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Abstract: Recently, split-step techniques have been integrated with a Milstein scheme to improve the fundamental analysis of

numerical solutions of stochastic differential equations (SDEs). Unfortunately, we note that stability conditions of these methods have

restrictions on parameters and step-size to preserve mean-square stability and A-stability of SDEs. We construct new general modified

spit-step theta Milstein (MSSTM) methods for using on multi-dimensional SDEs in order to overcome these restrictions. We investigate

that the numerical methods are mean-square (MS) stable with no restrictions on parameters for all step-size h > 0 when θ ∈ [1/2,1]
and it is proved that the methods with θ ≥ 1/2 are stochastically A-stable. Furthermore, there is a gap in discussing the split-step

Milstein type methods for SDEs with Jump in the literature. Here, we extend the new general methods for SDEs with jump called

compensated MSSTM (CMSSTM) methods. The unconditional MS-stability results of CMSSTM methods are proved for SDEs with

Poisson-driven jump. Finally, several examples are given to show the effectiveness of the proposed method in approximation of one

and two dimensional SDEs compared to some existing methods.

Keywords: Stochastic differential equations, Poisson-driven jump, Spit-step theta Milstein, Convergence, Stability, M-Dimensional

1 Introduction

The m-dimensional Itô stochastic differential equations
(SDEs) are considered of the form [18]

dZ(t) = f (t,Z(t))dt +
m

∑
j=1

g j(t,Z(t))dWj(t),

Z(t0) = Z0,

(1)

where f (t,Z(t)) is the drift coefficient, g j(t,Z(t)) are
the diffusion coefficients and t ∈ [t0,T ]. The process Wj =
{Wj(t) : t ≥ 0}, j = 1, ...,m represents independent Wiener
processes on a filtered probability space (Ω ,F ,P) with a
filtration {Ft}t≥0 under the usual conditions.

The SDEs are widely used to simulate many
phenomena in biology, financial engineering, neural
network and wireless communications [4, 6, 23, 30, 37].
Since it’s not easy to find the analytical solutions to SDEs,
the interest in numerical solutions has been increased.

The well-known Euler-Maruyama (EM) method for
SDEs (1) was presented with convergence order 0.5. In
order to improve the properties of numerical methods
based on EM scheme, the split-step technique has been
provided by Higham et al. [13]. They derived the
split-step backward Euler (SSBE) method for (1) with a
single noise channel (m = 1). Based on Higham’s work,
many split-step methods were provided, for example the
split-step theta (SST) methods which generalize the
SSBE method when θ = 1 [17]. Although some
numerical methods based on the Euler-scheme are general
mean-square stable (MS-stable) and A-stable, these
methods converge with order 0.5. To improve the
convergence properties of numerical methods, the
Milstein scheme was presented with strong convergence
order 1.0, by the additional term of the Itô-Taylor
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expansion, as follows

yn+1 = yn + h f (tn,yn)+
m

∑
j=1

g j(tn,yn)∆Wj(tn)

+
1

2

m

∑
j=1

L jg j(tn,yn)
[

(∆Wj(tn))
2 − h

]

+
m

∑
i, j=1,i6= j

Lig j(tn,yn)I
(tn,tn+1)
(i, j)

,

(2)

where

I
(s,t)
(i, j)

=

∫ t

s

∫ u

s
dWi(v)dWj(u) and L j =

d

∑
k=1

g
j
k

∂

∂yk

,

The fundamental properties contain convergence of
numerical methods based on a Milstein scheme for SDEs
(1) with single and multi noise were discussed
(See, [5, 7–9, 24, 27, 30–35, 38]). Stability properties are
one of the important tools measure the numerical methods
quality. To get insight into stability behavior of the
numerical methods for SDEs (1), the scalar equation with
a single noise channel (m = 1) has been used to compare
the stability region of the proposed method with that of
existing numerical methods

dZ(t) = aZ(t)dt + bZ(t)dW(t), t > 0,

Z(t0) = Z0,
(3)

where a,b ∈ R. Saito et al. [25] proposed the MS-stability
concept of numerical methods for SDEs (3). Though
Euler-type methods always possess bigger stability
regions than their Milstein type counterparts [1], the
Milstein scheme has been interest because of higher
convergence order. While considering fully implicit
methods for SDEs, the problem appears in the implicit
stochastic terms as the unboundedness of the diffusion
term, leads to instability. To overcome the drawback of
the fully implicit methods, the idea to combine
semi-implicit method with implicit ones was presented
in [2]. Based on this technique, Higham [12] discussed
the benefits of semi-implicit Milstein scheme with θ > 1
in terms of the stability for (3). In addition, Omar et
al. [22] provided the composite Milstein methods for
SDEs. Recently, the split-step technique has presented by
Higham [13], who can be considered a pioneer of driving
split-step numerical methods for SDEs. With respect to
using split-step techniques, split-step Milstein type
methods can be classified in two families: the split-step
Milstein methods, and modified split-step Milstein
methods. According to this classification the split-step
Milstein type methods have been discussed (for
example, [27, 31–34]). In addition, based on Split-Step
Theta (SST) methods which have advantages in flexibility
and stability [17], Zong et al. [38] introduced the
split-step theta-Milstein (SSTM) methods. The
MS-stability of SSTM methods with θ ∈ [0,1] was

discussed. In our previous work [7], we derived the
stability functions of the drifting split-step theta Mistien
(DSSTM) method, then proved that the methods with
θ ≥ 3

2
are stochastically A-stable. On the other side, the

modified split-step Milstein type methods were
introduced based on collecting all deterministic terms in
the first splitting step of the method using the fact that
I( j, j) = 1

2
[(∆Wn)

2 − h] in (2). The modified split-step
Milstein type methods have been presented for SDEs
(See, [24, 32, 34, 35]). Despite using different techniques

in order to improve stability properties and stability

regions of Milstein type methods, we can see that the

existing numerical methods based on Milstein scheme still

have some restrictions on the parameters and step-size to

be A-stable.

