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Abstract: In this paper, a non-linear mathematical model for tumor-immune system is formulated and analyzed by considering

saturated incidence for the interaction between tumor cells and cytotoxic-T lymphocytes (CTLs). It is assumed that both the tumor

cells as well as T-helper cells follow logistic growth. In Addition, a time lag exists in the activation of CTLs because of T-helper cells.

Existence and stability of different equilibria of the model are discussed in detail. The model is analyzed using the theory of delay

differential equations. It was observed that delay played an important role in defining the dynamics of the system. The system exhibited

Hopf-bifurcation when the value of time delay crossed a certain threshold. Existence of Hopf-bifurcation and condition for stability

switch are discussed in detail. Numerical simulation is performed to support the analytical findings.

Keywords: Cancer; Stability theory; Hopf-bifurcation.

1 Introduction

Cancer is a disease which involves abnormal growth of
cells and there are more than 100 types of cancer. It
causes cells to divide in a uncontrolled manner and it
invades neighboring tissues. It is a complicated disease
and its treatment varies depending upon its different
stages. Moreover, it has overtaken cardiovascular diseases
and become the leading cause of death in rich nations.
There are different types of cancer treatment methods,
such as radiation therapy, chemotherapy, immunotherapy,
targeted therapy, hormone therapy,. . . etc. Some patients
need a combination of these therapies. The proper
understanding of the interaction between tumor cells and
immune system is most required to predict the success of
any therapy. Several research papers have addressed the
interaction between tumor cells and immune cells.
Currently, it can be cured if detected at an early stage, but
treatment procedure of cancer varies from a patient to
another, which creates a challenge for modern medicine.
The cancer treatment should aim to kill cancer cells with
minimum damage to healthy cells [1].

Mathematical modeling of cancer growth and
treatment is discussed over time by different researchers
[2-7]. In this paper, the authors asserted the importance of
both helper cells and CTLs in antitumor-immune

response. In [8-9], the authors considered
delay-differential equation model to describe the
dynamics of tumor-immune interaction. They also
considered the discrete delay as the bifurcation parameter
and obtained the length of delay which preserves stability.
They demonstrated that when the delay crosses a critical
value, Hopf-bifurcation occurs. In [10], authors discussed
cancer self remission and tumor stability by stochastic
approach. Recently Khajanchi and Nieto [11] extended
this model by incorporating discrete time lag to the
recruitment of cytotoxic-T-lymphocytes or hunting cells
because of the interaction with resting cells or T-helper
cells. The authors discussed the existence and stability of
equilibrium points, existence of Hopf-bifurcation and its
direction and stability. In these models authors assumed
the interaction between tumor cells and CTLs as simple
mass-action type where many researchers have assumed
that the removal of tumor cells due to CTLs follows
saturation type incidence [12]. In the present study, we
formulate our model based on [11] and consider
saturation type incidence for the interaction between
tumor cells and CTLs. Furthermore, we do not consider
the natural death rate of T-helper cells separately because
it is already involved in the logistic growth of T-helper
cells. This makes our model different from existing
models and more realistic.
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The remaining part of this paper is organized as
follows: Section 2 describes the proposed mathematical
model. Section 3 analyzes the model without delay.
Section 4 demonstrates the stability analysis of the
non-trivial equilibrium for the model with delay. Section
5 illustrates the Hopf-bifurcation analysis and stability
switching phenomena. Section 6 exhibits the numerical
simulation results. Section 7 is dedicated to conclusion.

