Some Properties of Commuting Graph of the Ring of All $m_{1} \oplus m_{2}$ Matrices

Manal Al-Labadi
Department of Mathematics, Faculty of Art and Sciences, University Of Petra, Amman, Jordan

Received: 2 Aug. 2020, Revised: 11 Sep. 2020, Accepted: 10 Oct. 2020
Published online: 1 Jan. 2021

Abstract

The commuting graph of a ring \mathbf{R}, denoted by $\Gamma(\mathbf{R})$, is a graph whose vertices are all non-central elements of \mathbf{R} and two distinct vertices u and v are adjacent if and only if $u v=v u$. In this paper let \mathbf{R} be the commutative ring with $1_{\mathbf{R}} \neq 0_{\mathbf{R}}$. In this paper we investigate, some basic properties of $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ we find the $g\left(\Gamma\left(\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right)=3\right.$ and we show that $\Gamma\left(\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right.$ is not Eulerian, and $\Gamma\left(\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right.$ is not planar.

Keywords: Commuting graph, direct sum matrices, planar graph

1 Introduction.

We assume that \mathbf{R} be a commutative ring with unity $1_{R} \neq 0_{\mathbf{R}}$.
The distance between two vertices in a graph G, say m_{1} and m_{2}, is the length of the shortest path between m_{1} and m_{2} in the graph if such a path exists and ∞ if there is no path. The distance between any two vertices is denoted by $d\left(m_{1}, m_{2}\right)$. For any graph G, the degree of a vertex m, denoted by $\operatorname{deg}(m)$, is the number of edges incident with the vertex m, with loops counted twice if exist. The diameter of a graph Γ is the maximum distance between any two vertices in the graph, which is denoted by $\operatorname{diam}(\Gamma)=\max \left\{d\left(m_{1}, m_{2}\right): m_{1}, m_{2} \in \Gamma\right\}$, the length of a shortest cycle in G is called the girth of G, it is denoted by $g(G)$, if the graph has no cycle then girth equal to ∞. We denote the set of all $n \times n$ matrices over \mathbf{R} by $M_{n \times n}(\mathbf{R})=M(n, \mathbf{R})$. Moreover, for any two matrices $X \in M(m \times n, \mathbf{R})$ and $Y \in M(r \times s, \mathbf{R})$, we define $X \oplus Y=\left(\begin{array}{cc}X & 0 \\ 0 & Y\end{array}\right) \in M((m+r) \times(n+s), \mathbf{R})$. We denote the set of all direct sum $X \oplus Y$ where $X \in M\left(n_{1}, \mathbf{R}\right)$ and $Y \in M\left(n_{2}, \mathbf{R}\right)$ by $M\left(n_{1} \oplus n_{2}, \mathbf{R}\right)$.
For a ring \mathbf{R}, we denote the center of \mathbf{R} by $\mathbf{Z}(\mathbf{R})$ and $\mathbf{Z}(\mathbf{R})=\{u \in \mathbf{R}: u v=v u, \forall v \in \mathbf{R}\}$. If u is an element of \mathbf{R}, then $C_{\mathbf{R}}(u)$ denotes the centraliser of u in \mathbf{R} and $C_{\mathbf{R}}(u)=\{v \in \mathbf{R}: u v=v u\}$.

The commuting graphs of groups have been studied
deeply, we give some examples in $[1,2,3,4,5]$, and examples of rings in $[6,7,8,9]$.

2 Girth for $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$.

Let \mathbf{R} be a commutative ring with unity $1_{\mathbf{R}} \neq 0_{\mathbf{R}}$. In this section we determine the girth of $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$.
Lemma 1. Suppose that $|\mathbf{R}| \geq 3$. Then $g\left(\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right)=3$.

Proof.Let $a \in \mathbf{R} \backslash\{0,1\}$. We have the cycle

 $g\left(\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right)=3$.

3 When is $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ Eulerian ?

In this section we determine when $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is Eulerian.
Definition 1. A graph Γ is called Eulerian if there exists a closed trail containing every edge of Γ.

The following well known result characterizes when a graph Γ is Eulerian in [10].

