eqs. (2) become

∂u

∂ t
=
(

1− u

N

)

σu− (1+αv)u2v

1+ h1 (1+αv)u2
+ d1∇2u

∂v

∂ t
=

(1+αv)u2v

1+ h1 (1+αv)u2
− v+ d2∇2v. (3)

This is the working spatial predator–prey model with
hunting cooperation and Allee effects in predators.
Generally, to make effective that diffusive patterns are
ruled by Turing instability method, model 3 is to be
investigated with the following initial conditions:

2D : u(x,y,0) > 0, v(x,y,0) > 0, (x,y) ∈ Ω = [0,L]× [0,L] (4)

and Neumann’s boundary condition

∂u

∂ν
=

∂v

∂ν
= 0, (5)

where L is the size of the homogeneous spatial domain, ν
is the unit normal on the boundary ∂Ω . Neumann
boundary condition (zero-flux) (5) insinuate that no
biological population leave the simulation space.

3 Analysis of the Temporal Model

3.1 Initial Density Distribution

The spatiotemporal pattern formation generally onset
with a community interplays of species. The initial
conditions for model (3) should be stated by the
mathematical compact support function that is within a
definite region the initial density distribution of prey and
predator is non-zero and elsewhere zero. The structure of
the realm and the outlines of the species densities can be
dissimilar in different predator–prey models. In this study,
we have employed the positive initial distribution of

species in space as

u(xi,y j,0) = u∗+ γ1εi j,

v(xi,y j,0) = v∗+ γ2ηi j, (6)

where γ1 and γ2 are small reals and εi j and ηi j are white
Gaussian noise with certain variance and zero mean.

3.2 Equilibria of System

Without diffusion the steady states equilibria of the model
are given by
(

1− u

N

)

σu− (1+αv)u2v

1+ h1 (1+αv)u2
= 0,

(1+αv)u2v

1+ h1 (1+αv)u2
− v = 0. (7)

Clearly the above system has the following meaningful
steady state points: (i) E0(0,0) (prey and predator both
extinct), (ii) E1(N,0) (prey only survive) and (iii) two
positive coexistence equilibrium points E2(u2,v2) and
E3(u3,v3) (interior equilibrium solutions), where

v2 =
1

α

(

1

(1− h1u2)u2

− 1

)

and

v3 =
1

α

(

1

(1− h1u3)u3

− 1

)

, and u2, u3 be the positive

solution of

A0u4 +A1u3 +A2u2 +A3u+A4 = 0, (8)

where
A0 = h1ασ , A1 = (h1N − 1)ασ , A2 =
((1− h1)ασ − h1)N, A3 = (1− h1)N, A4 =−N.

The number of coexistence equilibrium points and
their stability depends upon the parameter values for the
model (3).

3.3 Stability Analysis of System

The Jacobian matrix (J) of the model of (3) is as follows

[

∆11 ∆12

∆21 ∆22

]

= (∆i j)2×2
, (9)

where

∆11 = σ(1− 2u

N
)+

v(1+ vα)[(1+ vα)h1u2 − 1]

[1+(1+ vα)h1u+(1+ vα)h1u2]2
,

∆12 =−u[1+ 2αv+(1+αv)2h1u+(1+αv)2h1u2]

[1+(1+αv)h1u+(1+αv)h1u2]2
,

∆21 =− v(1+ vα)[(1+ vα)h1u2 − 1]

[1+(1+ vα)h1u+(1+ vα)h1u2]2
,

∆22 =
u[1+ 2αv+(1+ vα)2h1u+(1+ vα)2h1u2]

[1+(1+ vα)h1u+(1+ vα)h1u2]2
− 1.
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1.At E0(0,0), Jacobian matrix is

J0 =

[

σ 0
0 −1

]

,

whose eigenvalues are −1 and σ (which is a positive
parameter). Therefore the model (3) is not stable at the
(0, 0).

2.At E1(N,0), Jacobian matrix is

J1 =

[

−σ − N
1+h1N+h1N2

0 N
1+h1N+h1N2 − 1

]

,

whose eigenvalues are −σ and N
1+h1N+h1N2 − 1.

Hence the system is locally asymptotically stable if
N

1+h1N+h1N2 < 1.