As the first contributions of this work, we are

interested in improving the existing results in [7, 38]

which discussed DSSTM methods for SDEs to remove the

existing restrictions on the parameters and step-size.

Following, Wang et al. [34], we construct the new general

methods; the modified spit-step theta Milstein (MSSTM)

methods with strong convergence order 1.0 for solving

SDEs (1). The proposed methods are derived based on the

split-step technique by combining the SST method with

Milstein scheme. Then, the MS-stability is investigated for

linear SDEs (3). We prove that the proposed methods

MSSTM can share the MS-stability of the exact solution

for all step-size with no restrictions on parameters.

Stochastic differential equations with jump (SDEJ)
used to model real-world phenomena in different fields.
One of the important tools to measure the quality of
numerical methods to approximate SDEJ, is stability.
Based on the Euler scheme with convergence order 0.5,
the MS-stability analysis of the implicit Euler method for
linear SDEs with Poisson-driven jumps was
discussed [15]. Wang and Gan [36] investigated
MS-stability of the compensated stochastic theta methods
as an extension of the deterministic A-stability property
for a linear test equation with θ ∈ [ 1

2
,1]. Using the

split-step techniques, Higham and Kloeden [14] discussed
the MS-stability of the split-step backward Euler (SSBE)
method and the compensated SSBE. Furthermore,
compensated split-step theta methods have been
discussed for SDEJ in [17, 29]. Based on the Milstein
scheme with convergence order 1.0, Hu et al. [16]
discussed the Milstein method to approximate the
solution of a linear SDEs with Poisson-driven jumps.
Furthermore, they showed that the Milstein methods can
reproduce the stochastically asymptotical stability for the
SDEJ. However, we need more work to remove the
restrictions on the parameters and step-size of the existing
numerical methods based on Milstein scheme to be
A-stable for SDEJ.

As the main contributions of this work, we extend the
MSSTM methods for SDEs with Poisson jump (SDEwPJ)
which has been called the compensated modified spit-step
theta Milstein (CMSSTM) methods. Get insight into the
stability behavior of the numerical methods, the
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MS-stability is investigated for linear SDEwPJ, as
follows: (a) For θ ∈ [ 1

2
,1], the CMSSTM methods are

general mean-square (GMS) stable (i.e. the CMSSTM
methods can share the MS-stability of the exact solution
for all step-size with no restrict on parameters), (b) If
θ ∈ [0, 1

2
), the CMSSTM methods are MS-stable for all

step-size with restrictions on parameters. In the last part
of this work, stability regions are discussed to explain that
the proposed methods are A-stable. In addition, several
examples are given to show the effectiveness of the
proposed method in approximation of one and two
dimensional SDEs compared to some existing methods.

The paper is organized, as follows: In Section 2, we
present some necessary notations and preliminaries. In
Section 3, the MSSTM methods are derived and the
strong convergence order 1.0 is proved. The MS-stability
properties of the MSSTM and CMSSTM methods are
considered for linear SDEs and SDEwPJ, respectively.
Furthermore, stability regions are discussed to explain
that the proposed methods are A-stable in Section 4. In
Section 5, numerical results for the convergence and
stability are given in one and two dimensional SDEs to
demonstrate the properties of proposed methods
compared with existing methods. Section 6 is dedicated to
Conclusion .

2 Notations and preliminaries

Throughout this paper, we use the following notations.
Let (Ω ,F ,P) be a complete probability space with a
filtration {Ft}t≥0, which satisfies the usual conditions,
i.e. the filtration {Ft}t≥0 is right-continuous and each
{Ft}, t ≥ 0, contains all P-null sets in F . Let W (t),
t ≥ 0, be Ft -adapted and independent of F0. | · | is the
Euclidean norm in R

m. a
∨

b presents max(a,b) and a
∧

b

presents min(a,b). Moreover, we assume Z0 be
F0-measurable and E(Z0)

2 < ∞. Let f ,g : Rm → R
m be

Borel measurable functions. Let us consider the
m-dimensional SDEs (1). For the convenience of readers
to accomplish the existence and convergence results, we
impose some assumptions on f and g as in [34] in this
section.

Assumption 1The functions f (t,x) and g(t,x) in SDEs (1)

satisfy Lipschitz condition. There exists a constant k1 such

that for all t ∈ [t0,T ] and x,y ∈ R
m

| f (t,x)− f (t,y)|2 ∨|g(t,x)− g(t,y)|2 ≤ k1|x− y|2, (4)

and Linear growth condition. There is a constant k2

| f (t,x)|2 ∨|g(t,x)|2 ≤ k2(1+ |x|2). (5)

We note that from ( [19], Theorem 3.1), therein f ,g ∈
C1 ensure the existence of a unique solution to the SDEs
(1) under the Assumption 1. Furthermore, the following
assumption for the diffusion function g(t,x) will be used
in the following sections.

Assumption 2The functions g j(t,x) for all j = 1, ...,m in

(1) also satisfy

∣

∣L jg j(t,x)−L jg j(t,y)
∣

∣

2 ≤ k1|x− y|2, (6)

and
∣

∣L jg j(t,x)
∣

∣

2 ≤ k2(1+ |x|2), (7)

for all x,y ∈ R
d , t ∈ [t0,T ], where k1,k2 are defined in

Assumption 1.

Saito and Mitsui [25] derived a condition that
characterizes the MS-stability of linear SDEs (3) as
follows

Lemma 1.If the constants a,b in (3) satisfy

a <−1

2
b2, (8)

then the solution of (3) is asymptotically stable in the

mean-square sense, that is,

lim
t→∞

E|y(t)|2 = 0. (9)

To be precise, we state the definitions of the numerical
stability in the following.

Definition 1. [19] Under the exact solution stability

condition (8), a numerical method is said to be MS-stable,

if there exists a h∗ > 0, such that any application of the

method to (3) generates numerical approximation yn,

which satisfy

lim
n→∞

E|yn|2 = 0, (10)

for all step-size h ∈ (0,h∗).

