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Abstract: The present paper considers an efficient time-split approach (i.e. a three-level explicit time-split MacCormack scheme) for
solving two-dimensional heat conduction equations. Computational cost reduces the two-level explicit MacCormack and splitting. Both
stability and convergence of the method are deeply analyzed in L*(0,T ;Lz)—norm under a suitable time step restriction. Numerical
experiments suggest that the new algorithm is fast, second order accurate in time and fourth order convergent in space. This shows
effectiveness of the numerical scheme and improves some well-known results in literature.
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1 Introduction

Most real world problems are related to multi-physics,
multi-component and multi-time scale in nature [1, 3].
Some engineering applications of such problems include
various heat conduction models [2,26]. For instance: heat
exchangers, mathematical finance (this model is obtained
by transforming the Black-Schole equation into the heat
one), various biological and chemical systems including
diffusion and transportation problems. Numerical
simulations of these problems are indispensable and
challenging. This paper considers the following
two-dimensional heat conduction model subject to the
initial and boundary conditions,

du *u  9%u
E—Q(W a—yz):O, (x,y)e.Q, IE(O,T], (1)
u(x,y,0) = uo(x,y), (x,y) € Q2: ©)
u(x,y,t) = @(x,yt), (x,y)€9Q, te(0,T]; (3)

where a is the thermal diffusivity, 2 = (0,1) x (0,1) and
dQ is the boundary of £. We assume that the initial
condition ug and the boundary condition ¢ are assumed to

be regular enough and satisfy the condition
©(x,,0) = up(x,y), for any (x,y) € dQ. This
requirement guarantees the existence and uniqueness of a
smooth solution to the heat equations (1)-(3).

In [3-11], a large class of efficient numerical schemes
are based on the collocation and time splitting methods
(i.e. operator splitting or fractional step methods).
Multiple natural splitting approaches are frequently
constructed according to either physical components and
subsystems, such as density, velocity, energy and pressure
or physical processes, such as reaction, diffusion and
convection. However, these splitting methods comprise
two major disadvantages: splitting error in the composite
algorithm and determination of boundary conditions for
the split equations [4, 6]. In literature [11-14], splitting
errors of time splitting methods have been extensively
investigated. Although the results have been appreciated
(stability results), the algorithms have provided
unsatisfactory convergence rate (less or equal than two).
High order time splitting schemes can be developed to
reduce splitting errors.

MacCormack approach [15-17] has been used to
solve a wide class of partial differential equations (PDEs).
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There exist both explicit and implicit versions of the
method, but the explicit predates the implicit by more
than a decade, and it is considered one of the milestones
of computational fluid dynamics. MacCormack explicit
method is popular because of its simplicity and ease of
implementation. The predictor and corrector steps use
forward differencing for first-order time derivatives, with
alternate one-side differencing for first-order space
derivatives. This is particularly advantageous for systems
of equations with nonlinear advective jacobian matrices

associated with one-side explicit schemes, such as
Lax-Wendroff approach (for example, [17-19]). The
drawback of this approach stems from its

inappropriateness for solving high Reynolds numbers
flows. To overcome this difficulty, MacCormack
constructed a hybrid version of his scheme (i.e.
MacCormack rapid solver method) [20]. This algorithm
has been used for solving a large set of nonlinear
PDEs [21-25]. The results suggested that the rapid solver
method had a good stability condition and was much
faster than numerical schemes adopted to solve both
steady and unsteady flows at high to low Reynolds
numbers [20].

