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Abstract: The commuting graph of a ring R, denoted by I"(R), is a graph whose vertices are all non-central elements of R and two
distinct vertices u and v are adjacent if and only if uv = vu. In this paper let R be the commutative ring with 1g # Og. In this paper we
investigate, some basic properties of I'(M(m; ®my,R)) we find the g(I"((M(m; ®my,R))) = 3 and we show that I" (M (m; @& m,,R))

is not Eulerian, and I"((M(m; ©my,R)) is not planar.
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1 Introduction.

We assume that R be a commutative ring with unity
1R # OR.
The distance between two vertices in a graph G, say m;
and my, is the length of the shortest path between m; and
my in the graph if such a path exists and oo if there is no
path. The distance between any two vertices is denoted by
d(my,my). For any graph G, the degree of a vertex m,
denoted by deg(m), is the number of edges incident with
the vertex m, with loops counted twice if exist. The
diameter of a graph I' is the maximum distance between
any two vertices in the graph, which is denoted by
diam(I") = max{d(m|,my) : m;,my € I'}, the length of a
shortest cycle in G is called the girth of G, it is denoted
by g(G), if the graph has no cycle then girth equal to oo.
We denote the set of all n x n matrices over R by
M,xn(R) = M(n,R). Moreover, for any two matrices
X € M(m x n,R) and Y € M(r x s,R), we define
X0
oY
the set of all direct sum X @Y where X € M(n;,R) and
Y € M(np,R) by M(n; ©ny, R).
For a ring R, we denote the center of R by Z(R) and
Z(R) ={u e R:uv=vu, Vv € R}. If u is an element of
R, then Cr(u) denotes the centraliser of u in R and
Cr(u) ={veR:uv=vu}.

The commuting graphs of groups have been studied

XaYy = € M((m+r) x (n+s),R). We denote

deeply, we give some examples in [1,2,3,4,5], and
examples of rings in [6,7,8,9].

2 Girth for I'(M(m; ©my,R)).

Let R be a commutative ring with unity 1g # Or. In this
section we determine the girth of I"'(M (m; ® my,R)).

Lemmal. Suppose that |R| > 3.  Then
10---0 00---0 a0 0 00
(R ISR ) I D I
HE() 00---0 HE() 00---
00---0 00---0 00---0 00---

g (M(m; &my,R))) = 3.

0 000 0 0
Sl o[22 (::0]; a#0. Hence
0 00---0 0 00---0
0 00--0 0 0
g(F(M(ml EBMQ,R))) =3.

ProofLeta € R\ {0,1}. We have the cycle

coco o

00

3 Whenis I'(M(m; ®m»,R)) Eulerian ?

In this section we determine when I'(M(m; @& my,R)) is
Eulerian.
Definition 1. A graph I' is called Eulerian if there exists
a closed trail containing every edge of I".

The following well known result characterizes when a
graph I" is Eulerian in [10].
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Proposition 1. A connected finite graph I" is Eulerian if
and only if the degree of each vertex of I is even.

Now, we will show that I'(M(m; & my,R)) is not
Eulerian.
Lemma 2. Let R be a finite ring such that |R| is odd.
Then for any X € I'(M(m; @& my,R)), deg(X) is an odd,
so I'(M(m; ® my,R)) can not be Eulerian graph.

Prooflet X = X, @Y, € I'(M(m; & my,R)), then
deg(X) = [CR(X)|- |Z(M{m; &mo,R))| — 1, |G (X)] and
|Z(M(my & m,,R))| divide |R| which is odd and hence
|Cr(X)| and |Z(M(m; & mp,R))| are odd. So,
deg(X) =odd-odd-1=odd.

Lemma 3. Let R be a finite ring such that |[R| is even.
Then I" (M (m; & my,R)) cannot be Eulerian graph.

Prooflet X = X; @Y, € I'(M(m; & my,R)), then
deg(X) = |CR(X)|—|Z(M(m; & my,R)) 1. Let
10---

|
0 10---0
X, = I o= 000 Then
0 : 0 c0--- 0
000 00--0
a0---0 b0--- 0
0% 0%
Cr(X) = i el )
0 * * 0 * *
b0--- 0 a0---0
0% - % 0% - %
ZMm R (| ©Z(M(mg,R))}
0* * 0 * *
k oo Xk
where a, b € R and | : © | € M(m; —1,R) where
k oo X%k

i=1, 2. So Cr(X) = [R|(m=Dim=D+(m—1)(m—1)+2_
|R|(m2=Dlm=1)+2 R Im=1)(m=1+2 which is an even.
Then deg(X) = even — even — 1 = odd.