Definition 2. [19] Under the exact solution stability

condition (8), a numerical method is said to be general

mean-square (GMS) stable, if any application of the

method to (3) generates numerical approximation yn,

which satisfy

lim
n→∞

E|yn|2 = 0, (11)

for all step-size h > 0.

3 The MSSTM methods

The main idea to derive the DSSTM methods for SDEs
(1) with a single noise channel (m = 1) was presented by
applying the SST methods to the drift part and the
Milstein method to the diffusion part (For more details
see [7, 8, 38]). The fundamental properties implicate
convergence and stability have been discussed for the
different types of split-step Milstein
methods [5, 7, 8, 11, 27, 31, 32, 35, 38]. Our analysis is
motivated by convergence order in multi-dimensional
case and GMS-stability and A-stability with no
restrictions on the parameters and step-size. In this
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section, we state the outline to construct the new MSSTM
methods for more general systems. Furthermore, the
strong convergence order 1.0 of the proposed methods is
discussed.

To derive the MSSTM methods for more general
systems, the m-dimensional stochastic process
Z = {Z(t) : t ≥ 0} with E(Z0)

2 < ∞ satisfies the
m-dimensional SDEs (1) is considered as

dZ(t) = f (t,Z(t))dt +
m

∑
j=1

g j(t,Z(t))dWj(t),

Z(t0) = Z0,

where t ∈ [t0,T ], f (t,Z(t)) is the drift coefficient,
g j(t,Z(t)) are the diffusion coefficients which are
m-dimensional function satisfied Lipschitz conditions and
linear growth conditions in Assumptions 1 and 2. The
process Wj = {Wj(t) : t ≥ 0}, j = 1, ...,m represents
independent Wiener processes on a filtered probability
space (Ω ,F ,P) with a filtration {Ft}t≥0 under the usual
conditions. For 0 ≤ s ≤ t < ∞ and y ∈ R

m, the variable
Z

s,y
t denotes the value of a solution of (1) at time t which

starts in y ∈R
m at time s.

To improve the fundamental analysis (specially the
stability) of the drifting split-step backward Milstein
(DSSBM) method, Wang et al. [34] derived the modified
split-step backward Milstein (MSSBM) methods with
convergence order 1.0 for SDEs (1.1) with m = 1.
Following [34], using SST methods on the drift function
instead of the backward Euler method in MSSBM
methods, we can derive a new general family of MSSTM
methods. A MSSTM methods applied to (1) can be
written in the general form as follows

y∗n = yn + h

[

θ f (tn,y
∗
n)−

1

2

m

∑
j=1

L jg j(tn,y
∗
n)

]

, (12)

yn+1 = y∗n +(1−θ )h f (tn,y
∗
n)+

m

∑
j=1

g j(tn,y
∗
n)∆Wj(tn)

+
1

2

m

∑
j=1

L jg j(tn,y
∗
n)(∆Wj(tn))

2

+
m

∑
i, j=1,i6= j

Lig j(tn,y
∗
n)I

(tn,tn+1)
(i, j)

, (13)

where

I
(s,t)
(i, j)

=

∫ t

s

∫ u

s
dWi(v)dWj(u) and L j =

d

∑
k=1

g
j
k

∂

∂yk

,

and yn is an approximation to Z(tn), θ ∈ [0,1], with
increments ∆Wj(t) = Wj(tn+1)−Wj(tn) are independent
N(0,h)-distributed Gaussian random variables,
h = tn+1 − tn,n = 0,1, ...,N − 1 and y(0) = y0. Moreover,
yn is {Ftn}-measurable at the mesh-point tn.

Remark.Let m = 1, the MSSTM methods (12-13) with
parameter (θ = 1) reduce the MSSBM methods which

derived in [34], while the MSSTM methods (12-13) with
parameter (θ = 0) are the modified forward Milstein
(MSSFM) methods which derived in [26].

In order to state the convergence theorem for the
general MSSTM methods (12-13) for SDEs (1), we recall
the following theorem concerning the strong convergence
order (See, [20, 21]).

Theorem 1.Assume that for one-step discrete time

approximation yn, the local mean error and mean-square

error for all N = 1,2, ..., and n = 1,2, ...,N − 1 satisfy the

estimates
∣

∣E
[

yn+1 −Z
tn,yn
tn+1

|Ftn

]
∣

∣≤ K
(

1+ |yn|2
)1/2

hp1 , (14)

(

E
[

∣

∣yn+1 −Z
tn,yn
tn+1

∣

∣

2 |Ftn

])1/2

≤ K
(

1+ |yn|2
)1/2

hp2 ,

(15)
with p2 ≥ 1

2
and p1 ≥ p2 +

1
2
. Then

(

E

[

∣

∣

∣
yk −Z

0,Z0
tk

∣

∣

∣

2

|F0

])1/2

≤ K
(

1+ |Z0|2
)1/2

hp2−1/2,

(16)
holds for each k = 0,1,2, ...,N. Here K is independent on

h but dependent on the length of the time interval T − t0.

The following theorem provides the strong
convergence order 1.0 of the MSSTM methods (12-13)
for SDEs (1).

Theorem 2.Under Assumptions 1 and 2, the

approximation solution yn of the MSSTM methods (12-13)

converges with strong order 1.0, that is for all

k = 0,1, ...,N, 0 < θ ≤ 1 and 0 < h < 1/(θ
√

k1)
(

E
[

∣

∣yk −Ztk

∣

∣

2 |F0

])1/2

= K
(

1+ |Z0|2
)1/2

h, (17)

where K is independent on h.