[^0]Proposition 1. A connected finite graph Γ is Eulerian if and only if the degree of each vertex of Γ is even.

Now, we will show that $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is not Eulerian.
Lemma 2. Let \mathbf{R} be a finite ring such that $|\mathbf{R}|$ is odd. Then for any $X \in \Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$, $\operatorname{deg}(X)$ is an odd, so $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ can not be Eulerian graph.

Proof.Let $X=X_{1} \oplus Y_{1} \in \Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$, then $\operatorname{deg}(X)=\left|C_{\mathbf{R}}(X)\right|-\left|Z\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right|-1,\left|C_{\mathbf{R}}(X)\right|$ and $\left|Z\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right|$ divide $|\mathbf{R}|$ which is odd and hence $\left|C_{\mathbf{R}}(X)\right|$ and $\left|Z\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right| \quad$ are odd. So, $\operatorname{deg}(X)=$ odd-odd-1=odd.
Lemma 3. Let \mathbf{R} be a finite ring such that $|\mathbf{R}|$ is even. Then $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ cannot be Eulerian graph.

Proof.Let $X=X_{1} \oplus Y_{1} \in \Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$, then $\operatorname{deg}(X)=\left|C_{\mathbf{R}}(X)\right|-\left|Z\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right|-1 . \quad$ Let $X_{1}=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & 0 & \vdots & 0 \\ 0 & 0 & \cdots & 0\end{array}\right), \quad Y_{1}=\left(\begin{array}{ccc}10 & 0 & \cdots \\ 0 & 0 & \cdots \\ \vdots & 0 & 0 \\ \vdots & \cdots & 0 \\ 0 & 0 & \cdots\end{array}\right)$.

Then
$C_{\mathbf{R}}(X) \quad\left\{\left(\begin{array}{cccc}a 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & \cdots & \vdots \\ 0 & * & \cdots & *\end{array}\right) \oplus\left(\begin{array}{cccc}b 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & \cdots & * \\ 0 & * & \cdots & *\end{array}\right)\right.$,
$\left.Z\left(M\left(m_{1}, \mathbf{R}\right)\right) \oplus\left(\begin{array}{cccc}b & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \cdots & * \\ 0 & \cdots & \cdots & *\end{array}\right),\left(\begin{array}{cccc}a & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \cdots & \vdots \\ 0 & * & \cdots & *\end{array}\right) \oplus Z\left(M\left(m_{2}, \mathbf{R}\right)\right)\right\}$
 $i=1$, 2. So $C_{\mathbf{R}}(X)=|\mathbf{R}|^{\left(m_{1}-1\right)\left(m_{1}-1\right)+\left(m_{2}-1\right)\left(m_{2}-1\right)+2}+$ $|\mathbf{R}|^{\left(m_{2}-1\right)\left(m_{2}-1\right)+2}+|\mathbf{R}|^{\left(m_{1}-1\right)\left(m_{1}-1\right)+2}$ which is an even. Then $\operatorname{deg}(X)=$ even - even $-1=$ odd .
Combining the results of Lemma 2 and Lemma 3 we get the following theorem.

Theorem 1. Let \mathbf{R} be a finite ring. Then the commuting graph $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is not Eulerian.

4 When is $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ Planar ?

Definition 2. A graph Γ is called planar if it can be drawn in a plane with crossing of the edges are only at the vertices of the graph.

We use the following results to show that $\Gamma(M(2 \oplus 2, \mathbf{R})$ is not Planar, when $|\mathbf{R}| \geq 4$. The following two lemmas were proved in [11] and [2] respectively.
Lemma 4. Let \mathbf{G} be a simple connected planar graph. Then G has at least one vertex of degree less than 6.
Lemma 5. Let \mathbf{R} be an integral domain with order greater than or equal 4. Then the graph $\Gamma(M(2 \oplus 2, \mathbf{R}))$ is a
disconnected graph.
Now, we will investigate when $\Gamma(M(2 \oplus 2, \mathbf{R}))$ is planar where $|\mathbf{R}| \geq 4$. Consider the following lemma.
Lemma 6. For any matrix
$X \in M(2 \oplus 2, \mathbf{R}) \backslash Z(M(2 \oplus 2, \mathbf{R}))$, the degree of X is the graph $\Gamma(M(2 \oplus 2, \mathbf{R}))$ is greater than or equal to 6 .