2 The Mathematical Model

Here we formulate a non-linear mathematical model by
considering the state variables, i.e. the density of tumor
populations y(t), the density of cytotoxic T-lymphocytes
(CTLs) or hunting cells z(t) and the density of T-helper
cells (THLs) or resting cells w(t) at any time t in a single
tumor-site compartment. Basically, we extend the model
of Khajanchi and Nieto [11] by considering the saturated
type incidence between the tumor cells and CTLs. It is
assumed that the malignant tumor cells are eliminated by
immune system, namely, cytotoxic T-lymphocytes (CTLs)
and T-helper cells (THLs). The T-helper cells are directly
unable to kill the tumor cells, but they release some
cytokines (a kind of proteins), which activate the hunting
cells or CTLs population. CTLs destroy the malignant
tumor cells by phagocytosis process. As in [11], we
assume that both the tumor cells and T-helper cells follow
the logistic growth. As the activation process of CTLs due
to T-helper cells is not an instantaneous process, a
discrete time delay in the term corresponding to
interaction between the CTLs and THLs is incorporated
in the proposed model. Furthermore, when cells get
transferred from T-helper cells to CTLs, they never come
back to the previous stage i.e. T-helper cells. Keeping the
above fact in mind we formulate our model as follows:

dy

dt
= ry

(

1−
( y

K

))

−
αyz

σ + z
,

dz

dt
= β1z(t − τ)w(t − τ)− δ z,

dw

dt
= sw

(

1−
(w

L

))

−β2z(t − τ)w(t − τ), (1)

where r and s are the intrinsic growth rate of tumor cells
and CTLs respectively, K and L are the carrying
capacities of tumor cells and CTLs respectively, the
tumor cells are removed by CTLs with saturation at the
rates

αyz
σ+z

; β1z(t − τ)w(t − τ) is the proliferation rate of
CTLs due to conversion of resting stage to hunting stage
with a discrete delay τ , δ is the natural death rate of
CTLs, β2z(t − τ)w(t − τ) represents the conversion rate
of T-helper cells to CTLs with same delay τ . The initial
condition for the system (1) are given by
y(θ ) = φ1(θ ),z(θ ) = φ2(θ ),w(θ ) = φ3(θ ),
φ1(θ ) ≥ 0,φ2(θ ) ≥ 0,φ3(θ ) ≥ 0, where
φ1(θ ),φ2(θ ),φ3(θ ) ∈ C ([−τ,0],R3

+), the Banach space
of continuous functions mapping the interval [−τ,0] into
R3

+ where R3
+ = {(y,z,w) : y,z,w ≥ 0}.

3 Analysis of the Model without Delay

3.1 Existence of Equilibria

The model system (1) produces six equilibria as follows:
(i) trivial equilibrium point E1(0,0,0), (ii) axial equilibria
E2(K,0,0) and (iii) E3(0,0,L) (iv) The y − w planner
equilibrium point E4(K,0,L) (v) tumor-free equilibrium

point E5 (0, z̄, w̄) with z̄ =
s

β2

(

1−
w̄

L

)

, w̄ =
δ

β1

which

exists only when L >
δ
β1

and (vi) E6 (ŷ, ẑ, ŵ) with

ŷ =
K

r

(

r−
αz

σ + z

)

, ẑ = z̄, ŵ = w̄, which exists only

when rσ +(α − r) s
β1β2L

(δ −β1L)> 0.

3.2 Stability Analysis

The Jacobian matrix of the system (1) without delay
evaluated at E1(0,0,0) is given by

J(E1) =





r 0 0
0 −δ 0
0 0 s



 .

The eigenvalues are r,−δ and s. As r,s > 0, so the
equilibrium point E1 is always unstable.

The Jacobian matrix of the system (1) without delay
evaluated at E2(K,0,0) is given by

J(E2) =





−r −αK
σ 0

0 −δ 0
0 0 s



 .

The eigenvalues are −r,−δ and s. As s > 0, the
equilibrium point E2 is always unstable.

The Jacobian matrix of the system (1) without delay
evaluated at E3(0,0,L) is given by

J(E3) =





r 0 0
0 β1L− δ 0
0 −β2L −s



 .

The eigenvalues are r,β1L − δ and −s. As r > 0, the
equilibrium point E3 is always unstable.

The Jacobian matrix of the system (1) without delay
evaluated at E4 (K,0,L) is given by

J(E4) =





−r −αK
σ 0

0 β1L− δ 0
0 −β2L −s



 .