Proof.First, in order to show (14) holds for the MSSTM
methods (12-13) with p1 = 2, using (12-13) we have

yk+1 = yk + h f (tk,y
∗
k)+

m

∑
j=1

g j(tk,y
∗
k)∆Wj(tk)

+
1

2

m

∑
j=1

L jg j(tk,y
∗
k)
[

(∆Wj(tk))
2 − h

]

+
m

∑
i, j=1,i6= j

Lig j(tk,y
∗
k)I

(tk,tk+1)

(i, j)
,

(18)

and let yM
k be the approximation of the Milstein method,

i.e.

yM
k+1 = yM

k + h f (tk,y
M
k )+

m

∑
j=1

g j(tk,y
M
k )∆Wj(tk)

+
1

2

m

∑
j=1

L jg j(tk,y
M
k )

[

(∆Wj(tk))
2 − h

]

+
m

∑
i, j=1,i6= j

Lig j(tk,y
M
k )I

(tk ,tk+1)

(i, j)
,

(19)
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k = 0,1, ...,N − 1 is introduced and referring to [34] with
n = 0,1, ...,N − 1, the local errors are given by

∣

∣E
[

yM
n+1 −Z

tn,yn
tn+1

|Ftn

]∣

∣= O(h2), (20)

(

E

[

∣

∣yn+1 −Z
tn,yn
tn+1

∣

∣

2 |Ftn

])1/2

= O(h3/2). (21)

Consider the local mean error with yn = Ztn i.e.

H1 =
∣

∣E
[

yn+1 −Z
tn,yn
tn+1

|Ftn

]∣

∣

=
∣

∣E
[

yM
n+1 −Z

tn,yn
tn+1

|Ftn

]

+E
[

yn+1 − yM
n+1|Ftn

]∣

∣

≤ K(1+ |yn|2)1/2h2 +H2,

(22)

from (18) and (20), H2 is defined by

H2 =
∣

∣E
[

yn+1 − yM
n+1|Ftn

]
∣

∣

= |E[h( f (tn,y
∗
n)− f (tn,yn))

+
m

∑
j=1

(g j(tn,y
∗
n)− g j(tn,yn))∆Wj(tn)

+
1

2

m

∑
j=1

(

L jg j(tn,y
∗
n)−L jg j(tn,yn)

)

(∆Wj(tn))
2

− 1

2
h

m

∑
j=1

(

L jg j(tn,y
∗
n)−L jg j(tn,yn)

)

+
m

∑
i, j=1,i6= j

(

Lig j(tn,y
∗
n)−Lig j(tn,yn)

)

I
(tn,tn+1)
(i, j)

|Ftn ]|.

(23)

In view of the independence of yn,y
∗
n, the symmetric

property of ∆Wj(tn), j = 1, ...,m in those expressions
involving this zero-mean Gaussian variable, the property
of Itô integrals E(I(i, j)) = 0, and Assumptions 1, 2, we
obtain

H2 ≤
√

k1h |E [y∗n − yn|Ftn ]| . (24)

On the other hand

|E[y∗n − yn|Ftn ]|= |E[θh f (tn,y
∗
n)

− 1

2
h

m

∑
j=1

L jg j(tn,y
∗
n)|Ftn ]|

≤ (θ + 1
2
)h
√

k2

(1−θh
√

k1)

(

1+ |yn|2
)1/2

.

(25)

Substituting (25) in (24), we obtain

H2 ≤
(θ + 1

2
)
√

k1k2

(1−θh
√

k1)

(

1+ |yn|2
)1/2

h2

≤ K
(

1+ |yn|2
)1/2

h2,

(26)

which yields

H1 =
∣

∣E
[

yn+1 −Z
tn,yn
tn+1

|Ftn

]∣

∣= O(h2). (27)

From (Kloeden and Platen [18], Lemma 5.7.2), it is
known that E

[

(∆Wj(tn))
2|Ftn

]

≤ O(h) and

E
[

I2
(i, j)|Ftn

]

≤ O(h2). Similarly, the local mean-square

error of the MSSTM methods for n = 0,1, ...,N − 1 by
standard argument

H3 =
(

E
[

∣

∣yn+1 −Z
tn,yn
tn+1

∣

∣

2 |Ftn

])1/2

≤
(

E
[

∣

∣yM
n+1 −Z

tn,yn
tn+1

∣

∣

2 |Ftn

])1/2

+
(

E
[

∣

∣yn+1 − yM
n+1

∣

∣

2 |Ftn

])1/2

≤ K
(

1+ |yn|2
)1/2

h3/2.

(28)

for 1− θh
√

k1 > 0. With respect to (21) and Theorem 1,
the proof is completed.

4 Mean-square Stability

4.1 Stability of MSSTM methods for SDEs

In this section, the Itô scalar linear SDEs (3) are concerned
as

dZ(t) = aZ(t)dt + bZ(t)dW(t), t > 0,

Z(t0) = Z0,

to discuss stability properties of the MSSTM methods in
order to compare the stability region of the proposed
method with that of existing numerical methods. We
prove that the MSSTM methods (12-13) with θ ∈ [ 1

2
,1]

are GMS-stable for (3) (i.e. the numerical methods can
share the MS-stability of the exact solution with no
restrictions on parameter and step-size).

The MSSTM methods (12-13) for linear SDEs (3) have
the form (3)

y∗n = yn + hθay∗n−
1

2
hb2y∗n, (29)

yn+1 = y∗n +(1−θ )hay∗n+ by∗n∆Wn +
1

2
b2y∗n(∆Wn)

2. (30)

The following theorem gives the main results of
MSSTM methods.

Theorem 3.Suppose that MS-stability condition (8) holds,

we have

1.If θ ∈ [ 1
2
,1], then the MSSTM methods are GMS-stable

for all h > 0.

2.If θ ∈ [0, 1
2
) and a2 ≤ b2(a+ 1

2 b2)

(2θ−1) , then the MSSTM

methods are MS-stable for all h > 0.

3.If θ ∈ [0, 1
2
) and a2 >

b2(a+ 1
2 b2)

(2θ−1)
, then the MSSTM

methods are MS-stable for all h ∈ (0, h̃(a,b,θ )),

h̃ <
−(2a+ b2)

(1− 2θ )a2+ b2(a+ 1
2
b2)

.
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Proof.Note that yn is Ftn -measurable at the mesh point tn,
we easily know from (12-13) that y∗n is also
Ftn -measurable at related meash-point, ∆Wn is

independent of Ftn . From E[△Wn] = 0, E[|△Wn|2] = h,

E[△W 3
n ] = 0 and E[|△Wn|4] = 3h2, it is easy to see from

(29-30) that

E(yn+1)
2 = P(a,b,θ ,h)E(yn)

2, (31)

where

P(a,b,θ ,h) =
1

(1−θha+ 1
2
hb2)2

((1+(1−θ )ha)2

+ 2b2h+
3

4
b4h2 +(1−θ )h2ab2).