3.At E2(u2,v2)

Lemma 1. The equilibrium solution E2(u2,v2) is locally
asymptotically stable if and only if

(N − Nσ + 2σu2)(1 + h1u2(1 + v2α) + h1u2
2(1 +

v2α))2 −N(u2(1+ 2αv2)− v2(1+αv2)+ (h1u2 + h1v2 +
h1)(1+αv2)

2u2
2)> 0,

and

u2v2(1 + αv2)(1 − h1u2
2(1 + αv2))N(1 + 2αv2 +

h1u2(1 + αv2)
2 + h1u2(1 + αv2)

2) + (−(1 + h1u2
2(1 +

αv2) + h1u2(1 + αv2))
2 + u2(1 + 2αv2 + h1u2(1 +

αv2)
2 + h1u2

2(1 + αv2)
2))(v2(1 + αv2)N(−1 +

h1u2
2(1 + αv2))− 2σu2(1 + h1u2(1 + αv2) + h1u2

2(1 +
αv2))

2 +σN(1+h1u2(1+αv2)+h1u2
2(1+αv2))

2)> 0.

Proof 1. The eigenvalues of the corresponding Jacobian
matrix J at equilibrium solution E2(u2,v2) are given by
1
2
(µ1 ± µ2), where

µ1 = σ(1− 2u2

N
)−1+

v2(1+αv2)(h1u2
2(1+αv2)−1)

(1+h1u2(1+αv2)+h1u2
2(1+αv2))2

+
u2(1+2αv2 +h1u2(1+αv2)

2 +h1u2
2(1+αv2)

2)

(1+h1u2(1+αv2)+h1u2
2(1+αv2))2

,

µ2 =
√

µ1
2 − 4µ3 and µ3 is the determinant of Jacobian J

at E2(u2,v2). Hereby, the coexistence equilibrium
solution E2(u2,v2) is locally asymptotically stable if and
only if µ1 < 0 and µ3 < 0.

Lemma 2. The reaction-diffusion system (3) enters into a
Hopf-bifurcation around E2(u2,v2) at σ = σhb, where σhb

satisfies the equality

σhb =
N((1+h1u2(1+αv2)+h1u2

2(1+αv2))
2 −u2(1+2αv2)

(N −2u2)(1+h1u2(1+αv2)+h1u2
2(1+αv2))2

−

(h1 +v2h1 +u2h1)(1+αv2)
2u2

2)

(N −2u2)(1+h1u2(1+αv2)+h1u2
2(1+αv2))2

.

Proof 2. The characteristic equation corresponding to the
equilibrium solution E2(u2,v2) is given by

λ11
2 − µ1λ11 + µ3 = 0. Let us assume that

u ≈ exp(λ11t), v ≈ exp(λ11t).

If µ1 = 0, at that point both the eigenvalues will be simply
imaginary given µ3 is non-negative and there are no
different eigenvalues with negative real part. Presently
µ1 = 0 gives σ = σhb. Substituting λ11 = a1 + ib1 into the

equation λ11
2 − µ1λ11 + µ3 = 0 and separating real and

imaginary parts we obtain (a1
2 − b1

2)− µ1a1 + µ3 = 0
and 2a1b1 − µ1b1 = 0. Differentiating 2a1b1 − µ1b1 = 0
both sides with respect to σ at σ = σhb and considering
a1 = 0, we get

da1

dσ

∣

∣

∣

∣

∣

σ=σhb

=
1

2

(

1− 2u2

N

)

6= 0.

Now the bifurcation in stability about E2(u2,v2), we
should have the real part of λ11, that is, a1 = 0. Hence, the
system undergoes a Hopf-bifurcation at E2(u2,v2) as σ
passes through the value σhb.

4 Analysis of the spatiotemporal model

Coexistence equilibria E2(u2,v2) of temporal model is
spatially homogenous equilibria, i.e., fixed in simulated
space and time for the diffusive system. Assumption for
Turing instability is that the E2(u2,v2) is stable in
temporal system that is the spatially uniform equilibrium
is stable under spatially uniform perturbations. In spite of
the fact that the dispersion is frequently consider as a
balancing out procedure, this is a notable reality that
spatially uniform equilibria become unstable using
diffusion concerning non-uniform perturbations in a
system of interacting populations [3, 12]. The stipulation
for diffusive pattern formation may be attained by
inserting a non-uniform perturbation of the uniform
equilibria as

u(x,y, t) = u2 + ε1 exp(λkt)cos(kxx)cos(kyy) ,

v(x,y, t) = v2 + ε2 exp(λkt)cos(kxx)cos(kyy) , (10)

where ε1 and ε2 are reals and (kx,ky) = k, such that k2 =
(

k2
x + k2

y

)

, is the number of waves in a unit distance.
Substituting (10) into (3) and then make linear it

about coexistence equilibrium E2(u2,v2), we receive the
Jacobian as
[

S11 S12

S13 S14

]

(u2,v2)

,

where S11 =

σ(1− 2u2

N
)+

v2(1+ v2α)[(1+ v2α)h2u2
2 − 1]