The eigenvalues are −r,β1L− δ and −s. The equilibrium

point E4 is stable if L <
δ
β1

. It is easy to observe that in this

case the equilibria E5 and E6 do not exist.
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The Jacobian matrix of the system (1) without delay
evaluated at E5(0, z̄, w̄) is given by

J(E5) =





r− α z̄
(σ+z̄)

0 0

0 0 β1z̄

0 −β2w̄ − w̄s
L



 ,

An eigenvalue is r − α z̄
(σ+z̄) and other two eigenvalues are

the roots of the following quadratic equation:

λ 2 +

(

sδ

β1L

)

λ + sδ

(

1−
δ

β1L

)

= 0.

The coffcients of λ and the constant term are positive as

L >
δ
β1

, so both the roots will have negative real parts.

The first eigenvalue is negative provided r <
α z̄

(σ+z̄) i.e.

rσ +(α − r) s
β1β2L

(δ −β1L) < 0. In this case, the interior

equilibrium point E6 does not exist. Hence, the
equilibrium point E5 is locally asymptotically stable
according to the above-mentioned condition.

The Jacobian matrix of the system (1) without delay
evaluated at E6(ŷ, ẑ, ŵ) is given by

J(E6) =





− rŷ
K

ασ ŷ

(σ+ẑ)2 0

0 0 β1ẑ

0 −β2ŵ − sŵ
L



 ,

An eigenvalue is − rŷ
K

and other two eigenvalues are the
roots of the following quadratic equation:

λ 2 +

(

sδ

β1L

)

λ + sδ

(

1−
δ

β1L

)

= 0.

The coefficients of λ and the constant term are positive as

L >
δ
β1

, so both the roots of above quadratic equation will

have negative real parts. Hence the equilibrium point E6 is
locally asymptotically stable whenever it exists.

4 Analysis of the Model with Delay

The equilibria of the model with delay are the same as
those without delay. In addition, it is found that the
existence of interior equilibrium point E6 implies the
instability of E4 and E5. Moreover, the equilibria E1, E2

and E3 are always unstable. Thus, we will concentrate on
the stability of only interior equilibrium point E6 in
presence of delay. Stability of the equilibrium point is
defined by computing the roots of the following
characteristic equation evaluated at the corresponding
equilibrium point

det(A+Be−λ t −λ I) = 0, (2)

where I is the identity matrix of order 3 and

A =







r
(

1− 2y
K

)

− αz
σ+z

ασy

(σ+z)2 0

0 −δ 0

0 0 s(1− 2w
L
)






,

B =





0 0 0
0 β1w β1z

0 −β2w −β2z



 .

The characteristic polynomial evaluated at E6(ŷ, ẑ, ŵ) is
given by

(

λ +
rŷ

K

)

[

{

λ 2 +λ P1+P2

}

+ e−λ τ {λ R1 +R2}
]

= 0,

where

P1 = δ − s+
2sδ

β1L
, P2 =

2sδ 2

β1L
− sδ ,

R1 =−δ + s−
sδ

β1L
, R2 = 2sδ −

3sδ 2

β1L
.

One root of the aforementioned characteristic polynomial

is
rŷ
K

and remaining are the roots of following
transcendental equation:

P(λ )+ e−λ τQ(λ ) = 0, (3)

where

P(λ ) =
{

λ 2 +λ P1 +P2

}

, Q(λ ) = {λ R1 +R2}= 0.