(32)
Hence E(yn+1)

2 → 0,when (n → ∞) if and only if

(

(1− 2θ )a2+ b2(a+
1

2
b2)

)

h+(2a+ b2)< 0. (33)

With respect to condition (8), we know that 2a+b2 < 0
and the following results can be obtained.

Case I: If θ ∈ [ 1
2
,1], then the MSSTM methods are

GMS-stable for all h > 0.

Case II: If θ ∈ [0, 1
2
), then (1− 2θ )a2 > 0. Hence,

(1− 2θ )a2+ b2

(

a+
1

2
b2

)

(34)

If (1− 2θ )a2 + b2(a+ 1
2
b2) ≤ 0, then a2 ≤ b2(a+ 1

2 b2)
2θ−1

.
Hence, we can see that (33) holds. The MSSTM methods
are MS-stable for all h > 0.

If (1− 2θ )a2 + b2(a+ 1
2
b2) > 0, then a2 >

b2(a+ 1
2 b2)

2θ−1
.

Hence, we can see that the MSSTM methods are
MS-stable for h ∈ (0, h̃(a,b,θ )), then (33) holds. The
MSSTM methods are MS-stable for h ∈ (0, h̃(a,b,θ )).

The proof is complete.

4.2 Stability of CMSSTM methods for SDEwPJ

The stability results of the MSSTM methods are derived
for SDEs with Poisson-driven jump (SDEwPJ). In this
work, the compensated MSSTM (CMSSTM) methods are
constructed for SDEwPJ. The unconditional MS-stability
results of CMSSTM methods are discussed. The SDEwPJ
are considered, as follows:

dZ(t) = f (Z(t−))dt + g(Z(t−))dW (t)

+ z(Z(t−))dN(t), t > 0,
(35)

where Z(0−) = Z0 with Z(t−) denotes lims→t− Z(s), f ,g
and W (t) are defined similarly, z : Rm → R

m is a given

function and scalar Poisson process N(t) with intensity
λ > 0. The SDEwPJ are considered the generalization of
both deterministic and random parts. Note that, the
SDEwPJ (35) have a unique solution on [0,∞), if f ,g, and
z satisfy the local Lipschitz condition and the linear
growth condition (see, [10, 28]).

We first define the MSSTM methods for SDEwPJ (35),
as follows:

y∗n = yn + h[θ f (y∗n)−
1

2
ǵ(y∗n)g(y

∗
n)], (36)

yn+1 = y∗n +(1−θ )h f (y∗n)+ g(y∗n)∆Wn

+
1

2
ǵ(y∗n)g(y

∗
n)(∆Wn)

2 + z(y∗n)∆Nn, (37)

where yn is approximation to Z(tn) with constant step-size
h such that t = nh, θ ∈ [0,1], with increments
∆Wn := W (tn+1) − W (tn) are independent
N(0,h)-distributed Gaussian random variables;
∆Nn := N(tn+1) − N(tn) are independent Poisson
distributed random variables with distribution N(λ h,λ h)
and y(0) = y(0−).

Noting that the compensated Poisson process

Ñ(t) := N(t)−λ t, (38)

which is a martingale. Defining

fλ := f (x)+λ z(x), (39)

we can rewrite the jump-diffusion system (35) as a
compensated SDEs with poisson jump in the form

dX(t) = fλ (X(t−))dt + g(X(t−))dW (t)+ z(X(t−))dÑ(t).
(40)

We note that fλ also satisfies the uniform Lipschitz
condition and linear growth condition with larger
constants

Kλ = 2(λ + 1)2k1, Lλ = 2(λ + 1)2k2 (41)

Using the compensated Poisson process and following
[14], we can define the CMSSTM methods for SDEwPJ
(40), as follows:

y∗n = yn + h[θ fλ (y
∗
n)−

1

2
ǵ(y∗n)g(y

∗
n)], (42)

yn+1 = y∗n +(1−θ )h fλ(y
∗
n)+ g(y∗n)∆Wn

+
1

2
ǵ(y∗n)g(y

∗
n)(∆Wn)

2 + z(y∗n)∆ Ñn, (43)

where ∆ Ñn := Ñ(tn+1)− Ñ(tn).
To study the stability properties of CMSSTM methods,

we consider a linear test equation with scalar coefficients

dX(t) = aX(t−)dt + bX(t−)dW (t)+ cX(t−)dÑ(t), (44)

where a,b,c ∈ R. Hence, the MS-stability of the zero
solution to equation (44) was given in [15]

lim
t→∞

E|X(t)|2 = 0 ⇔ 2a+b2+λ c(c+2)< 0. (45)
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Applying the CMSSTM methods (42-43) to Equation
(44), we have

y∗n = yn + h[θ (a+λ c)− 1

2
b2y]y∗n, (46)

yn+1 = y∗n +(1−θ )h(a+λ c)y∗n+ by∗n∆Wn

+
1

2
b2y∗n(∆Wn)

2 + cy∗n∆ Ñn, (47)

The MS-stability results of the CMSSTM methods
(46-47) for (44) are given in the following theorem.

Theorem 4.Suppose that MS-stability condition (45) hold,

we have

1.If θ ∈ [ 1
2
,1], then the CMSSTM methods are

GMS-stable for all h > 0.

2.If θ ∈ [0, 1
2
) and (a+ λ c)2 ≤ b2(2(a+λ c)+b2)

2(2θ−1) , then the

CMSSTM methods are MS-stable for all h > 0.

