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Abstract: In this paper, we present the fractional order model (FOM) for the spread of the PWD. We show that this model possesses

non-negative solutions as desired in any population dynamics. We compute the basic reproduction number R0 and illustrate the

equilibrium points (EPs) as well as their stability of this model. We apply The Natural-Adomian decomposition method (N-ADM)

and fractional Euler method (FEM) to solve this model. The results are compared with those obtained by classical Rung-Kutta (RK4)

method in the case of integer order.
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1 Introduction

Mathematical modeling helps understand how a disease
spreads and define the relevant factors. The major causes
of infectious diseases are the pathogens that are bacteria,
viruses, and protozoa. The infectious diseases do not only
occur among humans, but they also affect the population
of plants and trees. PWD is a deadly disease of pine trees,
which is caused by pine-wood nematode
Bursaphelenchus xylophilus [1, 2]. Pine trees infected by
PWD usually die within few months. In 1905, the
epidemic of the PWD first occurred in Japan [3, 4]. [5–9]
considered the classical case to introduce the PWD
model. In [10], the global stability of a classic host-vector
model for PWD with nonlinear incidence rate was
investigated.

Fractional calculus has been an active tool for
modelling various phenomena (see .e.g [11–13]) because
of the memory property of fractional order derivatives
that allows us to understand the behavior of an epidemic
among a population. In general, there are different
definitions of fractional derivatives which do not
coincide. One of them is Caputo fractional derivative
(CFD) which is commonly used in various applications of
fractional differential equations (FDEs) (see e.g. [14, 15]).

Moreover, there is a new definition of fractional derivative
based on the exponential function ( i.e. Caputo-Fabrizio
(CF) fractional operator (see e.g. [16–18])). Nowadays,
many researchers attempt model real processes using this
operator of fractional derivative [19–24]. One of the main
advantages of the FDEs over the models of integer-order
is the realistic modelling of a phenomenon that depends
not only on the instant time but also on the history of the
previous time (memory effect) which can be achieved
using fractional calculus. This property does not exist in
the classical models.

In this paper, we introduce FOM of PWD. The main
purpose of this extension (where the arbitrary order
α → 1) is that the classical model of PWD epidemic [10]
fails to carry more information about the memory of the
population which affects the spread of disease [25].
Moreover, the fractional operator has a non-locality
property (see e.g [26], p.38-39) that can lead to
substantial changes in the behavior of solutions.
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Currently, considering FOM of PWD, as follows:
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




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






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























C
0Dα

t Sh(t) = Λh −β δSh(t)Iv(t)− γhSh(t),

C
0Dα

t Eh(t) = β δSh(t)Iv(t)− (β1 + γh)Eh(t),

C
0Dα

t Ih(t) = β1Eh(t)− γhIh(t),

C
0Dα

t Sv(t) = Λv −β2Sv(t)Ih(t)− γvSv(t),

C
0Dα

t Iv(t) = β2Sv(t)Ih(t)− γvIv(t),

(1)

subject to the following initial conditions (ICs) (see [10])

Sh(0)= 300,Eh(0)= 30, Ih(0)= 20,Sv(0)= 65, Iv(0)= 20,
(2)

where, we assume Nh is the population of host pine trees,
Sh(t),Eh(t), Ih(t) are the susceptible, exposed and infected
pine trees at any time t, respectively, so Nh = Sh +Eh + Ih.
Also, Nv is the total vector (beetles) population consisting
of adult beetles at any time t, Sv(t), Iv(t) are the
susceptible beetles that do not have pinewood nematode
and the infected vector beetles that have the ability to
carry pinewood nematode at any time t, respectively, so
Nv = Sv + Iv. The meaning of parameters for the proposed
model (1) are presented in the following table.

Table 1: Interpretation and values of the parameters in the system

(1).
Parameter Description Value Reference

Λh The recruitment rate of the host pine population 0.009041 [8, 10]

Λv A constant emergence rate of the vector pine sawyer beetle 0.002691 [8, 10]

γv The natural death rate of vector population 0.011764 [10, 27]

γh The natural death rate of host population 0.0000301 [10, 28]

β The number of contacts during maturation feeding period 0.2 [10, 29]

δ The rate in which infected beetles transmit nematode by contact 0.00166 [10, 30]

β1 The transfer rates between the exposed and the infectious 0.057142 [10]

β2 The rate in which the adult beetles have pinewood nematode 0.00305 [10, 31]

when it escapes from dead trees

2 Preliminaries

Here, we introduce some basic definitions and notations to
complete this research (see [13, 32–34]).