Combining the results of Lemma 2 and Lemma 3 we get
the following theorem.

Theorem 1. Let R be a finite ring. Then the
commuting graph I' (M (m; @ my,R)) is not Eulerian.

4 When is I'(M(m; & my,R)) Planar ?

Definition 2. A graph I is called planar if it can be drawn
in a plane with crossing of the edges are only at the
vertices of the graph.

We use the following results to show that
I’'(M(2®2,R) is not Planar, when |R| > 4. The following
two lemmas were proved in [11] and [2] respectively.
Lemma 4. Let G be a simple connected planar graph.
Then G has at least one vertex of degree less than 6.
Lemma 5. Let R be an integral domain with order greater
than or equal 4. Then the graph I'(M(2® 2,R)) is a

disconnected graph.

Now, we will investigate when I'(M(2 @ 2,R)) is
planar where |R| > 4. Consider the following lemma.
Lemma 6. For any matrix
XeM2®2,R)\Z(M(2®2,R)), the degree of X is the
graph I'(M(2®2,R)) is greater than or equal to 6.

Proof.Let
x = (&0) 0z < M2 2R\ Z0M2 0 2.R)
Suppose
Y= (Z; Zi) ©Z eM252,R)\Z(M252,R) is a

matrix that commutes with X. We have several cases to
consider.

—Case 1: Suppose b is a unit. Then
B auy +bius ajuy+buy _
Xy = (Clu] +dius ciup +diug ® ZiZp=

(alul +ciuy biuy +diuy

ayuz +ciuy b1u3+d1u4> & ZZy = YX. So,

bus = cruz, u3 = by~ eyus,

Uy = uy —|—b1’1(d1 —ay)uy. So, X is adjacent to every

matrix of the form

ui u

_ _ Z. So,

by ety ui+by N (di —ay)us ©
deg(X) > |R]>—|R|—1>6.

—Case 2: Suppose ¢ is a unit. Then
auy +bus ajuy+buy B
XY <c1u1+du3 ciuy+diug S Zip=

ajuz +ciug biuz+diug
byuz = cluy, u = c1 byus,
ug = uy +c1~'(d; — ay)us. So, X is adjacent to every
uj ¢ Yhus
us U +c](da)u3) ©z
Then deg(X) > |[R|>— |R|— 1> 6.
—Case 3: Suppose that neither ¢ nor by is a unit. Then

(‘””1“1”2 b1”1+d1”2> @ 7,7, = YX. So,

matrix of the form (

—Subcase 3.1: If by = ¢ = 0, then
X = (a] v > @®Z,.Consider Y = (%‘ 0 > &7,
Uy

0 d;
th Xy = aiu; 0 © Z1Z=
" N 0 d|u4 1£2=
aiu; 0 B . .
( 0 d|u4) ®Z»Zy =YX. Thus X is adjacent to

every matrix of the form (b(l)l 54) ® Z. Hence

deg(X) > |R]>—|R|—1>6.

—Subcase 3.2: If the matrix X has the form

Lclll 6(1)l> ©Z, c1 #0, a; # d;. Suppose that
uy up
v = u3 Uy ® Zy € Cypear)(X). Then
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_ aug apup
XY = <c1u1+du3 cruy +duy

ajuy +cuy diun
aus +cuy  diug
(a1 —dl)uz =0and C1 (Ltl — M4) = (Cll —dl)u3.

) o az

®ZyZ, =YX. So, ciup =0,

If (aj —dy) is a unit, then we can take
usz = (a1 — dl)ilcl(ul — Lt4) and up = 0. So, X is
adjacent to every matrix of the form

ui 0
<(al —d])*lcl(ul — ) u4) o Z Hence
deg(X) > |R]>—|R|—1>6.
If (a; —d;) is a zero divisor, then there exists
nonzero element, say (a; — d;)*, with
(ay —dy)(ay —dy)* =0. Also ¢ is a zero divisor,
so there exists nonzero element say c;* with
c1c1* = 0. One can easily check that X is adjacent
to every matrix of the form
(nil‘(‘;kfflll)* LZ) ® Z where kj, n; € {0,1}.
Hence deg(X) > 2.2.|R|— |[R|—1>6.