3.If θ ∈ [0, 1
2
) and (a+ λ c)2 > b2(2(a+λ c)+b2)

2(2θ−1)
, then the

CMSSTM methods are MS-stable for all

h ∈ (0, h̃(a,b,c,λ ,θ )).

h̃ <
−(2(a+λ c)+ b2+λ c2)

(1− 2θ )(a+λ c)2+ 1
2
b2(2(a+λ c)+ b2

.

Proof.From (46 - 47), we have

y∗n =
1

1−θh(a+λ c)+ 1
2
b2h

yn,

yn+1 = [1+(1−θ )h(a+λ c)+b∆Wn

+
1

2
b2(∆Wn)

2 + c∆ Ñn]y
∗
n.

Note that yn is Ftn -measurable at the mesh point tn,
easily know from (42-43) that y∗n is also Ftn -measurable
at related meash-point. Increments ∆Wn,∆ Ñn are used
mutually independent. E[∆Wn] = E[∆ Ñn] = 0,
E[|∆Wn|2] = h, E[|∆ Ñn|2] = λ h, E[(△Wn)

2 − h] = 0 and
E[|△Wn|2 − h]2 = 2h2. Squaring both sides of the above
equations and taking mathematical expectation, we get

E|y∗n|2 =
1

(1−θh(a+λ c)+ 1
2
b2h)2

E|yn|2, (48)

E|yn+1|2 = [(1+(1−θ )h(a+λ c))2 + 2b2h

+
3

4
b4h2 +(1−θ )(a+λ c)b2h2 +λ c2h]E|y∗n|2.

(49)
Substituting (48) into (49), we obtain

E|yn+1|2 = P(a,b,c,θ ,λ ,h)E|yn|2, (50)

where

P(a,b,c,θ ,λ ,h) = (1+(1−θ )h(a+λ c))2

+ 2b2h+
3

4
b4h2

+(1−θ )(a+λ c)b2h2 +λ c2h

/(1−θh(a+λ c)+
1

2
b2h)2.

(51)

By recursive calculation, we conclude that E|yn+1|2 →
0,(i f n → ∞) if and only if

P(a,b,c,θ ,λ ,h)< 1,

which is equivalent to

[

(1− 2θ )(a+λ c)2+
1

2
b2

(

2(a+λ c)+ b2
)

]

h

+ 2(a+λ c)+ b2+λ c2 < 0. (52)

With respect to condition (45), we know that
2(a+ λ c) + b2 + λ c2 < 0, and the following results can
be obtained.

Case I: If θ ∈ [ 1
2
,1], then the CMSSTM methods are

GMS-stable for all h > 0.

Case II: Let θ ∈ [0, 1
2
). Then the CMSSTM methods

are MS-stable for all h > 0, if
(1 − 2θ )(a + λ c)2 + 1

2
b2

(

2(a+λ c)+ b2
)

≤ 0 and the

methods are MS-stable for all h ∈ (0, h̃(a,b,c,λ ,θ )), if

(1− 2θ )(a+λ c)2+ 1
2
b2

(

2(a+λ c)+ b2
)

> 0.
The proof is completed.

4.3 Discussion for A-stability

In this section, we aim to compare the stability region of
the proposed method with that of existing numerical
methods. In addition, the stability regions of the
numerical methods are compared with that of the test
problem and existing numerical methods to show the
efficiency of the proposed method. Also, A-stability
approach is investigated. For simplicity and without loss
of generalization, we will consider the stability condition
(33) of MSSTM methods (29-30) for linear SDEs (3).
Note that, it is easy to get the similar results for
CMSSTM methods (46-47) to SDEwPJ (44).

The MS-stability regions are the areas under the
plotted curves and symmetric about the x− y plane with
x = ah and y = b2h. In this case, the stability conditions
(MS-stability) (8), (33) for the test problem, MSSTM
methods become

x+
1

2
y < 0 (Problem), (53)

(1− 2θ )x2+
1

2
y2 + xy+ 2x+ y< 0 (MSSTM), (54)

The stability regions of the SSTM and test problem
are plotted, as follows: Let RSDE = {x,y ∈ R : y ≥ 0 and

x+ 1
2
y < 0} denote the MS-stability region of the SDEs

(3) and RMSST M(θ ) = {x,y ∈ R : y ≥ 0 and (54) hold} be
the MS-stability regions of MSSTM methods. Figure 1
illustrates how the RMSST M(θ ) varies with θ . The green
shading marks the regions RSDE and the red shading
superimposes RMSST M(θ ) for θ = 0,0.25,0.5,1.0. Figure
1 confirms our results.
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(a) θ = 0 (b) θ = 0.25

(c) θ = 0.5 (d) θ = 1.0

Fig. 1: Real MS-stability regions for test problem (green) and MSSTM methods (red)

Remark.Theorem 7 in Eissa et al., [7], explains that if
θ ∈ [0, 1

2
], the DSSTM methods are MS-stable for

h ∈ (0,h∗(a,b,θ )). Moreover, for θ > 1
2
, if the diffusion

term plays the crucial role, the restrict on step-size still
holds with some constraints for the parameters. If the drift
term plays the crucial role, the methods are MS-stable for
all h > 0 under some constraints for the parameters a,b
and θ . Furthermore, Figure 1 in Eissa et al., [7], shows
that the DSSTM methods with θ ∈ [0,1] are not A-stable
such that the stability regions of the numerical methods
can’t cover that of the test problem.

Remark.To improve the stability properties of DSSTM
methods for SDEs (3), we constructed the MSSTM
methods. Theorem 3 shows that, for any θ ∈ [0, 1

2
), if the

drift term plays the main rule, then the MSSTM methods
are MS-stable for h ∈ (0, h̃(a,b,θ )). If the diffusion term
plays the crucial role, then the MSSTM methods are
MS-stable for all h > 0 with some restrict on the
parameters. Furthermore, the MSSTM methods are
GMS-stable with θ ∈ [ 1

2
,1] for all h > 0 with no restrict

on the parameters. Figure 1 shows that stability regions of
the MSSTM methods with θ ∈ [ 1

2
,1] covered that of the

test problem (i.e. the numerical methods are A-stable.).