[1+(1+ v2α)h1u2 +(1+ v2α)h2u2
2]

2
− k2,

S12 =

−u2[1+ 2αv2+(1+αv2)
2h1u2 +(1+αv2)

2h1u2
2]

[1+(1+αv2)h1u2 +(1+αv2)h1u2
2]

2
,
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S13 =− v2(1+ v2α)[(1+ v2α)h1u2
2 − 1]

[1+(1+ v2α)h1u2 +(1+ v2α)h1u2
2]

2
,

S14 =
u2[1+ 2αv2+(1+ v2α)2h1u2 +(1+ v2α)2h1u2

2]

[1+(1+ v2α)h1u2 +(1+ v2α)h1u2
2]

2
−

1− dk2, d =
d2

d1
.

The corresponding characteristic equation is

λ 2 +C1(k
2)λ +C2(k

2) = 0, (11)

where

C1(k
2) = (1 + d)k2 + 1 + σ

(2u2

N
− 1

)

−
αu2v2 +(1+αv2)

(

u2 − v2 + h1u2
3(1+αv2)

)

(

1+ h1u2
2(1+αv2)+ h1u2(1+αv2)

)2

+
(h1 + h1v2)u2

2
(

1+αv2

)2

(

1+ h1u2
2(1+αv2)+ h1u2(1+αv2)

)2
,

C2(k
2) =

2(1+ dk2)u2

(

1+ u2
4h1

2(1+αv2)
2
)

σ +(1+ dk2)v2N
(

1+ h1u2
2(1+ v2α)+ h1u2(1+ v2α)

)2
N

+

(k2 −σ)Nu2

(

− 1− 2v2α + 2h1(1+ dk2)
)

+ 2σh1u2
4

(

1+ h1u2
2(1+ v2α)+ h1u2(1+ v2α)

)2
N

+

2h1N(1+ dk2)(k2 −σ)+ 2u2
3(1+αv2)(2h1(1+ dk2)

(

1+ h1u2
2(1+ v2α)+ h1u2(1+ v2α)

)2
N

+

u2
3(1+αv2)h1(−1+ 2h1(1+ dk2))(1+αv2)(k

2 −σ)N
(

1+ h1u2
2(1+ v2α)+ h1u2(1+ v2α)

)2
N

+

u2
2(1+αv2)

2h1 + u2
2h1

2(1+ dk2)(1+αv2)(k
2 −σ)

(

1+ h1u2
2(1+ v2α)+ h1u2(1+ v2α)

)2
N

.

Using Routh-Hurwitz criterion, the model (3) will be
linearly stable about E2(u2,v2) if C1(k

2) > 0 and
C2(k

2) > 0. Since d and k2 both are positive and by the
stability of the temporal system, C1(k

2) > 0 is
consistently positive. Hence, the stipulation for Turing
bifurcation is C2(k

2)< 0.

The polynomial function C2(k
2) has minimal for k, say

kmin, where

k2
min =

1

2Nd(h1 +h1u2)
(

1+u2(h1 +h1u2)(1+αv2)
)2

×
(

(

−1−u2(h1 +h1u2)− (−1+h1 +h1u2)(1+u2)
2
)

N

+d(h1 +h1u2)(v2(1+αv2)
(

−1+h1u2
2(1+αv2)

)

−2σ

(

1+u2(h1 +h1u2)(1+αv2)
)2

+σN
(

1+u2(h1 +h1u2)
)2

)

.

For minimal k, diffusive-driven instability will take
place when C2(k

2
min) < 0. Therefore, substituting k2

min in

C2(k
2), we obtain the stipulation for diffusive-driven

instability as

d∆11 +∆22 − 2
√

d
√

∆11∆22 −∆12∆21 > 0 (12)

The span of the wave-number for which
diffusive-driven instability occur is (k−,k+) and in

present span, we have C2(k
2)< 0, where

k− =
d∆11 +∆22 −

√

(d∆11 +∆22)2 −4d(∆11∆22 −∆12∆21)

2d
,

k+ =
d∆11 +∆22 +

√

(d∆11 +∆22)2 −4d(∆11∆22 −∆12∆21)

2d
,

where the values of ∆i j, i, j = 1,2 are obtain from equation
(9) about E2(u2,v2).

5 Amplitude equations

The system changes very slow near to the Turing
bifurcation value and slow modes become active modes.
The study of the pattern formation of slow mode is
possible by means of the amplitude equation. By weakly
nonlinear analysis, we derived the amplitude equations
and examine the diffusive patterns (e.g., spots, stripes,
and spots-strips) by a system of three vital resonant
classes of modes (k j,−k j) ( j = 1,2,3) making angle of
2π
3

and |k j|= kT .