Definition 1 For a given function f : R+ → R and α > 0,
then the Riemann-Liouville fractional integral is defined
by

aIα
t f (t) =

1

Γ (α)

∫ t

a
(t − τ)α−1 f (τ)dτ,

where Γ (·) is the Euler gamma function defined by

Γ (z) =

∞
∫

0

e−ttz−1dt (Re(z)> 0).

Definition 2 Let f (·) be absolutely continuous functions
on [a,b] and n−1< α ≤ n where n ∈N. Then, the Caputo
fractional derivative (CFD) is defined by

C
aDα

t f (t) =
1

Γ (n−α)

∫ t

a
(t − τ)n−α−1 f (n)(τ)dτ.

The definitions of Natural transform and Laplace
transform of Caputo’s derivative and Mittag-Leffler
function in two arguments are given, as follows:

Definition 3 Over the set of functions

A = { f (t) : ∃ M,τ1,τ2 > 0, | f (t)|< Me|t|/τ j , if t ∈ (−1) j × [0,∞)}.

The Natural transform of the time function f (t) (denoted
as R(s,u)) is defined by

N { f (t)}= R(s,u) =

∫ ∞

0
f (ut) e−stdt, u > 0, s > 0.

Theorem 1 The Natural transform of the CFD is defined
as:-

N {CDα f (t)} =
sα

uα
R(s,u)−

n−1

∑
k=0

sα−(k+1)

uα−k
f (k)(0).

Definition 4 If L { f (t)} is the Laplace transform of the
function f (t) , then the Laplace transform of the CFD is
defined as:

L {CDα f (t)}= sα F(s)−∑n−1
i=0 sα−i−1 f (i)(0),(n− 1 < α ≤ n);n ∈N.

Definition 5 For x∈R, the Mittag-Leffler function El,m(x)

is defined by

El,m(x) =
∞

∑
n=0

xn

Γ (ln+m)
, l > 0, m > 0.

Then, the Laplace transform of the function
tm−1El,m(±λ t l) is defined, as follows:

L [tm−1El,m(±λ t l)] =
sl−m

sl ∓λ
.

3 Non-negative solutions

Let Φ = {(Sh,Eh, Ih,Sv, Iv) ∈ R5
+| 0 ≤ Nh ≤ Λh

γh
,0 ≤ Nv ≤

Λv
γv
}. Now, we attempt to prove the positivity invariant of

Φ .

Theorem 2 The FOM (1) has a unique solution at t ≥ 0
and remains in Φ.

Proof. From the Theorem 3.1 and Remark 3.2 in [35], the
solution on (0,∞) is existent and unique. For the positivity
invariant (non-negative solutions) of Φ as well as from the
forth and last equation for the FOM (1), we have

C
0Dα

t Nv(t)+ γv Nv(t) = Λv. (3)

Adding the first, second and third equations for the FOM
(1), we have the differential equations of Nh(t), as follows:

C
0Dα

t Nh(t)+ γhNh(t) = Λh, (4)

In [13], applying Laplace transform method and
considering ICs equal to zero, the above-mentioned
equations have the following solutions

Nv(t) = Λv tα Eα ,α+1(−γv tα) ≥ 0,
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Nh(t) = Λh tα Eα ,α+1(−γh tα) ≥ 0,

where 0 < α < 1, all the parameters Λv,γv,Λv,γh are
positive values and El,m(x) is the two-parameter
Mittag-Leffler function (see Definition 5). Mittag-Leffler
function is an entire function, so Eα ,α+1(−γv tα) and
Eα ,α+1(−γh tα) are bounded for all t > 0. Therefore,
when t → ∞, the total dynamics of pinewood trees and

beetles approaches (Nv(t),Nh(t)) → (Λv

γv
, Λh

γh
) . Then, the

feasible region Φ for model (1) is positivity invariant.