Table 1: MS-stability conditions of various methods

Numerical methods MS-stability condition

Milstein [21] x2 +2x++y+ 1
2

y2 < 0

Semi-implicit Milstein [12] (1−2θ)x2 +2x+ y+ 1
2

y2 < 0

DSSBM [34] (1+ y+ 1
2

y2)/(1− x)2 < 1

MSSBM [34] (1+2y+ 3
4

y2)/(1− x+ 1
2

x2)2 < 1

SSAMM [32] (1+ y+ 1
2

y2)(1+2θx)2/(1− ( 1
2
−θ)x)4 < 1

Three stage Milstein [35] (1+ x)2(1− 1
2

y)2(1+2y+ 3
4

y2)< 1

Figure 2 shows the MS-stability regions of MSSTM
methods (54) compared with that of test problem (53),
and the existing numerical methods which are presented
in Table 1. We examine the MS-stability regions of the
MSSTM methods with θ = 0.25,0.5,1.0, respectively.
Figure 2 when θ = 1.0, the MS-stability regions of the
MSSTM methods and that of MSSBM methods, identical
to some extent (see Figure 2f). With θ = 0.5, the
MS-stability regions of the MSSTM methods match
exactly the test problem stability region. Finally, we can
conclude that the MSSTM methods are more flexible than
others and the MS-stability regions of MSSTM methods
are better than that of all others in Table 1.
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(a) MSSTM, θ = 0.25 (b) MSSTM, θ = 0.5

(c) MSSTM, θ = 1.0 (d) MSSTM, θ = 0.25

(e) MSSTM, θ = 0.5 (f) MSSTM, θ = 1.0

Fig. 2: Real MS-stability regions
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5 Numerical results

We consider several illustrative numerical examples for
showing the strong convergence order and MS-stability of
MSSTM methods for SDEs. The mean-square errors at
time T versus the step-size h are analyzed in a log-log
diagram. The mean-square errors of the numerical
approximations are defined by [3], as follows:

ε =
1

N

N

∑
i=1

|y(i)n −Z(i)(T )|2, (55)

where y
(i)
n is a numerical approximation to Z(i)(T ) and

Z(i)(T ) is the value of the exact solution of SDEs at time
T . The superscript i means the ith samples path,
i = 1,2, ...,N.

5.1 One-dimensional SDEs

Example 1: A scalar linear SDEs
We apply the MSSTM methods to the scalar linear

SDEs (3)

dZ(t) = aZ(t)dt + bZ(t)dW(t), t ∈ [0,T ],

Z(0) = 1,

whose exact solution is

Z(t) = Z(0)exp

((

a− 1

2
b2

)

t + bW(t)

)

.

We use the parameters a = − 1
2

and b = 1
2

as in [3, 32]
and demonstrate the strong convergence rate of the
MSSTM methods at the terminal time T = 1. We
compute 4000 different discretized Brownian paths over
[0,1] with step size dt = 2−9. For each path, the MSSTM
methods are applied with five different step sizes:
∆ t = 2p−1dt,1 ≤ p ≤ 5. Table 2 compares the mean of
absolute errors over the sample paths for SST
methods [3], SSAMM methods [32], and DSSTM
methods [7, 38] with the proposed MSSTM methods
(Note that, the value of parameter θ for SST, SSAMM
has been chosen to give the best absolute error of that
methods according to [3, 32]). We find that the proposed
MSSTM methods are more efficient than SST, SSAMM,
DSSTM methods. Figure 3 shows the results of the mean
of absolute errors using a log log plot.

Example 2: A scalar nonlinear SDEs
We consider the nonlinear SDEs

dZ(t) =−(α +β 2Z)(1−Z2)dt +β (1−Z2)dW (t), (56)

where t ∈ [0,T ], Z(0)= Z0 with α and β are real constants.
The exact solution is given by [18]

Z(t) =
(1+Z0)exp(−2αt + 2βW(t))+Z0 − 1

(1+Z0)exp(−2αt + 2βW(t))−Z0 + 1
.

Table 2: Mean of absolute errors for (3) with a =− 1
2 and b = 1

2

Step SST SSAMM DSSTM MSSTM

size θ = 0.1 θ =− 1
2 − 1√

2
θ = 0.5 θ = 0.5

2−5 4.27E-04 7.12E-04 1.09E-05 7.14E-06

2−6 2.32E-04 3.80E-04 2.68E-06 1.76E-06

2−7 1.20E-04 1.90E-04 7.31E-07 4.85E-07

2−8 5.63E-05 9.52E-05 1.83E-07 1.22E-07

2−9 2.64E-05 4.80E-05 4.53E-08 3.01E-08

Table 3: Errors for (56) with α = 1 and β = 0.5

Step Milstein SSAMM DSSTM MSSTM

size θ =− 1
2 − 1√

2
θ = 0.5 θ = 0.5

2−5 1.38E-03 3.64E-04 5.99E-07 5.81E-07

2−6 6.76E-04 6.18E-05 1.46E-07 1.42E-07

2−7 3.34E-04 4.40E-06 3.62E-08 3.54E-08

2−8 1.66E-04 7.20E-06 9.01E-09 8.82E-09

2−9 8.28E-05 5.40E-06 2.24E-09 2.20E-09

Errors of Milstein [18], SSAMM [32], and DSSTM [7,
38] methods with our MSSTM methods are displayed in
Table 3 at the terminal time T = 1. The numerical results
provide a comparison of these methods for fixed parameter
α = 1 and β = 0.5. We compute 4000 different discretized
Brownian paths over [0,1] with step size dt = 2−9. For
each path, the methods are applied with five different step
size: ∆ t = 2p−1dt,1 ≤ p ≤ 5. For both values of β , our
methods returns the most accurate solution for these step-
sizes. Figure 4 shows the results of the mean of absolute
errors using a log log plot.