For obtaining the equation of amplitude, first linearize
the given model (3) at steady state (u∗,v∗):

∂

∂ t

[

u

v

]

=

[

d1∇2u

d2∇2v

]

+

[

a11 a12

a21 a22

][

u

v

]

+

1

2

[

fuuu2 + 2 fuvuv+ fvvv2

guuu2 + 2guvuv+ gvvv
2

]

+

1

6

[

fuuuu3 + 3 fuuvu2v+ 3 fuvvuv2 + fvvvv3

guuuu3 + 3guuvu
2v+ 3guvvuv2 + gvvvv3

]

. (13)

The solution of model (3), at close to onset can be
expressed as

U =Us +
3

∑
j=1

U0[A j exp(ik j.r)+ Ā j exp(−ik j.r)], (14)

and

U0 =
3

∑
j=1

U0[A j exp(ik j .r)+ Ā j exp(−ik j.r)], (15)

where, Us represent the uniform equilibrium state and U0

is the characteristic-vector of linear operator. A j and Ā j

(conjugate of A j) represents the amplitude with modality
k j and −k j respectively. Using weakly nonlinear analysis
the spatiotemporal evolution of the amplitudes
A j ( j = 1,2,3) by the analysis of symmetries are given as

τ0

∂A1

∂ t
= µA1 + hĀ2Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

τ0

∂A2

∂ t
= µA2 + hĀ1Ā3 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A2,
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τ0
∂A3

∂ t
= µA3 + hĀ1Ā2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A3,

(16)
where, τ0 is the relaxation time and µ is the normalized
distance to onset. Now we will get the exact but intricate
expression of the coefficient τ0, h, g1, and g2. The model
(3) can be represented as

∂U

∂ t
= LU +N (17)

where L and N are linear and nonlinear operators,
respectively.

U =

[

u

v

]

, L =

[

a11 + d1∇2 a12

a21 a22 + d2∇2

]

,

and

N =

[

N1

N2

]

=
1

2

[

fuuu2 + 2 fuvuv+ fvvv2

guuu2 + 2guvuv+ gvvv
2

]

+

1

6

[

fuuuu3 + 3 fuuvu2v+ 3 fuvvuv2 + fvvvv3

guuuu3 + 3guuvu
2v+ 3guvvuv2 + gvvvv3

]

.

Near the Turing bifurcation value d2 = d2
T , we perturb d2

by U in the perturbation ε as follows:

d2 − d2
T = εd2

1 + ε2d2
2 +O(ε3), (18)

U =

[

u

v

]

= ε

[

u1

v1

]

+ ε2

[

u2

v2

]

+ ε3

[

u3

v3

]

+O(ε4). (19)

Substituting these expression into L we get

L = LT + ε

[

0 0

0 ∇2

]

d2
1 + ε2

[

0 0

0 ∇2

]

d2
2 +O(ε3), (20)

where

LT =

[

a11 + d1∇2 a12

a21 a22 + d2∇2

]

. (21)

Now we need to distribute the time scale for the system
where each time scale Ti can be considered as an
independent variable. By the derivative chain rule, the
derivative concerning time should transfer into the
following terms:

∂

∂ t
=

∂

∂T0

+ ε
∂

∂T1

+ ε2 ∂

∂T2

+O(ε3). (22)

As the variable amplitude A is varying very slowly,

therefore ∂
∂T0

= 0. Then the above equation reduces to :

∂

∂ t
= ε

∂

∂T1

+ ε2 ∂

∂T2

+O(ε3). (23)

According to different order of ε , expanding (23) as
follows
For the first order of ε:

LT

[

u1

v1

]

= 0. (24)

As LT represents the linear operator at the d2 = d2
T . Now,

we solve linear ε , we have

[

u1

v1

]

=

[

x

1

]

[W1 exp(ik1.r)+W2 exp(ik2.r)+W3 exp(ik3.r)]

(25)
where, the amplitude of exp(ik j.r) is Wj, |k j|= kT

∗ and its
structure is established by the perturbation rate of higher
order. For quadratic ε , we have

LT

[

u2

v2

]

=
∂

∂T1

[

u1

v1

]

−
[

0 0

0 d2
2

]

∇2

[

u1

u2

]

−

1

2

[

fuuu1
2 + 2 fuvu1v1 + fvvv1

2

guuu1
2 + 2guvu1v1 + gvvv1

2

]

=

[

Fu
j

Fv
j

]

. (26)

The vector capacity of the right-hand side of condition
(26) must be orthogonal with zero characteristic-vector of
operator LT

∗ to guarantee the presence of the non-zero
solution of this condition. The trivial characteristic-vector
of operator LT