—Subcase 3.3: If the matrix X has the form

X — %1 Z:) @ Z,, by # 0, then one can check

that X is adjacent to every matrix of the form

(lg u2> & Z, for all wu;, up, € R. Hence
U4

deg(X) > |R|> —[R| —1>6.

—Subcase 3.4: If the matrix X has the form

%l Zi) ©Z1, by #0, a1 # dy. Suppose that
)
Y = <u3 M4) D ZZ S CM(Z@ZR) (X) Then
— ajuy +biuz  ajus +byuy
xr B < diug diuy > ®
_ (@ biuy+dus B
VAVZ) _(a]u3 b1u3+d]u4) ® 27 =YX. So,

biuz =0, (d1 - a1)142 = bl(u4 — ul).

If (dy —aj) is a unit, then we can take

Uy = (dl —al)ilbl(l/m —Ml) and u3 = mjb*. So, X

is adjacent to every matrix of the form
“ (dl_al)]bl(u4_ul)) o Z Then
0 uq

deg(X) > |R]>—|R|—1>6.

If (d; —ay) is a zero divisor, then there exists

nonzero element, say (di — ap)®, with

(dy —ar1)(dy —ay)* =0. Also by is a zero divisor,

so there exists nonzero element say b* with

b1b* = 0. One can easily check that X is adjacent

to every matrix of the form
uy nj(di —ar)* o
(0 uy + k;b* ®Z, kj, nj € {0,1}. Then

deg(X)>2.2.|R|—|[R|—1>6.

—Subcase 3.5: If the matrix X has the form

ar b
c: di & Z, where by, ¢1 # 0, by, ¢ are zero
divisors. If Y € CM(Z@Q,R) (X), then

XY _ auy +biuz biug+ayuy @
ayuz +ciuy ciup +ajug

ajuy +ciuy ayus +byug
212> _<a1u3—|—c1u4 a1u4+b1u3> © nz
= YX. Since b; and ¢ are zero divisors there
exists b*, ¢* # 0 with b1b* = 0 and c¢;¢* = 0. So,
the matrix X is adjacent to all matrices of the form

up mjc*

njb* ui

Thus deg(X) >2.2.|R|—|R| =1 >6.

&Z where mj, nj € {0,1}, u; € R.

—Subcase 3.6: If the matrix X has the form
ay by

cy di
divisors. Since by and c; are nonzero zero divisors
then there exists b*, ¢* # 0 such that b1b* = 0,
c1c® = 0. So, the matrix X is adjacent to every

artey b )@there

& Z; where by, ¢; are nonzero zero

C1 di+co
¢y € R. Also X is adjacent to every matrix of the
b*a+cy 0

b*c; b*d+cy |
If b*c; #0, then deg(X) > (|[R|— 1)+ |R| > 6.
If b*c; = 0, then X is adjacent to all matrices of

matrix of the form <

form

the form (a te b ) and all matrices of the
ci d+o
mib* 4 c3 0

form 0 16"+ e where ¢;, ¢3 € R.

So, deg(X) > (IR| — 1)+ (22.[R| — |R) > 6.
Now, we give the final result that shows that
I'(M(2®2,R)) is not Planar, when |R| > 4.

Theorem 2. Suppose that R is a finite ring with [R| > 4.
Then I"'(M(2 @ 2,R)) is not Planar.

Proof.Using the previous lemma, every vertex of I'(M(2®
2,R)) has degree greater than 6. Hence by lemma 4, is not
Planar.

Theorem 3. Suppose that R is a finite ring. Then
I'(M(m; & my,R)) is not Planar.

Proof.Let X be any matrix
X € Mm & my,R) \ Z(M(m; & my,R)). Then
X =A®By € M(m; @ m,R)\ Z(M(m; ® mp,R)) is
adjacent to  every matrix of the form
{Ar + a1« ® Bi + 2,Z(M(m,R)) © By + o2,
Ay + ¢1 @ Z(M(mp,R))} where ¢;, ¢ € R. So,
deg(X) > 3|R]> — |[R|> =1 > 6. Hence by lemma 4,
I'(M(m; ®my,R)) is not Planar.
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5 Perspective.

In this article, We give, some basic properties of
'Mm & m,R)) we find the
g(C'((M(m; ®my,R))) =3, I'(M(m; &my,R)) is not
Eulerian, and I"((M(m; ® m,,R)) is not planar.

One can ask the following questions:

—(1) When the complement of commuting graph
I'(M(m; @ my,R)) is Planar graph?

—(2) When the complement of commuting graph
I'(M(m; @ my,R)) is Eulerian graph ?
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