4 Local asymptotic stability of the equilibria

To evaluate the EPs of the FOM (1), let
C
0Dα

t Sh = 0, C
0Dα

t Eh = 0, C
0Dα

t Ih = 0, (5)

C
0Dα

t Sv = 0, C
0Dα

t Iv = 0, (6)

by solving Eqs. (5)-(6), then we have the following two
EPs.

1.A disease-free equilibrium (DFE) solution:

The DFE of the model (1) is

E0 = (S
eq

h ,E
eq

h , I
eq

h ,Seq
v , Ieq

v ) =

(

Λh

γh

,0,0,
Λv

γv
,0

)

.

To derive the basic reproduction number R0 of system
(1) using the concept of next generation matrix [36,
37]. Following [36], R0 can be computed as

R0 = ρ(FV−1),

where ρ is the spectral radius and the necessary
matrices F,V are given by

F =





























0 β1 0 0 0

0 0
β2Λv

γv
0 0

0 0 0 0
β δΛh

γh

0 0 0 0 0

0 0 0 0 0





























,

and

V =





























0 0 γh 0 0

0 0 0 γv

0 β1 + γh 0 0 0

0 0
β2Λv

γv
γv 0

γh 0 0 0
β δΛh

γh





























.

Thus,

R0 =
β β1β2δΛhΛv

(β1 + γh)γ
2
h γ2

v

. (7)

2.An endemic equilibrium solution:

E∗ = (S∗h,E
∗
h , I

∗
h ,S

∗
v , I

∗
v ),

where,































































S∗h =
Λh

β δ I∗v +γh
,

E∗
h =

Λhβ δ I∗v
(β1+γh)(β δ I∗v +γh)

I∗h = Λhβ β1δ
γh(β1+γh)(β δ I∗v +γh)

,

S∗v =
Λvγh(β1+γhI∗v )(β δ I∗v +γh)

β1β2Λhβ δ I∗v +γvγh(β1+γh)(β δ I∗v +γh)
,

I∗v = Λvγh(R0−1)
γhγvR0+β δΛv

.

(8)

Now, we can summarize the existence of E0 and E∗ by the
following theorem:

Theorem 3 A DFE E0 of the FOM (1) always exists, and
there exists a unique positive endemic equilibrium E∗

represented in (8), whenever R0 > 1.
We state the theorems of the stability of the EPs E0 and

E∗, as follows:

Theorem 4 The DFE E0 of the FOM (1) is locally
asymptotically stable, if R0 ≤ 1, and unstabel if R0 > 1.

Proof. The Jacobian matrix of the system (1) at E0 is

JE0
=































−γh 0 0 0
−β δΛh

γh

0 −(β1 + γh) 0 0
β δΛh

γh

0 β1 −γh 0 0

0 0
−β2Λv

γv
−γv 0

0 0
β2Λv

γv
0 −γv































.

Calculate the eigenvalues of JE0
,

λ1 =−γh < 0, λ2 =−γv < 0,

and the remaining eigenvalues are given by

λ 3 +A1 λ 2 +A2 λ +A3 = 0, (9)

where

A1 = 2γh + γv +β1 > 0,

A2 = γhγv +(γh + γv)(β1 + γh)> 0

A3 = γhγv(β1 + γh)(1−R0) is always positive when R0 < 1.
(10)

Remark 1 Whenever the coefficients A1, A2 and A3 have

the same signal (positive), the eigenvalues (roots) have
negative real part (see e.g. [38]).

Thus, the DFE is
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1.locally asymptotically stable, if A3 > 0 (i.e R0 < 1).
In case A3 = 0 (i.e R0 = 1 ), the DFE is locally stable,
where λ3 = 0 and the eigenvalue λ4,λ5 satisfy this
condition |arg(λi)|>

απ
2

; ∀i = 4,5 (see e.g. [39, 40]).
2.Unstable, if A3 < 0 ⇔ R0 > 1.

We now state the theorem of local stability for E∗.
Theorem 5 Whenever R0 > 1, the endemic equilibrium

E∗ of the system (1) is locally asymptotically stable.

Proof. The Jacobian matrix of the system (1) at E∗ is

JE∗ =



























−βδ I∗v − γh 0 0 0 −βδS∗h

βδ I∗v −(β1 + γh) 0 0 βδS∗h

0 (β1 −γh 0 0

0 0 −β2S∗v −β2I∗h − γv 0

0 0 β2S∗v β2I∗h −γv



























.