∗ are

[

1
y

]

exp(−ik j.r)+ c.c., j = 1,2,3. (27)

The orthogonality condition is

[

1, y
]

[

Fu
j

Fv
j

]

= 0, (28)

where F
j

u and F
j

v are the coefficient to exp(ik j.r) term in
Fu and Fv. Taking exp(ik1.r), for example, we have

[

Fu
1

Fv
1

]

=

[

x

1

]

∂W1

∂T1

+

[

0

d2
1k2

]

W1 −
[

P

Q

]

W̄2W̄3, (29)

where

P = fuuu1
2 + 2 fuvu1v1 + fvvv1

2,
Q = guuu1

2 + 2guvu1v1 + gvvv1
2.

From the orthogonality condition, we can obtain the
following results :

(x+ y)
∂W1

∂T1

=−kT
2d1

2yW1 +(P+ yQ)W̄2W̄3,

(x+ y)
∂W2

∂T1
=−kT

2d1
2yW2 +(P+ yQ)W̄1W̄3,

(x+ y)
∂W3

∂T1

=−kT
2d1

2yW3 +(P+ yQ)W̄1W̄2.

Now solving condition (26), we have
[

u2

v2

]

=

[

U0

V0

]

+
3

∑
j=1

[

U j

V j

]

exp(ik j.r)+
3

∑
j=1

[

U j j

V j j

]

exp(i2k j.r)

+

[

U12

V12

]

exp[i(k1 −k2).r]+

[

U23

V23

]

exp[i(k2 −k3).r]

+

[

U31

V31

]

exp[i(k3 −k1).r]+c.c . (30)
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Solution about exp(0), exp(ik j .r), exp(i2k j.r), and
exp(i(k j − kk).r) of the above system of linear equations,
we have
[

U0

V0

]

=

[

u0

v0

]

(|W1|2 + |W2|2 + |W3|2), U j = fV j,

[

U j j

V j j

]

=

[

u11

v11

]

Wj
2,

[

U jk

V jk

]

=

[

u∗

v∗

]

WjW̄k,

where
[

u0

v0

]

=

[

a11 a12

a21 a22

]−1[−P

−Q

]

,

[

u11

v11

]

=−1

2

[

a11 − 4kT
2d1 a12

a21 a22 − 4kT
2d2

T

]−1 [−P

−Q

]

,

[

u∗

v∗

]

=−
[

a11 − 3kT
2d1 a12

a21 a22 − 3kT
2d2

T

]−1 [−P

−Q

]

.

For third order of ε , we have

LT

[

u3

v3

]

=

[

∂u2
∂T1

+ ∂u1
∂T2

∂v2
∂T1

+ ∂v1
∂T2

]

−
[

0 0

0 d2
2

]

∇2

[

u1

v1

]

−
[

0 0

0 d2
1

]

∇2

×
[

u2

v2

]

− 1

2

[

fuuu1u2 + 2 fuv(u1v2 + u2v1)+ 2 fvvv1v2

guuu1u2 + 2guv(u1v2 + u2v1)+ 2gvvv1v2

]

−

1

6

[

fuuuu1
3 + 3 fuuvu1

2v1 + 3 fuvvu1v1
2 + fvvvv1

3

guuuu1
3 + 3guuvu1

2v1 + 3guvvu1v1
2 + gvvvv1

3

]

=

[

Gu

Gv

]

.

By the Fredholm solvability condition, we have

(x+ y)
(∂V1

∂T1

+
∂W1

∂T2

)

=−kT
2y(d2

2W1 + d2
1V1)+

h1(W̄2V̄3 +W̄3V̄2)+ h̄2W̄2W̄3 − (G1|W1|2), (31)

where

R = fuuuu3 + 3 fuuvu2v + 3 fuvvuv2 + fvvvv3, S =
guuuu3 + 3guuvu

2v+ 3guvvuv2 + gvvvv3,

h1 = (P+ yQ)− 2xykT
2d2

T , h̄2 = 2xykT
2d2

1,

G1 = −(kT
2yd2

T (xv0 + u0 + xv11 + u11) + ( fuux+ f uv+
y(guux+ guv))(u0 + u11)+
( fuvx+ fvv + y(guvx+ gvv))(v0 − v11)+ (R+ yS),

G2 = −(kT
2yd2

T (xv0 + u0 + xv∗ + u∗) + ( fuux + f uv +
y(guux+ guv))(u0 + u∗)+
( fuvx+ fvv + y(guvx+ gvv))(v0 − v∗)+ (R+ yS).