Proof.Let

$X=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \oplus Z_{1} \in M(2 \oplus 2, \mathbf{R}) \backslash Z(M(2 \oplus 2, \mathbf{R}))$. Suppose
$Y=\left(\begin{array}{ll}u_{1} & u_{2} \\ u_{3} & u_{4}\end{array}\right) \oplus Z_{2} \in M(2 \oplus 2, \mathbf{R}) \backslash Z(M(2 \oplus 2, \mathbf{R})$ is a matrix that commutes with X. We have several cases to consider.
-Case 1: Suppose b_{1} is a unit. Then
 $u_{4}=u_{1}+b_{1}^{-1}\left(d_{1}-a_{1}\right) u_{2}$. So, X is adjacent to every $\left.\begin{array}{ccccc}\text { matrix } & \text { of } & & \text { form } \\ u_{1} & \text { the } & & \text { un } \\ b_{1}^{-1} c_{1} u_{2} & u_{1}+b_{1}^{-1}\left(d_{1}-a_{1}\right) u_{2}\end{array}\right) \oplus \begin{array}{ll}\text { So, }\end{array}$ $\operatorname{deg}(X) \geq|\mathbf{R}|^{2}-|\mathbf{R}|-1 \geq 6$.
-Case 2: Suppose c_{1} is a unit. Then
$X Y=\left(\begin{array}{ll}a_{1} u_{1}+b u_{3} & a_{1} u_{2}+b_{1} u_{4} \\ c_{1} u_{1}+d u_{3} & c_{1} u_{2}+d_{1} u_{4}\end{array}\right) \oplus Z_{1} Z_{2}=$
$\left(\begin{array}{ll}a_{1} u_{1}+c_{1} u_{2} & b_{1} u_{1}+d_{1} u_{2} \\ a_{1} u_{3}+c_{1} u_{4} & b_{1} u_{3}+d_{1} u_{4}\end{array}\right) \oplus Z_{2} Z_{1}=Y X . \quad$ So, $b_{1} u_{3}=c_{1} u_{2}, \quad u_{2} \quad=\quad c_{1}^{-1} b_{1} u_{3}$, $u_{4}=u_{1}+c_{1}^{-1}\left(d_{1}-a_{1}\right) u_{3}$. So, X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{1} & c^{-1} b u_{3} \\ u_{3} & u_{1}+c^{-1}(d-a) u_{3}\end{array}\right) \oplus Z$. Then $\operatorname{deg}(X) \geq|\mathbf{R}|^{2}-|\mathbf{R}|-1 \geq 6$.
-Case 3: Suppose that neither c_{1} nor b_{1} is a unit. Then
-Subcase 3.1: If $b_{1}=c_{1}=0$, then $X=\left(\begin{array}{cc}a_{1} & 0 \\ 0 & d_{1}\end{array}\right) \oplus Z_{1}$. Consider $Y=\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{4}\end{array}\right) \oplus Z_{2}$, then $\quad X Y=\left(\begin{array}{cc}a_{1} u_{1} & 0 \\ 0 & d_{1} u_{4}\end{array}\right) \oplus Z_{1} Z_{2}=$ $\left(\begin{array}{cc}a_{1} u_{1} & 0 \\ 0 & d_{1} u_{4}\end{array}\right) \oplus Z_{2} Z_{1}=Y X$. Thus X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{4}\end{array}\right) \oplus Z$. Hence $\operatorname{deg}(X) \geq|\mathbf{R}|^{2}-|\mathbf{R}|-1 \geq 6$.
-Subcase 3.2: If the matrix X has the form $\left(\begin{array}{cc}a_{1} & 0 \\ c_{1} & d_{1}\end{array}\right) \oplus Z_{1}, c_{1} \neq 0, a_{1} \neq d_{1}$. Suppose that $Y=\left(\begin{array}{ll}u_{1} & u_{2} \\ u_{3} & u_{4}\end{array}\right) \oplus Z_{2} \in C_{M(2 \oplus 2, \mathbf{R})}(X)$. Then
$X Y=\left(\begin{array}{cc}a_{1} u_{1} & a_{1} u_{2} \\ c_{1} u_{1}+d u_{3} & c_{1} u_{2}+d u_{4}\end{array}\right) \oplus Z_{1} Z_{2}=$ $\left(\begin{array}{ll}a_{1} u_{1}+c u_{2} & d_{1} u_{2} \\ a_{1} u_{3}+c u_{4} & d_{1} u_{4}\end{array}\right) \oplus Z_{2} Z_{1}=Y X$. So, $c_{1} u_{2}=0$, $\left(a_{1}-d_{1}\right) u_{2}=0$ and $c_{1}\left(u_{1}-u_{4}\right)=\left(a_{1}-d_{1}\right) u_{3}$.