Then, we obtain the characteristic polynomial of JE∗ , as
follows:

χ5 +K1χ4 +K2χ3 +K3χ2 +K4χ +K5 = 0, (11)

where

K1 =̥1 +̥2 + γh + γv,

K2 =̥1(̥2 + γh + γv)+̥2(γh + γv + γhγv)+̥3,

K3 =̥3(̥2 + γh + γv)+̥1(̥2γh +̥2γv + γhγv)+̥2γhγv,

K4 =̥1γhγv +̥3(̥2γh +̥2γv + γhγv)+β β1β2δS∗hS∗v
×(1+β δ I∗v ),

K5 =̥3̥2γhγv +β β1β2δγvS∗hS∗v(1+β δ I∗v ),
(12)

and
̥1 = β δ I∗v +β1 + 2γh,

̥2 = β2I∗h + γv,

̥3 = (β δ I∗v + γh)(β1 + γh).

Clearly, if the coefficients Ki, for i = 1,2,3,4,5 are
positive and satisfy the Routh–Hurwitz conditions
K1K2K3 > K2

3 + K2
1 K4 and

(K1K4 − K5)(K1K2K3 − K2
3 − K2

1 K4) >

K5(K1K2 −K3)
2 +K1K2

5 when R0 > 1, then the Eq. (11)
will give five negative eigenvalues. Thus it follows from
Routh–Hurtwiz criteria that the FOM (1) at E∗ is locally
asymptotically stable, whenever R0 > 1.

5 The Natural-Adomian Decomposition

Method

Adomian decomposition method is a powerful analytical
method that has been used to solve linear and nonlinear

functional equations of several types. The ADM was first
introduced by Adomian in 1980’s (see e.g [41, 42]). The
N-ADM demonstrates how the Natural transform maybe
combined with the ADM to obtain analytic approximate
solution of nonlinear differential equations. We now
consider the FOM (1) subject to the ICs in Eq. (2). Then,
Sh Iv and Sv Ih are the nonlinear terms in this model.
Applying the Natural transform to both sides of Eq. (1)
and


















































N {C
0Dα

t Sh(t)}= N {Λh −β δSh(t)Iv(t)− γhSh(t)},

N {C
0Dα

t Eh(t)}= N {β δSh(t)Iv(t)− (β1 + γh)Eh(t)},

N {C
0Dα

t Ih(t)}= N {β1Eh(t)− γhIh(t)},

N {C
0Dα

t Sv(t)}= N {Λv −β2Sv(t)Ih(t)− γvSv(t)},

N {C
0Dα

t Iv(t)}= N {β2Sv(t)Ih(t)− γvIv(t)},
(13)

using property of the Natural transform, we get























































sα

uα N {Sh(t)}−
sα−1

uα Sh(0) = N {Λh −β δSh(t)Iv(t)− γhSh(t)},

sα

uα N {Eh(t)}−
sα−1

uα Eh(0) = N {β δSh(t)Iv(t)− (β1+ γh)Eh(t)},

sα

uα N {Ih(t)}−
sα−1

uα Ih(0) = N {β1Eh(t)− γhIh(t)},

sα

uα N {Sv(t)}−
sα−1

uα Sv(0) = N {Λv −β2Sv(t)Ih(t)− γvSv(t)},

sα

uα N {Iv(t)}−
sα−1

uα Iv(0) = N {β2Sv(t)Ih(t)− γvIv(t)},
(14)

using the ICs in (2)


























































N {Sh(t)}=
Sh(0)

s
+ uα

sα N {Λh −β δSh(t)Iv(t)− γhSh(t)},

N {Eh(t)}=
Eh(0)

s
+ uα

sα N {β δSh(t)Iv(t)− (β1 + γh)Eh(t)},

N {Ih(t)}=
Ih(0)

s
+ uα

sα N {β1Eh(t)− γhIh(t)},

N {Sv(t)}=
Sv(0)

s
+ uα

sα N {Λv −β2Sv(t)Ih(t)− γvSv(t)},

N {Iv(t)}=
Iv(0)

s
+ uα

sα N {β2Sv(t)Ih(t)− γvIv(t)}.
(15)