The remaining equations can be acquired by the changing
of the subscript of W. A j can be expressed as (for
(j=1,2,3))

A j = εWj + ε2V j +O(ε3). (32)

We obtain the amplitude equations for Wi, with the help of
equation (32), as

τ0
∂A1

∂ t
= µA1 + hĀ2Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

(33)

where

τ0 = x+y

d4
T kT

2xy
, µ = d4−d4

T

d4
T , h = h1+µh2

d4
T kT

2xy
,

h2 =−2xykT
2d2

1,g1 =
G1

d4
T kT

2xy
, g2 =

G2

d4
T kT

2xy
.

Similarly, the remaining equations can be obtained as

τ0
∂A2

∂ t
= µA2 + hĀ1Ā3 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A2,

(34)

τ0
∂A3

∂ t
= µA3 + hĀ1Ā2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A3.

(35)

5.1 Amplitude stability analysis

Amplitudes in equations (33)–(35) can be broken into
segments to modality ν j = |A j| and respected phase angle
ϕ j. Now, putting ν j exp(iϕ j) = A j into (33)–(35) and
splitting the real and imaginary parts, we obtain
differential equations of real variable as

τ0
∂ψ

∂ t
= −h

ν1
2ν2

2 +ν2
2ν3

2 +ν3
2ν1

2

ν1ν2ν3

sinϕ , (36)

τ0

∂ν1

∂ t
= µν1 + hν2ν3 cosϕ − g1ν1

3 − g2(ν2
2 +ν3

2)ν1,

(37)

τ0
∂ν2

∂ t
= µν2 + hν3ν1 cosϕ − g1ν2

3 − g2(ν3
2 +ν1

2)ν2,

(38)

τ0
∂ν3

∂ t
= µν3 + hν1ν2 cosϕ − g1ν3

3 − g2(ν1
2 +ν2

2)ν2,

(39)

here, ϕ = ϕ1 +ϕ2 +ϕ3.
The above mathematical model holds five types of
solutions based upon the equilibrium of the system

1.The equilibrium point is given by

ν1 = ν2 = ν3 = 0,

is stable equilibrium if µ < µ2 = 0 and unstable
equilibrium if µ > µ2 = 0.

2.Strip spatial patterns given by

ν1 =

√

µ

g1

6= 0, ν2 = ν3 = 0

is stable if µ > µ3 =
h2g1

(g2−g1)2 and unstable if µ < µ3.

3.Spot spatial patterns given by

ν1 = ν2 = ν3 =
|h|±

√

h2 + 4(g1 + 2g2)µ

2(g1 + 2g2)
,

with ψ = 0 or π , and exist when,

µ > µ1 =
−h2

4(g1 + 2g2)
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the solution ν+ =
|h|+

√
h2+4(g1+2g2)µ

2(g1+2g2)
is stable if

µ < µ4 =
2g1 + g2

(g1 + 2g2)2
h2,

and ν− =
|h|−

√
h2+4(g1+2g2)µ

2(g1+2g2)
is unstable.

4.The spot-stipe are given by

ν1 =
|h|

g2 − g1

, ν2 = ν3 =

√

µ − g1ν1
2

g1 + g2

,

with g2 > g1. This exist when µ > µ3 and are always
unstable.

6 Results and numerical simulations

Here we employ numerical simulations to confirm the
theoretical consequences obtained in the previous
sections. This will likewise assist us with understanding
the impacts of self-diffusion on spatial pattern formation
by the model (3). The computer simulation has been
carried out with the parameters h1 = 0.01, N = 1.2,
σ = 10.0, and consider diffusion (d) and cooperation rate
coefficients as controlling parameters. The non-trivial
equilibrium states are (0, 0), (1.2, 0), (0.7638, 2.7763) and
(0.6875, 2.9362) using above parameter values.
Equilibrium state (0.6875, 2.9362) is stable and (0.7638,
2.7763) is unstable. Hence, ubiquitously our focus on the
spatial aspect of the system, we have contemplated about
the stable equilibrium point (0.6875, 2.9362). The time
evolution of prey and predator in the non-spatial zone is
shown in Figure 1. Observe that the dimensionless

parameter N = eλ
m

K, including of the death rate of
predators, carrying capacity, conversion efficiency and the
attack rate, which is described as the mean number of
descendant produced from a individual predator
throughout its life, when proposed within the population
of prey at carrying efficiency. If N = 1.2 and the
cooperation coefficient α ( = 0.1, 0.5) is small, then the
population of predator go to extinct as the population of
prey is too small to sustain them (see Figures 1(a,b)).
However, for large value of α ( = 0.6, 0.7, 0.8), the
predator survives due to hunting cooperation behavior in
predators (see Figures 1(a,b)). Figure 2 shows the
bifurcation diagram for prey and predator species density
with α as the bifurcation parameter. We start by differing
the pace of hunting cooperation α (see Figure 2). The
predator extinct steady state is stable for possible
numerics of the parameter α (red curves). For few
numeric values of α , a Hopf-bifurcation take place (α =
0.7671) that is the stable non-trivial steady state becomes
unstable so that stable limit cycle oscillations appears,
and notice that amplitudes rapidly grows with α .