Remark.Though the functions f and g in the test problem
(56) are not satisfy the Assumption 2 (Lipschitz condition

Fig. 3: Strong convergence of MSSTM methods with a =
−0.5 and b = 0.5
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Table 4: Error and convergence rates for (57) with u = 5, v = 1.

Step SST SSAMM DSSTM MSSTM

size θ = 0.1 θ =− 1
2 − 1√

2
θ = 0.5 θ = 0.5

2−5 2.21E −1 2.97E −2 2.06E −2 1.98E −2

2−6 1.52E −1 1.71E −2 1.07E −2 1.04E −2

2−7 1.10E −1 7.31E −3 5.26E −3 4.75E −3

2−8 7.64E −2 3.98E −3 2.80E −3 2.42E −3

2−9 5.36E −2 2.13E −3 1.37E −3 1.22E −3

and linear growth condition), the approximate solution of
the MSSTM methods converge to the exact solution. In the
future we will discuss the strong convergence order under
weaker conditions of the methods.

5.2 Two-dimensional SDEs

Example 3: A two-dimensional linear SDEs

We consider the two-dimensional SDEs [32]

dZ(t) =UZ(t)dt +VZ(t)dW (t), t ∈ [0,1],

Z(0) = Z0,
(57)

where U =

(

−u u

u −u

)

and V =

(

v 0

0 v

)

. The exact solution of

test equation (57) is

Z(t) = P

(

exp(ρ+(t)) 0

0 exp(ρ−(t))

)

P−1Z0, (58)

where P = 1√
2

(

1 1

1 −1

)

, ρ±(t) = (−u − 1
2 v2 ± u)t + vW (t),

and p−1 = p. With initial Z0 = [1,2]T and parameters

u = 5,v = 1, Table 4 shows that the proposed methods MSSTM

return a more accurate solution than that of the SST

methods [3], SSAMM methods [32], DSSTM methods [7, 38].

Example 4: A two-dimensional nonlinear SDEs

Fig. 4: Strong convergence rate of MSSTM methods with
α = 1 and β = 0.5

The next problem is the Brusselator system of SDEs [33],

which unforced periodic oscillations in certain chemical reaction.

dZ1(t) = ((α −1)Z1(t)+αZ2
1 (t)+(Z1(t)+1)2Z2(t))dt

+ γZ1(t)(1+Z1(t))dW (t), (59)

dZ2(t) = (−αZ1(t)−αZ2
1(t)− (Z1(t)+1)2Z2(t))dt

− γZ1(t)(1+Z1(t))dW (t). (60)

Figure 5, the numerical simulation of (59-60) with h= 0.025,

α = 1.9, and γ = 0.1 for 0 ≤ t ≤ 125 starting at (Z1(0),Z2(0)) =

(a) Milstein method

(b) SSAMM methods

(c) DSSTM methods with θ = 0.5

(d) MSSTM methods with θ = 0.5

Fig. 5: Numerical simulation of (59-59) with h =
0.025,α = 1.9, and γ = 0.1.
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(−1,0) using Milstein [18], SSAMM methods [32], and DSSTM

[7, 38] with proposed method MSSTM.

Similar to the semi-implicit balanced Milstein (SIBM)

method in [33], we see that the MSSTM methods stay close to

the origin replicating the behavior of the true solution.

Furthermore, the proposed method a better approximation than

other methods.

5.3 Stability experiment results

In the following, we illustrate stability properties of MSSTM

methods by simulating SDEs (3). The set of coefficients satisfy

the condition (8). The trivial solution of the test equation is

MS-stable. The data used in the following figures is obtained by

the mean-square of data from 4000 trajectories

1

4000

4000

∑
i=1

E|yn(wi)|2.

We test the MS-stability of MSSTM methods when a=−15,

b = 1 and the initial value x0 = 0.5. For θ = 0.1 and 0.3, we

obtain h̃(−15,1,0.1) = 0.1752 and h̃(−15,1,0.3) = 0.3841. We

first fix the parameter θ = 0.1 and 0.3 and change the step size

h (see Figure 6 and 7 respectively). It show that the MSSTM

methods are MS-stable for any θ ∈ [0, 1
2 ) if h ∈ (0, h̃(a,b,θ )).

Figure 8 explains that for any θ ∈ [ 1
2 ,1], the MSSTM methods

are MS-stable for all h > 0.

6 Conclusion

We are interested in the Itô stochastic differential equations

(SDEs). With respect to using split-step techniques, split-step

Milstein type methods can be classified in two families: the

split-step Milstein methods and modified split-step Milstein

methods to approximate solutions of SDEs. Based on Split-Step

Theta (SST) methods which have advantages in flexibility and

stability, the split-step theta Milstein type methods have been

provided to improve stability properties and stability regions of

Milstein type methods. However, we can see that the existing

numerical methods based on Milstein scheme still have

restrictions on the parameters and step-size to be A-stable. In

this paper, we constructed the new general methods; the

modified spit-step theta Milstein (MSSTM) methods with strong

convergence order 1.0 for solving m-dimensional SDEs in order

to remove the existing restrictions on the parameters and

step-size to share the mean-square stability. The proposed

methods are derived based on the split-step technique by

combining the SST method with Milstein scheme. Then, the

MS-stability is investigated for linear SDEs. We proved that the

proposed methods MSSTM can share the MS-stability of the

exact solution for all step-size with no restrictions on

parameters. Furthermore, We extended the MSSTM methods for

SDEs with Poisson jump (SDEwPJ) which has been called the

compensated modified spit-step theta Milstein (CMSSTM)

methods. The MS-stability was investigated for linear SDEwPJ,

as follows: For θ ∈ [ 1
2 ,1], the CMSSTM methods are general

mean-square (GMS) stable and If θ ∈ [0, 1
2 ), the CMSSTM

methods are MS-stable for all step-size with restrictions on

parameters. Finally, the stability regions were discussed to

explain that the proposed methods were A-stable. In addition,

several examples were given to show the effectiveness of the

proposed method in approximation of one and two dimensional

SDEs compared to some existing methods.
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