If $\left(a_{1}-d_{1}\right)$ is a unit, then we can take $u_{3}=\left(a_{1}-d_{1}\right)^{-1} c_{1}\left(u_{1}-u_{4}\right)$ and $u_{2}=0$. So, X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{1} & 0 \\ \left(a_{1}-d_{1}\right)^{-1} c_{1}\left(u_{1}-u_{4}\right) & u_{4}\end{array}\right) \oplus Z$. \quad Hence $\operatorname{deg}(X) \geq|\mathbf{R}|^{2}-|\mathbf{R}|-1 \geq 6$.
If $\left(a_{1}-d_{1}\right)$ is a zero divisor, then there exists nonzero element, say $\left(a_{1}-d_{1}\right)^{*}$, with $\left(a_{1}-d_{1}\right)\left(a_{1}-d_{1}\right)^{*}=0$. Also c_{1} is a zero divisor, so there exists nonzero element say $c_{1}{ }^{*}$ with $c_{1} c_{1}{ }^{*}=0$. One can easily check that X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{4}+k_{j} c_{1}{ }^{*} & 0 \\ n_{j}\left(a_{1}-d_{1}\right)^{*} & u_{4}\end{array}\right) \oplus Z$ where $k_{j}, n_{j} \in\{0,1\}$.
Hence $\operatorname{deg}(X) \geq 2.2 .|\mathbf{R}|-|\mathbf{R}|-1 \geq 6$.
-Subcase 3.3: If the matrix X has the form $X=\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right) \oplus Z_{1}, b_{1} \neq 0$, then one can check that X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{1} & u_{2} \\ 0 & u_{4}\end{array}\right) \oplus Z$, for all $u_{1}, u_{2} \in \mathbf{R}$. Hence $\operatorname{deg}(X) \geq|\mathbf{R}|^{2}-|\mathbf{R}|-1 \geq 6$.
-Subcase 3.4: If the matrix X has the form $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right) \oplus Z_{1}, \quad b_{1} \neq 0, a_{1} \neq d_{1}$. Suppose that $Y=\left(\begin{array}{ll}u_{1} & u_{2} \\ u_{3} & u_{4}\end{array}\right) \oplus Z_{2} \in C_{M(2 \oplus 2 \mathbf{R})}(X)$. Then
$X Y=\left(\begin{array}{cc}a_{1} u_{1}+b_{1} u_{3} & a_{1} u_{2}+b_{1} u_{4} \\ d_{1} u_{3} & d_{1} u_{4}\end{array}\right)$
$Z_{1} Z_{2}=\left(\begin{array}{ll}a_{1} u_{1} & b_{1} u_{1}+d_{1} u_{2} \\ a_{1} u_{3} & b_{1} u_{3}+d_{1} u_{4}\end{array}\right) \oplus Z_{2} Z_{1}=Y X$. So, $b_{1} u_{3}=0,\left(d_{1}-a_{1}\right) u_{2}=b_{1}\left(u_{4}-u_{1}\right)$.
If $\left(d_{1}-a_{1}\right)$ is a unit, then we can take $u_{2}=\left(d_{1}-a_{1}\right)^{-1} b_{1}\left(u_{4}-u_{1}\right)$ and $u_{3}=m_{j} b^{*}$. So, X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{1} & \left(d_{1}-a_{1}\right)^{-1} b_{1}\left(u_{4}-u_{1}\right) \\ 0 & u_{4}\end{array}\right) \oplus Z . \quad$ Then $\operatorname{deg}(X) \geq|\mathbf{R}|^{2}-|\mathbf{R}|-1 \geq 6$.