We carry out entire computer simulations of the
system (3) over the positive introductory population
distribution and Neumann conditions, in 2-D spatial
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Fig. 1: Time evolution of (a) prey and (b) predator in the non-

spatial domain of the model for fixed parameters σ = 10.0,

N = 1.2, h1 = 0.01 and different parameter values of hunting

cooperation rate (α) which are mentioned in figures.

space. The simulation space size is 100 × 100 with
time-step = 0.001 (∆ t) and space-step = 0.5 (∆x = ∆y).
The parameters σ , N and h1 remain the same (σ = 10,
N = 1.2, h1 = 0.01) and α is used as the control
parameter (likewise non-spatial case).

We presently exhibit Turing instability
(diffusion-driven instability) and the corresponding
spatial patterns for model (3). Albeit, the Turing
instability’s conditions has been obtained theoretically in
prevenient section, whether these conditions are satisfied
with the parameter values, is yet to be examined. Now, we
draw the graph of Turing instability stipulation (12) for
different values of diffusion coefficients (d) (remaining
parameters are fixed, specifically, h1 = 0.01, α = 0.55,
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Fig. 2: Bifurcation graph against the hunting cooperation rate

(parameter of bifurcation), and the N, σ , h1 are set at h1=0.01,

σ=10, N=1.2, respectively. Figure 2(a) represents the density

of prey (y-axis) vs rate of hunting cooperation α (x-axis), and

Figure 2(b) shows the density of predator (y-axis) vs rate of

hunting cooperation α (x-axis). Red part of the graph is where

the equilibrium point is stable, Gray part of the graph, unstable.

Filled green circles shows stable periodic existence branch and

blue open circles are unstable, which starts with the Hopf-

bifurcation α=0.7671.

σ = 10.0, N = 1.2). Figure 3(a) represents the region for
the origination of pattern formation corresponding to
diffusive-driven instability stipulation versus the diffusion
coefficient (d). We note that the stipulation of the Turing
instability, i.e., equation (12) satisfies, when diffusion
coefficient is sufficiently small, ending on d = 0.039 (see
Figure 3(a)). The pattern dispersal graph for the model (3)
is represented in Figure 3(b), and the dispersal condition
is shown by Re(λ ) of the diffusive model. The sketch of

d=0.039

Turing Space
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d
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Re(�)

Fig. 3: (a) The region for the origination of pattern formation

corresponding to diffusive-driven instability; (b) Proliferation

relation for d=30.

Re(λ ) versus the wave-number (k) is represented in
Figure 3(b). Re(λ )> 0 satisfies, the wave-number (k) lies
in the span (k−,k+), i.e., (0.5635,2.0160). Moreover, we
receive the control parameter zone for diffusive-driven
instability via sufficient stipulation, which is represented
in Figure 4.

We have represented the mass dispersion of prey and
predator in Figure 5 which are three kinds of
spatiotemporal patterns namely spot, spot-stripe and
stripe. Figures 5(a) and 5(d) exhibit the 2-D spots stripe
patterns of the model (3) at time t = 2000 (2,000,000
iterations) and α = 0.55 with d = 0.023. Note that the
hexagonal diffusive-driven patterns persist over the
overall dwelling eventually (see Figures 5(a) and 5(d)). In
Figure 5(a), we can noticed that the minimal density of

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


14 T. Singh et al.: Diffusive patterns in predator–prey system

Controll��� ����m��ers

s��	�

0.5 1.0 1.5 2.0
ω

0.5

1.0

1.5

α

Fig. 4: Space for diffusive-driven instability corresponding to

Turing stipulation.

prey (blue-spot) are scattered on a red simulated domain
(maximum density of prey), i.e., the preys are dispersed
with low density. On the contrary, Figure 5(d) comprises
of red hexagonal patterns on a blue simulated space, viz,
the population of predators are segregated with high mass.
As the α is increased to 0.56, few hexagonal patterns
broken into stripes resulting in spots-stripe spatial in both
prey and predator population (see Figures 5(b) and 5(e)).
As α is increased to 0.57, the spatial behavior of the
system represents a decomposition of the spot and
origination in stripe spatial pattern only (Figures 5(c) and
5(f)). Therefore, by increasing the control parameter α , a
series spot → spot-stripe → stripe is noticed.