Assuming that the solutions Sh(t), Ih(t),Sv(t), Iv(t) in the
form of infinite series are given by:

Sh(t) =
∞

∑
n=0

S
(n)
h (t), Eh(t) =

∞

∑
n=0

E
(n)
h (t), (16)

Ih(t) =
∞

∑
n=0

I
(n)
h (t), Sv(t) =

∞

∑
n=0

S
(n)
v (t), Iv(t) =

∞

∑
n=0

I
(n)
v (t),

and the non-linear terms involved in the model ShIv, SvIh

are decomposed by Adomain polynomials as

Sh(t)Iv(t) =
∞

∑
n=0

An(t), Sv(t)Ih(t) =
∞

∑
n=0

A∗
n(t), (17)
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where An, A∗
n are Adomian Polynomials defined as

An =
1

n!

dn

dλ n

[

n

∑
j=0

λ jS
( j)
h

n

∑
j=0

λ jI
( j)
v

]
∣

∣

∣

∣

∣

λ=0

,

A∗
n =

1

n!

dn

dλ n

[

n

∑
( j)=0

λ jS
( j)
v

n

∑
j=0

λ jI
( j)
h

]∣

∣

∣

∣

∣

λ=0

. (18)

Substituting from Eqs. (16), (17) and (18) into (15), then
the results are obtained as follows:



























































N {S
(0)
h }= Sh(0)

s
,

N {E
(0)
h }= Eh(0)

s
,

N {I
(0)
h }= Ih(0)

s
,

N {S
(0)
v }= Sv(0)

s
,

N {I
(0)
v }= Iv(0)

s
,

(19)



























































N {S
(1)
h }= uα

sα N {Λh −β δA0 − γhS
(0)
h (t)},

N {E
(1)
h }= uα

sα N {β δA0 − (β1 + γh)E
(0)
h (t)},

N {I
(1)
h }= uα

sα N {β1E
(0)
h (t)− γhI

(0)
h (t)},

N {S
(1)
v }= uα

sα N {Λv −β2A∗
0 − γvS

(0)
v (t)},

N {I
(1)
v }= uα

sα N {β2A∗
0 − γvI

(0)
v (t)},

(20)



























































N {S
(2)
h }= uα

sα N {Λh −β δA1 − γhS
(1)
h (t)},

N {E
(2)
h }= uα

sα N {β δA1 − (β1 + γh)E
(1)
h (t)},

N {I
(2)
h }= uα

sα N {β1E
(1)
h (t)− γhI

(1)
h (t)},

N {S
(2)
v }= uα

sα N {Λv −β2A∗
1 − γvS

(1)
v (t)},

N {I
(2)
v }= uα

sα N {β2A∗
1 − γvI

(1)
v (t)},

(21)

...


























































N {S
(n+1)
h }= uα

sα N {Λh −β δAn − γhS
(n)
h (t)},

N {E
(n+1)
h }= uα

sα N {β δAn − (β1 + γh)E
(n)
h (t)},

N {I
(n+1)
h }= uα

sα N {β1E
(n)
h (t)− γhI

(n)
h (t)},

N {S
(n+1)
v }= uα

sα N {Λv −β2A∗
n − γvS

(n)
v (t)},

N {I
(n+1)
v }= uα

sα N {β2A∗
n − γvI

(n)
v (t)}.

Studying the mathematical behavior of the solutions
Sh(t), Eh(t), Ih(t), Sv(t), Iv(t) at different values of α is
the main purpose. Applying the inverse Natural transform

to both sides of Eq.(19), the values of S
(0)
h , E

(0)
h , I

(0)
h , S

(0)
v ,

I
(0)
v are obtained. Substituting these values of S

(0)
h , E

(0)
h ,

I
(0)
h , S

(0)
v , I

(0)
v , A0 and A∗

0 into Eq.(20), the first

components S
(1)
h , E

(1)
h , I

(1)
h , S

(1)
v , I

(1)
v are obtained. The

other terms of
S
(2)
h ,S

(3)
h , ..., E

(2)
h ,E

(3)
h , ..., I

(2)
h , I

(3)
h , ... S

(2)
v ,S

(3)
v , ...

