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Abstract: In the presented work, with the help of using Adomian decomposition nethod (ADM), two particular situations connected

to the equilibria’s stability of the nonlinear fractional-order Lorenz system (FoLS) are examined and confirmed numerically. Such

situations can be extremely valuable for discerning between several other situations that might be employed to explore the stability of

Lorenz system. In this study, all numerical simulations are carried out by using MATLAB software package.
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1 Introduction

More than three hundred years back, fractional calculus came out as a generalisation of the traditional calculus. It lured
considerable research activities due to nearly all systems are good addressed by fractional-order dynamics [1,2,3,4,5].
Numerous systems in multidisciplinary scopes can be precisely outlined through implementing fractional-order
derivatives. Several systems are determined to study the impact of the fractional-order values on the system’s dynamics,
and within this area of research some fractional-order systems were explored to exhibit their chaotic modes [6,7,8,9].

Grigorenko et al. [10] are the first mathematicians who analyzed the fractional-order Lorenz System (FoLS). Lately,
the dynamics of such system were analyzed by Jia et al., and then applied to analog circuit through utilizing the frequency
domain approach [11]. In order to solve the fractional-order chaotic systems, another method can be also performed
namely the Adams-Bashforth-Moulton algorithm. It could be furthermore employed to analyze their dynamics [12]. In
the same regard, the Adomian decomposition method (ADM) [13] can be typically implemented to gain a high-accuracy
numerical solution of a well-defined fractional-order chaotic system with fast speed of convergence [14]. In reference
[15], the ADM was proposed for handling such system and the outcomes of the this scheme were paralleled with the
outcomes of the fractional Adams method. When Shaobo et al. [16] compared the results of the ADM with the results
of the Adams-Bashforth-Moulton algorithm in solving the FoLS, they concluded that the ADM implies more precise
outcomes and demands less calculating than the other method. Such method is even more precise than Runge-Kutta
method when the traditional Lorenz system is addressed [2]. In reference [17], Shaobo et al. returned again to present
a study on the implementation of digital circuit associated with the fractional-order Lorenz system by employing ADM.
In the conclusion of their work, they showed that this system has a highly complex behavior and it is a feasible model
suited for several implementations. Before one year of that work, Huihai et al. [18] solved the simplified Lorenz system
of fractional-order, and applied it on the processor of digital signal by adopting the ADM. They proved that the phase
portraits produced on this processor are paralleled with the findings that were yielded by certain numerical simulations.

Several criteria have been proposed for fractional-order systems, including the Matignon stability theorem [19,20].
The goal of this theorem is to verify the stability of the considered systems by assessing the locations of their eigenvalues
generated from their the dynamic matrices in the complex plane. Besides, the LMI scheme [19,21] and the Lyapunov
approach [19,22] can also be employed to study the stability of fractional-order linear-time invariant systems. At a future
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date, many efforts and endeavors were dedicated to reveal more properties of fractional-order chaotic systems [23]. The
obtained results of these studies are, indeed, difficult to be verified without numerical simulations[24,25].

The Lorenz system is a reduction of another more complex system backs to Saltzman. This complicated system is used
commonly to describe the buoyancy driven convection patterns in the conventional rectangular Rayleigh Bénard dilemma
implemented on thermal convection between two plates perpendicular to the direction of the Earth’s gravitational force
[26]. The traditional Lorenz system might generate chaotic and non-chaotic modes in accordance to different values of its
parameters. This system has the form [27]:

d

dt
x(t) = σ(y(t)− x(t)),

d

dt
y(t) = Rx(t)− x(t)z(t)− y(t),

d

dt
z(t) = x(t)z(t)− bz(t).

(1a)

with the following initial conditions:

x(0) = v1,y(0) = v2,z(0) = v3, (1b)

where x(t), y(t), z(t) are the states of the system, and σ , b, R are the parameters of the system in which they are positive
real constants [28]. The FoLS was introduced and takes the following form [28]:

Dα x(t) = σ(y(t)− x(t)),

Dα y(t) = Rx(t)− x(t)z(t)− y(t),

Dα z(t) = x(t)z(t)− bz(t).

(2a)

with the following initial conditions:

x(0) = v1,y(0) = v2,z(0) = v3 (2b)

where Dα is the Caputo fractional-order operator of order 0 < α ≤ 1 [5].
System (2) outlines a FoLS, which has hereditary and memory impact on several processes and materials [29]. It has

been implemented on numerous areas in engineering and science, like communication, control theory, acoustics, biology,
chemistry, fluid mechanics, anomalous diffusion, viscoelasticity, and others [30]. The major aim of this work is to propose
some new results connected with the equilibria’s stability of the nonlinear FoLS by employing the ADM. However, for a
complete overview about such method, refer to the references [13,31,32]. Anyhow, the remaining of this research work
is arranged in the following manner as follows. In Section 2, some preliminaries and necessary definitions are recalled,
while Section 3 discusses two particular cases associated with the system’s stability together with some simulation results,
followed by the conclusion of this work.