We exhibit the pattern formation of the density of prey
and predator concerning various diffusion coefficient
rates d (see Figure 6). Figure 6(a) and 6(d) demonstrate
the 2-D diffusive pattern formation of the system (3) at
time t = 2000 (2,000,000 iterations) with diffusion rate d

= 0.0175 for the prey and predator. Note that the stripe
diffusive-driven patterns prevail over the overall dwelling
eventually. In Figure 6(a), it is notice that minimum
density of prey (blue stripes) are spreads on a red
simulated zone (maximum density of prey). On the other
hand, Figure 6(d) consists of red stripes on a blue
background. As the diffusion rate d is increases to 0.02,
some stripes split into spots resulting in spots-stripes
patterns in both prey and predator population (Figures
6(b), 6(e)). When d is increases to 0.028, the dynamics of
the model exhibits a decay in the stripes and emergence in
spots pattern (see Figures 6(c), 6(f)). A sequence stripes
→ spot-stripes → spots is obtained, when we have
increased the value of d (rate of diffusion).
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Fig. 5: Spatial population distribution of the prey (left

column) and predator (right column) at time moment t = 2000

(2,000,000 iterations) for distinct cooperation rate (α) with

initial distribution. (a) & (d) α = 0.55; (b) & (e) α = 0.56; (c) &

(f) α = 0.57. Remaining numeric values are h1 = 0.01, N = 1.2,

σ = 10, d = 0.023.

7 Conclusions

In mathematical biology, a comprehensive framework for
the study of the spatial pattern formation, in systems of
interacting inhabitants, has eternally a focus of attraction,
as their knowledge aides to magnify the knowing of
predator–prey models. We have analyzed a
spatiotemporal predator–prey system with hunting
cooperation in predators and type-III functional response
under favorable initial population distribution and
Neumann boundary limitations. We have proposed an
extensive analysis for temporal and spatiotemporal
systems and considered feasible framework of pattern
formation in the spatiotemporal predator–prey system.
While investigating the spatial predator–prey system,
firstly, we obtained the condition for Turing bifurcation
and then recognized the respected space for
diffusive-driven spatial pattern formation. In our study,
we have used the coefficient of hunting cooperation in
predators and the coefficient of diffusion as the
controlling parameters. Utilizing the numerical values of
the parameters from the diffusive-driven space (Turing
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Fig. 6: Spatial population distribution of the prey (left column)

and predator (right column) at time moment t = 2000 (2,000,000

iterations) for distinct diffusion coefficient (d) with initial

distribution. (a) & (d) d = 0.0175; (b) & (e) d = 0.02; (c) &

(f) d = 0.028. Remaining numeric values are h1 = 0.01, N = 1.2,

σ = 10, α = 0.55.

space), we examine the qualitative characteristics of the
system by the series of numerical simulations.

Our numerical computation of the model has been
classified into two distinct areas, to be specific, the
non-spatial and the spatial spaces. We have emphasized
the impact of predators’s hunting cooperation alongside
the carrying capacity of the predators. After numerical
computation, we affirm that in the temporal space, for
specific N, the amplification in the hunting cooperation in
the predators, support them to persevere. For specific N,
the hunting cooperation in predators perform a critical job
in the co-existence of populations in spatial domain. By
changing the coefficient of cooperation, we obtain
different kinds of spatial patterns, in particular, spots,
stripes, and spots-stripes. We can see that there exist spot
kind spatial patterns for prey. It implies that the preys are
isolated by low density, and the rest part of the simulated
space is highly dense, implies that the preys have
separated in lowly dense clusters over the sizeable
simulated zone and are protected. Likewise, spatial spot
pattern formation in predators conveys that the predators

are separated and scattered yet still survive. Massive
African predators like Acinonyx jubatus, Panthera pardus,
and Panthera leo consistently originate ungulates, twofold
their mass with the chance of injury or demise to the
predator during prey catch but can easily be overcome by
cooperative hunting, that can increase hunting success
rate [33].

Strategies and results in the paper may intensify the
methodical investigation of spatial patterns development
in the predator–prey model, and may finely uphold in few
extraordinary research measurements. Further
investigation is essential to study the behavior of the
spatial patterns of other ecological models. It is worth
mentioning that the study of the movement of the
biological species in the diffusive predator–prey systems
under hunting cooperation is a significant concept. This
work highlights a number of research areas for future
consideration in spatial pattern formation.

Acknowledgement

Research of the first author was supported by the Graphic
Era Hill University Dehradun.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

References

[1] V. Ardizzone, P. Lewandowski, M.H. Luk, Y.C. Tse, N.H.
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