I
(2)
v , I

(3)
v , ... can be computed respectively using the same

way and we can write the solutions, as follows:

Sh(t) = S
(0)
h + S

(1)
h + ...,

Eh(t) = E
(0)
h +E

(1)
h + ...,

Ih(t) = I
(0)
h + I

(1)
h + ...,

Sv(t) = S
(0)
v + S

(1)
v + ...,

Iv(t) = I
(0)
v + I

(1)
v + ... .

(22)

6 Fractional Euler Method (FEM)

In [43], FEM has been introduced and numerical
experiments are reported in (see e.g [44]). For instance,
considering the general initial value problem

C
0Dα

t y(t)= f (t,y(t)), y(0)= y0, 0<α ≤ 1, 0< t ≤ T.
(23)

In a discrete numerical method the time interval [0,T ] is

replaced by a discrete set of points t j = jh, h = T
N

, j =
0,1, ...,N, so the solution is approximated by a sequence
{

y j

}

j=0,1,...,N
such that y j ≈ y(t j). The exact solution of

(23) can be written in terms of a Volterra integral equation
of the second kind with a weakly singular kernel,

y(t) = y(0)+
1

Γ (α)

∫ t

0
(t − s)α−1 f (s,y(s))ds. (24)

The method is based on the approximation of the integral
on the right-hand side of Eq. (24) by the product rectangle
rule. This leads to the formula

yk = y0 +
hα

Γ (α + 1)

k−1

∑
j=0

b j,k f (t j ,y j), (25)

for k = 1,2, ...,N where the weights

b j,k = (k− j)α − (k− 1− j)α. (26)

In the limit case α → 1 the generalized one-step
Adams-Bashforth method (i.e. the Fractional Euler
method) reduces to the classical first-order
Adams-Bashforth formula (i.e. the forward Euler
method). It is an explicit method since yk does not appear
on the right-hand side of (25). As a consequence of
Corollary 2.1 in [11], the error can be estimated as
follows:
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Theorem 6 The approximation computed by the Adams-
Bashforth method satisfies the error bound

|y(t j)− y j|= O(h)

uniformly for all j if C
0Dα

t y ∈C1[0,T ].

Applying this formula (25) to the FOM (1), we can
write the following approximate solutions:

Sk
h =Sh(0)+

hα

Γ (α + 1)

k−1

∑
j=0

b j,k[Λh −β δS
j

hI j
v − γhS

j

h],

Ek
h =Eh(0)+

hα

Γ (α + 1)

k−1

∑
j=0

b j,k[β δS
j
hI j

v − (β1 + γh)E
j
h ],

Ik
h =Ih(0)+

hα

Γ (α + 1)

k−1

∑
j=0

b j,k[β1E
j
h − γhI

j
h ],

Sk
v =Sv(0)+

hα

Γ (α + 1)

k−1

∑
j=0

b j,k[Λv −β2S j
vI

j

h − γvS j
v],

Ik
v =Iv(0)+

hα

Γ (α + 1)

k−1

∑
j=0

b j,k[β2S j
vI

j

h − γvI j
v ],

where b j,k is given by (26).

7 Numerical simulation and discussion

FEM and N-ADM are applied to solve the system (1)
when α = 1. In Tables 2-6, we compare our results with
those of the classical RK4. The N-ADM gives analytic
approximate solution in terms of an infinite power series.
We calculated the first four terms of the N-ADM series
solution for the FOM (1). Two of them are presented, as
follows:

S
(0)
h

= 300, E
(0)
h

= 30, I
(0)
h

= 20, S
(0)
v = 65, I

(0)
v = 20.

S
(1)
h =

(

Λh − 6000β δ − 300γh

)

tα

Γ (α + 1)
,

E
(1)
h =

(

6000β δ − 30(β1+ γh)

)

tα

Γ (α + 1)
,

I
(1)
h =

(

30β1 − 20γh

)

tα

Γ (α + 1)
,

S
(1)
v =

(

Λv − 1300β2− 65γv

)

tα

Γ (α + 1)
,

I
(1)
v =

(

1300β2− 20γv

)

tα

Γ (α + 1)
.