When τ = 0, we get
[

λ 2 +λ (P1 +R1)+ (P2 +R2)
]

= 0.
As previously mentioned, this equilibrium point E6 is
locally asymptotically stable in absence of delay as both
P1 + R1 and P2 + R2 are positive. When τ 6= 0, λ = iω .
Substituting λ = iω in the equation (3) and equating the
real and imaginary parts we get the following two
equations:

−ω2 +P2 = cosωτ [−R2]− sinωτ [ωR1] (4)

ωP1 = cosωτ [−ωR1]+ sinωτ [R2] (5)

Now squaring and adding equations (4) and (5), we get the
following biquadratic equation:

ω4 +P2
2 − 2P2ω2 +ω2P2

1 −R2
2 −ω2R2

1 = 0 (6)

Assuming ω2 = u we have

F(u) = u2 + ud1+ d2 = 0, (7)

where

d1 =
[

P2
1 − 2P2 −R2

1

]

, d2 =
[

P2
2 −R2

2

]

. (8)

Theorem 1 If the coefficients d1,d2 in F(u) satisfy the

conditions of Routh-Hurwitz criterion (i.e. d1 > 0 and

d2 > 0), then the interior equilibrium point E6(ŷ, ẑ, ŵ) if it

exists is asymptotically stable for all delay τ > 0 provided

it is stable in absence of delay.

Theorem 2 If the coefficients d1,d2 in F(u) satisfy

Routh-Hurwitz criterion (i.e. d1 > 0 and d2 > 0), and the

interior equilibrium point E6(ŷ, ẑ, ŵ) is unstable at τ = 0,

it will remain unstable for all τ ≥ 0.

This theorem is inapplicable to our model as the
equilibrium point E6 if it exists is locally asymptotically
stable in absence of delay.
If F(u) = 0 has a positive root, we have the following
result.
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Theorem 3 The endemic equilibrium point E6 of the

system (1) is conditionally stable if and only if all the

roots of the characteristic equation (3) have negative real

parts at τ = 0 and there exist some positive values of the

delay τ such that the characteristic equation (3) has a

pair of purely imaginary roots ±iω0 (say). The system

will undergo a stability change for an infinite number of

values of τ say τ∗n , where

τ∗n = τ =
1

ω0

cos−1

[

R2(ω
2
0 −P2)−ω2

0 P1R1

R2
2 +ω2

0 R2
1

]

+
2nπ

ω0

,

n = 0,1,2, ... (9)

5 Analysis of Hopf-bifurcation

Now, we shall investigate the Hopf bifurcation of the
model system (1), for which we need to verify the

transversality condition
d(Reλ )

dτ
|τ=τ0

> 0 i.e.
dξ

dτ
|ξ=0 > 0

for λ (τ) = ξ (τ) + iω(τ). This will designate that there
exists at least one eigenvalue with nonnegative real part
for τ > τs. Moreover, the conditions for Hopf bifurcation
are necessary to prove the existence of periodic solutions.
First, we are interested in purely complex roots λ = iω0

of (3). Equation (3) implies that |P(iω0)| = |Q(iω0)| and
this defines the possible set of values of ω0. Now, we aim
to observe the direction of motion of λ as τ is varied, for
which we find,

Ω = sign

[

d(Reλ )
dτ

]

|τ = τn = sign

[

d(Reλ )
dτ

]−1

|τ = τn.

On differentiating (3) with respect to τ , we get

[

(2λ +P1)−R1e−λ τ − τe−λ τ(R1λ +R2)
]

(

dλ

dτ

)

−λ e−λ τ(R1λ +R2) = 0

which leads to

(

dλ

dt

)−1

=
eλ τ(2λ +P1)

λ (R1λ +R2)
+

R1

λ (R1λ +R2)
−

τ

λ
.

Since λ (τ0) = iω0 is a simple root of the characteristic
equation(3), we can evaluate the expressions involved in
the above derivative at τ = τ0 as follows:

{(2λ +P1)e
λ τ}|τ=τ0

= η1 + iη2

{λ (R1λ +R2)}|τ=τ0
= η3 + iη4

R1|τ=τ0
= η5 (10)

where

η1 = P1 cosω0τ0 − 2ω0 sinω0τ0,

η2 = 2ω0 cosω0τ0 +P1 sinω0τ0,

η3 =−ω2
0 R1,η4 = ω0R2,η5 = R1.