If $\left(d_{1}-a_{1}\right)$ is a zero divisor, then there exists nonzero element, say $\left(d_{1}-a_{1}\right)^{*}$, with $\left(d_{1}-a_{1}\right)\left(d_{1}-a_{1}\right)^{*}=0$. Also b_{1} is a zero divisor, so there exists nonzero element say b^{*} with $b_{1} b^{*}=0$. One can easily check that X is adjacent to every matrix of the form $\left(\begin{array}{cc}u_{1} & n_{j}\left(d_{1}-a_{1}\right)^{*} \\ 0 & u_{1}+k_{j} b^{*}\end{array}\right) \oplus Z, k_{j}, n_{j} \in\{0,1\}$. Then $\operatorname{deg}(X) \geq 2.2 .|\mathbf{R}|-|\mathbf{R}|-1 \geq 6$.
-Subcase 3.5: If the matrix X has the form $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \oplus Z_{1}$ where $b_{1}, c_{1} \neq 0, b_{1}, c_{1}$ are zero divisors. If $Y \in C_{M(2 \oplus 2, \mathbf{R})}(X)$, then
$X Y=\left(\begin{array}{ll}a_{1} u_{1}+b_{1} u_{3} & b_{1} u_{4}+a_{1} u_{2} \\ a_{1} u_{3}+c_{1} u_{1} & c_{1} u_{2}+a_{1} u_{4}\end{array}\right)$
$Z_{1} Z_{2}=\left(\begin{array}{ll}a_{1} u_{1}+c_{1} u_{2} & a_{1} u_{2}+b_{1} u_{1} \\ a_{1} u_{3}+c_{1} u_{4} & a_{1} u_{4}+b_{1} u_{3}\end{array}\right) \oplus Z_{2} Z_{1}$
$=Y X$. Since b_{1} and c_{1} are zero divisors there exists $b^{*}, c^{*} \neq 0$ with $b_{1} b^{*}=0$ and $c_{1} c^{*}=0$. So, the matrix X is adjacent to all matrices of the form $\left(\begin{array}{cc}u_{1} & m_{j} c^{*} \\ n_{j} b^{*} & u_{1}\end{array}\right) \oplus Z$ where $m_{j}, n_{j} \in\{0,1\}, u_{1} \in \mathbf{R}$. Thus $\operatorname{deg}(X) \geq 2.2 .|\mathbf{R}|-|\mathbf{R}|-1 \geq 6$.
-Subcase 3.6: If the matrix X has the form $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \oplus Z_{1}$ where b_{1}, c_{1} are nonzero zero divisors. Since b_{1} and c_{1} are nonzero zero divisors then there exists $b^{*}, c^{*} \neq 0$ such that $b_{1} b^{*}=0$, $c_{1} c^{*}=0$. So, the matrix X is adjacent to every matrix of the form $\left(\begin{array}{cc}a_{1}+c_{2} & b_{1} \\ c_{1} & d_{1}+c_{2}\end{array}\right) \oplus Z$ where $c_{2} \in \mathbf{R}$. Also X is adjacent to every matrix of the form $\left(\begin{array}{cc}b^{*} a+c_{2} & 0 \\ b^{*} c_{1} & b^{*} d+c_{2}\end{array}\right)$.
If $b^{*} c_{1} \neq 0$, then $\operatorname{deg}(X) \geq(|\mathbf{R}|-1)+|\mathbf{R}| \geq 6$.
If $b^{*} c_{1}=0$, then X is adjacent to all matrices of the form $\left(\begin{array}{cc}a+c_{2} & b \\ c_{1} & d+c_{2}\end{array}\right)$ and all matrices of the form $\left(\begin{array}{cc}m_{j} b^{*}+c_{3} & 0 \\ 0 & l_{j} b^{*}+c_{3}\end{array}\right)$ where $c_{2}, c_{3} \in \mathbf{R}$. So, $\operatorname{deg}(X) \geq(|\mathbf{R}|-1)+(2.2 .|\mathbf{R}|-|\mathbf{R}|) \geq 6$.