Table 2: The numerical results of Sh(t)

t FEM N-ADM RK4

0 300 300 300

0.2 299.5944 299.5926 299.5944

0.4 299.1746 299.1709 299.1746

0.6 298.7406 298.7402 298.7406

0.8 298.2924 298.2911 298.2924

Table 3: The numerical results of Eh(t)

t FEM N-ADM RK4

0 30 30 30

0.2 30.0622 30.0610 30.0622

0.4 30.1379 30.1343 30.1378

0.6 30.2268 30.2260 30.2268

0.8 30.3288 30.3088 30.3287

Table 4: The numerical results of Ih(t)

t FEM N-ADM RK4

0 20 20 20

0.2 20.3431 20.3430 20.3431

0.4 20.6869 20.6867 20.6869

0.6 21.0317 21.0310 21.0317

0.8 21.3779 21.3760 21.3776

Table 5: The numerical results of Sv(t)

t FEM N-ADM RK4

0 65 65 65

0.2 64.0548 64.0543 64.0548

0.4 63.1101 63.1069 63.1100

0.6 62.1662 62.1611 62.1662

0.8 61.2236 61.2198 61.2236

Table 6: The numerical results of Iv(t)

t FEM N-ADM RK4

0 20 20 20

0.2 20.7460 20.7230 20.7460

0.4 21.4920 21.4422 21.4920

0.6 22.2375 22.2175 22.2376

0.8 22.9823 22.9723 22.9824
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In general, comparative results in Tables 2-6 showed
the efficiency of the N-ADM for small time (i.e., t << 1)
as the responses of the FOM (1) follow the results of RK4
when α = 1. However, the dynamical equations of
fractional order can no longer be solved analytically over
a long time intervals. Thus numerical simulations must be
used to demonstrate the theoretical results (see
e.g. [44, 45]). Now, we consider relatively long time
intervals and different values of α to show some
numerical experiments for the FOM (1). From the values
of parameters in Table 1, the approximate solutions are
displayed in Figs.1-5 using the formula (25) with stepsize
h = 0.01 and different values of fractional order
0 < α ≤ 1. The numerical simulations indicate that the
disease is endemic, where R0 >> 1, i.e. the disease will
persist among the population of host pine trees (see Fig.
3). Precisely, in Fig. 1, the number of susceptible pine
trees Sh steadily reduces, while the number of infected
host Ih increases (see Fig. 3). In Fig.5, we can note that
the number of Iv(t) never goes to extinction. Furthermore,
whenever R0 > 1, the exposed host Eh and the infected
vector Iv are oscillating (see Fig. 2 and Fig. 5,
respectively), but they are stable at the end of time
interval. This illustrates the analytical results in Theorem
4. The advantage of the comparison between the
numerical simulations of integer order ( when α = 1) and
fractional order (when α = 0.98,0.95) is to explore the
dynamical behavior of the FOM in a more sophisticated
way. One can observe that PWD model (1) with fractional
order derivative has more degree of freedom. For the
fractional order case, the climax of Eh(t) and Iv(t) reduces
in Fig.2 and Fig.5. Numerical results in Tables 2-6 and
Figs.1-5 demonstrates that the approximate solutions
continuously depend on the time-fractional derivative α .
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Time (day)

0

50

100
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200

250

300

S
h

=1.0

=0.98

=0.95

Fig. 1: Plot of the susceptible host population versus time with

different values of α .
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Fig. 2: Plot of the exposed host population versus time with

different values of α .
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Fig. 3: Plot of the infected host population versus time with

different values of α .
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Fig. 4: Plot of the susceptible vector population versus time with

different values of α .
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=0.98

=0.95

Fig. 5: Plot of the infected vector population versus time with

different values of α .

8 Conclusion

In this work, we considered PWD of fractional order α
(where 0 < α ≤ 1) which has possessed memory. We
proved the non-negative solutions of the fractional model
using Laplace transform method. The general form of
basic reproduction number R0 was computed and we
showed the stability analysis of the disease free equilibria
E0 and the endemic equilibrium E∗ of the proposed
model on the basis of R0. In Tables 2-6, the solutions by
N-ADM (for small time interval) demonstrated our
theoretical analysis for the FOM. Moreover, our
numerical simulation (Figs. 1-5) by FEM asserted
persistence of the disease. Furthermore, the order of the
proposed model can be defined using the collected data
from naturally occurring epidemic of PWD.

Future researches can be conducted by considering
the compartments of the pine trees populations and other
factors such as the existence of vector using various
operators of fractional derivative.
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