Now

(

dλ

dτ

)−1

τ=τ0

=

(

dReλ (τ0)

dτ

)

=
η1η3 +η2η4 +η3η5

η2
3 +η2

4

Using the equations in (4) and (5), we can rewrite above
expression as follows:
(

dλ

dτ

)−1

|τ=τ0
=

ω2
0

[

2ω2
0 +(P2

1 − 2P2R2
1

]

η2
3 +η2

4

=
ω2

0

η2
3 +η2

4

(2u+ d1)|u=ω2
0

=
ω2

0

η2
3 +η2

4

F ′(u)|u=ω2
0

Therefore

sign

[(

d

dτ
Reλ (τ0)

)]

= sign

[

(

d

dτ
Reλ (τ0)

)−1
]

= sign

[

ω2
0

η2
3 +η2

4

F ′(u)|u=ω2
0

]

.

As η2
3 + η2

4 > 0, ω2
0 > 0 and F ′(u)|u=ω2

0
6= 0, the

sign

[(

d

dτ
Reλ (τ0)

)]

will be determined by the

sign
[

F ′(u)|u=ω2
0

]

.

We already have Re(λ (τ)) = ξ (τ) and ξ (τ0) = 0. Thus if

sign
[

F ′(u)|u=ω2
0

]

< 0, then there exists a ζ > 0 such that

ξ (τ) is decreasing in (τ0 − ζ ,τ0) and ξ (τ) = 0 at τ = τ0.
Hence for all τ ∈ (τ0 − ζ ,τ0), ξ (τ) > 0, which
contradicts the fact that roots of the characteristic
equation (3) have negative real parts for all τ ∈ [0,τ0] and
τ = τ0 is the minimum value of delay τ for which (3) will
have purely imaginary roots. Hence

sign
[

F ′(u)|u=ω2
0

]

> 0 which shows that there exists at

least one λ (τ) with ξ (τ)> 0 for τ > τ0.

5.1 Switching phenomena

Now, we study the conditions for stability switches using
the results of Cooke and van den Driessche [13] for a
scalar delay differential equation

∑
k=0

ak

dk

dtκ
x(t)+ ∑

k=0

bk

dk

dtκ
x(t − τ) = 0.an 6= 0.n ≥ m

The characteristic equation corresponding to system
(1) is

P(λ )+ e−λ τQ(λ ) =
[

λ 2 +λ P1 +P2

]

+e−λ τ [λ R1 +R2] = 0,

where

P1 = δ − s+
2sδ

β1L
, P2 =

2sδ 2

β1L
− sδ ,
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R1 =−δ + s−
sδ

β1L
, R2 = 2sδ −

3sδ 2

β1L
.

We can adopt numerous methods to investigate the
characteristic equation has a root λ with nonnegative real
part. Geometric arguments can be utilized to determine
the stability of a given fixed point [14], where the
argument principle is utilized to count the number of
zeros of φ(λ ) on the right hand side of the imaginary
plane. In our case, we use the results by Cooke and van
den Driessche [13], which satisfy the following
conditions:

1.P(λ ) and Q(λ ) have no common root and both are
analytic function with Re(λ ),

2.P(−iy) = P(iy)Q(−iy) = Q(iy), ∀y

3.P(0)+Q(0) = P2 +R2 6= 0

4.limsup|λ |→+∞

∣

∣

∣

Q(λ )
P(λ )

∣

∣

∣= 0 < 1

5.φ(y) = |P(iy)|2 −|Q(iy)|2

i.e, φ(y) = y4 +φ1y2 +φ2 = 0, where

φ1 =
[

P2
1 − 2P2−R2

1

]

,

φ2 =
[

P2
2 −R2

2

]

= −3(sδ )2

(

1−
δ

β1L

)[(

1−
5δ

3β1L

)]

.

For P2
2 −R2

2 < 0 we need the condition L >
5δ
3β1

. Under this

condition φ2 is negative, so φ(y) must have at least one
nonnegative root. Therefore, using the result of [15], we
conclude that at most finite number of stability switching

is possible for the model system (1) when L >
5δ
3β1

.