Now, we give the final result that shows that $\Gamma(M(2 \oplus 2, \mathbf{R}))$ is not Planar, when $|\mathbf{R}| \geq 4$.
Theorem 2. Suppose that \mathbf{R} is a finite ring with $|\mathbf{R}| \geq 4$. Then $\Gamma(M(2 \oplus 2, \mathbf{R}))$ is not Planar.

Proof.Using the previous lemma, every vertex of $\Gamma(M(2 \oplus$ $2, \mathbf{R})$) has degree greater than 6 . Hence by lemma 4 , is not Planar.

Theorem 3. Suppose that \mathbf{R} is a finite ring. Then $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is not Planar.

Proof.Let X be any matrix $X \in M\left(m_{1} \oplus m_{2}, \mathbf{R}\right) \backslash Z\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$. Then $X=A_{1} \oplus B_{1} \in M\left(m_{1} \oplus m_{2}, \mathbf{R}\right) \backslash Z\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is adjacent to every matrix of the form $\left\{A_{1}+c_{1} \oplus B_{1}+c_{2}, Z\left(M\left(m_{1}, \mathbf{R}\right)\right) \oplus B_{1}+c_{2}\right.$, $\left.A_{1}+c_{1} \oplus Z\left(M\left(m_{2}, \mathbf{R}\right)\right)\right\} \quad$ where $c_{1}, \quad c_{2} \in \mathbf{R}$. So, $\operatorname{deg}(X) \geq 3|\mathbf{R}|^{2}-|\mathbf{R}|^{2}-1 \geq 6$. Hence by lemma 4, $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is not Planar.

5 Perspective.

In this article, We give, some basic properties of $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right) \quad$ we find the $g\left(\Gamma\left(\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right)=3, \Gamma\left(\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right.\right.$ is not Eulerian, and $\Gamma\left(\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)\right.$ is not planar.

One can ask the following questions:
-(1) When the complement of commuting graph $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is Planar graph?
-(2) When the complement of commuting graph $\Gamma\left(M\left(m_{1} \oplus m_{2}, \mathbf{R}\right)\right)$ is Eulerian graph ?

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

[1] Richard Brauer and K. A. Fowler. On groups of even order, Annof Math, 62, 565-583 (1955).
[2] M. Giudici and Ch. Parker. There is no upper bound for the diameter of the commuting graph of a finite group, Journal of Combinatorial Theory Series A, 120, 1600-1603 (2013).
[3] A. Iranmanesh and A. Jafarzadeh. On the commuting graph associated with the symmetric and alternating groups, J Algebra Appl, 7, 129-146 (2008).
[4] Y. Segev. The commuting graph of minimal nonsolvable groups, Geom. Dedicata, 88, 55-66 (2001).
[5] Y. Segev and G.M Setiz. Anisotropic groups of type A_{n} and the commuting graph of finite simple groups, Pacific J. Math, 202, 125-225 (2002).
[6] S. Akabari, H. Bidkhori, and A. Mohammadian. Commuting Graphs of Matrix Algebras, Communications in Algebra, 11, 4020-4031 (2008).
[7] S. Akabari, M. Ghandehari, and A. Mohammadian. On Commuting Graphs of Semisimple Rings, Linear Algebra and its Applications, 390, 345-355 (2004).
[8] S. Akabari, H. Bidkhori, and A. Mohammadian. On the diameters of Commuting Graphs, Linear Algebra and its Applications, 418, 161-176 (2006).
[9] S. Akabari and P. Raja. Commuting graphs of some subsets in simple rings, Linear Algebra and its Applications, 416, 10381047 (2006).
[10] J. Gross and J. Yellen. Graph theory and its applications, Chapman \& Hall CRC Taylor \& Francis, (2006).
[11] F. Harary. Graph Theory. Addison-Wesly, (1972).

[^0]: * Corresponding author e-mail: manal.allabadi@uop.edu.jo