2 Preliminaries

Fractional calculus is a generalization of differentiation and integration of the classical operator. Its operator is of the
form Dα

a , where a and t are the lower and upper bounds of the operation, respectively. There are various definitions for
the fractional-order derivatives and integrals; the primary ones are the definitions proposed by Riemann-Liouville and
Caputo. Next, we state some major facts connected with fractional calculus together with some concepts related to the
matrix analysis.

Definition 1. Let f (t) be an integrable piecewise continuous function on any finite subinterval of (0,+∞), then the

fractional integral of f (t) of order α is defined as convolution [5,33]:

Jα f (t) =
tα−1

Γ (α)
∗ f (t) =

1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ, t > 0, α > 0, (3)

where ∗ denotes the convolution product in which

( f ∗ g)(t) =

∫ t

0
f (t − τ)g(τ)dτ (4)
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Based on (3), one can deduce the following useful equality:

Jα tµ =
Γ (µ + 1)

Γ (µ +α + 1)
tµ+α , t > 0, α > 0, µ >−1. (5)

Definition 2. The Caputo fractional-order derivative is defined as [5,33]:

Dα f (t) =
1

Γ (M −α)

∫ t

0

f M(τ)

(t − τ)α+1−M
dτ, f M(τ) =

dM f (τ)

dτM
, (6)

where Γ (·) is the Gamma function and M− 1 ≤ α < M, M ∈ N.

Theorem 1. (Sylvester criterion) Let H be an n× n symmetric matrix. Then, H is negative definite if and only if its n

leading principal minors alternate in sign as follows [34]:

|H1|< 0, |H2|> 0, |H3|< 0, ... (7)

Theorem 2. (Schur complement) Given a symmetric matrix H =

(

M N

NT L

)

, with L negative definite. The matrix H is

negative definite if and only if the Schur complement M−NL−1NT is thus [35].

3 Stability analysis and simulation results

Only through numerical simulations, some researchers investigated the stability analysis and the chaotic behaviours of
the FoLS [6,10,23,36,37]. In this section, two particular cases associated with the stability of the FoLS will be discussed
and verified by some numerical simulations implemented using ADM. In order to proceed with this subject; let us, firstly,
begin with the so-called nonlinear autonomous fractional-order differential equations which is outlined as [23]:

Dα
x(t) = F(x(t)) (8a)

subject to the initial conditions:

x(0) = [v1,v2, ...,vn]
T , (8b)

where

F(x(t)) =









f1(x1(t),x2(t), ...,xn(t))
f2(x1(t),x2(t), ...,xn(t))

...
fn(x1(t),x2(t), ...,xn(t))









, (8c)

and where x(t) = [x1,x2, ...,xn]
T , α = [α1,α2, ...,αn] and 0 < αi ≤ 1; i = 1,2, ...,n. We find the following two theorems

about the stability analysis of the fractional-order differential equations very useful to derived some of the primary
outcomes of this work.

Theorem 3. Let x̂= [x̂1, x̂2, ..., x̂n]
T be the equilibrium of system (8), i.e. Dα

x̂=F(x̂) = 0, and H = ∂F

∂x
|x=x̂ be the Jacobian

matrix at the point x̂, if |arg(eig(H))|> αmπ
2

, then the point x̂ is asymptotically stable, where αm = max{αi};1 ≤ i ≤ n,

(i.e when all eigenvalues of H are negative) [23].

Theorem 4. System (8) is asymptotically stable if and only if the Jacobian matrix H = ∂F

∂x
|x=x̂ has k-multiple zero

eigenvalues corresponding to the Jordan block diag(J1,J2, ...,Ji), where Jl is a Jordan canonical form with order

nl ,∑
i
l=1 ni = k, and nlα < 1,1 ≤ l ≤ i [38].

Based on the previous two theorems, the following new propositions for system (2) can be deduced easily through
considering that the three parameters (σ , R and b) of such system can be taken to be positive due to their physical origins

[39]. Anyhow, such system has three equilibria stated in reference [23] as: O(0,0,0), q+(
√

b(R− 1),
√

b(R− 1),R− 1)

and q−(−
√

b(R− 1),−
√

b(R− 1),R− 1).
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Proposition 1. Regarding to system (2); the equilibrium origin O is asymptotically stable if σ =R< 1, and this assumption

can be hold if the Jacobian matrix, Ho, is symmetric-negative definite.