6 Numercial Simulations

Here, we first simulate our model system (1) without delay
for the following set of parameters:

r = 1.8097,α = 2,σ = 100,β2 = 0.05,β1 = 0.1,

s = 0.2,K = 1818,δ = 0.35,L = 100.

The units of all the parameters mentioned above are in per
day. For this set of parameter the system (1) has unique
interior equilibrium point as (1444.6,3.9,3.5) which is
locally asymptotically stable. The results of this
simulation are demonstrated in Figure 1. Then we
simulate our model system (1) with delay using
MATLAB function dde23. Here, we observe that this
interior equilibrium point is locally asymptotically stable
as long as delay is less than 0.053 and model system
exhibits periodic oscillations once this delay τ crosses
this value. Hence this value is the threshold τ0. Here we
present our simulation results for two different values of
delay e.g. (i) τ = 0.03 < τ0 and (ii) τ = 0.055 > τ0. So
for τ < τ0, our system exhibits stable interior equilibrium
point. This fact is demonstrated in Figure 2. The
Hopf-bifurcating periodic behaviour of the system (1) is
demonstrated in Figure 3 where τ = 0.055 > τ0. The

Hopf-bifurcating periodic solution occurs when τ crosses
τ0 from left to right i.e. when τ > τ0. This indicates that
the Hopf-bifurcation is supercritical. Accordingly, in the
absence of any therapy, system may exhibits
Hopf-bifurcating periodic oscillations. This corresponds
to long-run tumor relapse. This phenomenon is also
reported clinically and is known as Jeff’s phenomenon
[17]. Next we change α = 10 and try to see the impact of
the parameter β2 which corresponds to the conversion rate
of T-helper cells to CTLs. Change in these parameters
does not change the threshold τ0 as they are not directly
involved in the expression for τ0. It is observed that the
small change in the parameter β2 causes large change in
the period of the Hopf-bifurcating periodic solution of the
tumor cells. And in this case, it will be very difficult to
predict the success of any therapy to control the growth of
tumor cells. Here Figure 4 demonstrates this fact, where
β2 changes from 0.05 to 0.04 and all other parameters and
the value of the delay τ are kept fixed. It also indicates
that the period of the oscillation increases with the
decrease in this parameter β2. This result is different from
the available results, e.g. in [11] it was shown that
increase in β2 causes increase in the magnitude of
oscillations. This difference happens primarily because of
our assumption of saturation type incidence between
tumor cells and CTLs. Thus the inhibition rate β2 of
T-helper cells is a key parameter which plays an
important role in defining the relapse period of tumor.

7 Conclusion

The present paper investigated a non-linear model for
tumor-immune system by assuming the interaction
between tumor cells and CTLs to be of saturated type by
incorporating a time delay. The model was analyzed using
the theory of delay differential equation. The non-trivial
equilibrium point was locally stable without delay. There
existed a critical value of delay below which this
non-trivial equilibrium was stable. When the delay(τ)
crossed a threshold value, Hopf-bifurcation occured and
periodic solution appeared. The analysis of
Hopf-bifurcation and stability switches were
demonstrated using numerical simulation. The impact of
the parameter β2 corresponding to inhibition rate of
T-helper cells were also demonstrated using numerical
simulation. Moreover, the amplitude of the periodic
oscillations increased with the decrease in the parameter
β2. In this situation, success of any therapy is highly
unpredictable. As immune system varies person to
another, health professionals should aim to have a proper
estimate of the delay τ and the parameter β2 for an
individual patient to predict the dynamics of
tumor-immune system and to develop a treatment policy.
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Fig. 1: Variation of state variables with time when delay τ = 0.
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Fig. 2: Variation of state variables with time when delay τ =
0.03.
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Fig. 3: Variation of state variables with time when delay τ =
0.055.
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Fig. 4: Variation of state variables with time when delay τ =
0.055 and β2 = 0.04.
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