Proof. At the equilibrium origin O, system (2) has the Jacobian matrix [23]:

Ho =





−σ σ 0
R −1 0
0 0 −b



 (9)

Now, Ho will be symmetric if and only if σ = R, and then:

Ho =





−R R 0
R −1 0
0 0 −b



 (10)

Note that the leading principal minors of Ho alternate in sign if and only if R < 1. That is;

|Ho(1)|=−R < 0, |Ho(2)|= R(1−R)> 0, |Ho(3)|= Rb(R− 1)< 0 iff R < 1 (11)

Thus, by Sylvester Criterion Theorem (1), Ho is negative definite which yields that all eigenvalues of Ho will be negative.
Consequently, |arg(eig(Ho))|>

αmπ
2

, where αm = max{αi};1 ≤ i ≤ n, and so the equilibrium O is asymptotically stable.

Remark. Observe that proposition (1) can be proved also by using Schur Complement Theorem given in (2). To see this;
we should note that Ho in (10) can be partitioned as:

Ho =

[

M N

NT L

]

(12)

where M =

(

−R R

R −1

)

and N =

(

0
0

)

, with L =
(

−b
)

is, clearly, negative definite. Now, Ho is negative definite if and

only if the Schur complement M−NL−1NT = M is so. But, M is negative definite if and only if R(1−R)< 0, (i.e R < 1).

With the aim of showing the efficiency of the above result, the following numerical simulation for the FoLS (2) has
been performed. Of course, the ADM has been employed to solve this system. By taking σ = R = 0.4,b = 8/3 and
α = 0.7, and by setting x(0) = [−15.8 −17.48 35.64]T ; one can observe, from Figure 1, that all states of system (2) are
asymptotically decreasing towards zero.

Proposition 2. Regarding to system (2); the equilibria q+ and q− are asymptotically stable if σ = R = 1 and b 6= 2.

Proof. At the equilibria q+ and q−, the Jacobian matrices of system (2) are, respectively [23]:

Hq+ =





−σ σ 0

1 −1 −
√

b(R− 1)
√

b(R− 1)
√

b(R− 1) −b



 (13)

and

Hq− =





−σ σ 0

1 −1
√

b(R− 1)

−
√

b(R− 1) −
√

b(R− 1) −b



 . (14)

Now, Hq+ and Hq− will be symmetric if and only if σ = R = 1, and then:

Hq+ = Hq− =





−1 1 0
1 −1 0
0 0 −b



= Hq. (15)

Consequently, the eigenvalues of Hq are: λ1 = 0, λ2 = −2 and λ3 = −b, (i.e., Hq has one zero eigenvalue). Since all
eigenvalues of Hq are distinct; then Hq is similar to the following Jordan canonical form:

J = diag(J1) =





0 0 0
0 −2 0
0 0 −b



 . (16)

As b 6= 2; then Hq has one zero eigenvalue corresponding to one Jordan block J = diag(J1). Thus; q+ and q− are
asymptotically stable by Theorem (4), and this complete the proof.
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The states of fractional−order Lorenz system when σ = R < 1

Fig. 1: The states of FoLS when σ = R < 1.
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The states of fractional−order Lorenz system when σ = R = 1 and b=2

Fig. 2: The states of the FoLS when σ = R = 1 and b = 2.

For the purpose of confirming the effectiveness of the latest generated result, two numerical simulations for system
(2) have been shown using ADM. These two simulations consider the following two cases:

• When σ = R = 1 and b = 2. This case has been shown in Figure 2, which demonstrates that these states are still
unstable in the case of α = 0.7 and x(0) = [−15.8 − 17.48 35.64]T .
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The states of fractional−order Lorenz system when σ = R = 1 and b = 8/3

Fig. 3: The states of the FoLS when σ = R = 1 and b = 8/3.

• When σ = R = 1 and b 6= 2. This case has been shown in Figure 3, which demonstrates that the states of system
(2) (x(t); y(t) and z(t)) are all asymptotically decreasing towards zero in the case of b = 8/3, α = 0.7 and x(0) =
[−15.8 − 17.48 35.64]T .

4 Conclusion

In this work, two particular results associated with the equilibria’s stability of the nonlinear fractional-order Lorenz
system have been examined and confirmed graphically using the Adomain decomposition method. These results are
deemed really helpful for discerning between various cases that can be used to explore the stability of Lorenz system of
fractional-order.
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