The information gained from both MacCormack and
MacCormack rapid solver methods empowers us to
analyze a three-level explicit time-split MacCormack
approach for solving equations (1)-(3). Recently, the
authors [26] have applied a method of fundamental
solutions to initial-value problem (1)-(3). Although the
numerical experiments performed in their work have
suggested that a method of fundamental solutions was so
efficient, the convergence rate of the algorithm had not
been provided, which is a fundamental tool to appreciate
accuracy of a numerical scheme. Another drawback of
this technique stems from the fact that numerical
evidences have been discussed for large values of the
mesh grid # € [0.5, 4]. In fact, the numerical solution
obtained using this method reduces for i € [0, 0.5)
(see [26], page 9, Example 1). The time-split approach we
study for the model (1)-(3) is new, a three-level explicit
predictor-corrector scheme, second order accurate in time
and fourth order convergent in space under the time step
restriction: % < 1. In addition, and it is motivated by: (a)
the time step restriction (in fact, lots of explicit schemes
for solving equation (1)-(3), are stable under the
well-known condition of Courant-Friedrich-Lewy:
4h—“2k < 1); (b) the explicit MacCormack approach and (c)
the form of the splitting. Based on the numerical
examples presented by the two methods (see tests 2, 3,
section 5 of this paper and examples 1, 2, in [26], pages
9-12), the graphs show that both schemes seem to
converge with the same degree of accuracy.
Unfortunately, the only information provided by the
figures is insufficient to make this conclusion. The
above-mentioned discussion demonstrates that it is easy
to observe that the three-level explicit time-split
MacCormack approach is superior to a method of

fundamental solutions when solving the two-dimensional
heat conduction (1)-(3). An explicit time-split
MacCormack algorithm [10, 27-32] “splits” the original
MacCormack scheme into a sequence of one-dimensional
operations, so it achieves a good stability condition. More
precisely, splitting allows to advance the solution in each
direction with the maximum allowable time step. This is
particularly advantageous if the allowable time steps Aty
and At, are much different because of differences in the
mesh spacings Ax and Ay. To explain this method, we
will make use of the 1D difference operators Ly (At,) and
Ly(Aty). Setting uj; = u(x;,y;,t"), the Ly(Aty) operator
applied to u:’J

i = Le(Aty)uil;, 4)
is by definition equwalent to the two-step
predictor-corrector MacCormack formulation. The

Ly(Aty) operator is defined in a similar manner, i.e.

l] L) (At}) (5)

These expressions make use of a dummy time index,
which is denoted by the asterisk. Now, letting At, = At
and Aty = QA—”’” where m is a positive integer, a second
order accurate scheme can be constructed by applying the
L, and L, operators to ul’.’j, as follows:

At m At m

1_

7= [o (2] sian o (2]
This sequence is quite useful for the case Ay << Ax.

To construct this method, we consider the 1D
difference operators L.(At,) and L,(At,) defined by
equations (4) and (5), respectively. Following the
approach presented in ( [33], page 231), a second-order
accurate scheme can be constructed by applying the L,
and Ly operators to u;; in the following manner:

it = Ly (k/2)Le(k)Ly (k/2)ud}. (6)
Using these tools, we can provide a three-level explicit
time-split MacCormack method for solving the
initial-boundary value problem (1)-(3). Putting Az, =k,
Aty = % and Ax = Ay := h, it comes from equations (4),
(5) and (6) that

u**_L (k)i = L(k)Ly (k/2)uf;, and uf" = Ly (k/2)u;
(7)

In the following, we should find explicit expressions of
equations uj; = Ly(k/2) uj; and uji = L x(k)uj;. This will
help g1vmg an expllclt formula of the equatlon
u = Ly(k/2)u; u;f, which represents a “one-step
time-split MacCormack algorithm”. For simplicity, we

ij
n n _ . n 1
use both notations: u); = ujl; and [u+v[i; = uf; + v}
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The present paper aims to find an efficient solution to
the initial value problem (1)-(3), using a three-level
explicit time-split MacCormack approach. More
precisely, we focus on the following four items:

1.Detailed description of the three-level explicit time-split
MacCormack scheme for solving the two-dimensional
heat equations (1)-(3);

2.Analysis of the stability of the method;

3.Error estimates of the numerical scheme;

4.A large set of numerical evidences which provide the
convergence rate, asserts the theoretical results and
shows effectiveness of the method.

Items 1, 2 and 3 represent our original contributions since
as far as we know that no piece of literature solves the 2D
heat conduction equations (1)-(3) using a three-level
explicit time-split MacCormack scheme.

This paper is organized, as follows: In section 2, we
present some notations as well as function spaces. We
also provide a detailed description of a three-level explicit
time-split MacCormack method for solving problem
(1)-(3). In Section 3, we explore stability of numerical
scheme under the time-step restriction provided in
Section 1. Section 4 analyzes the error estimates and the
convergence of the method. A wide set of numerical
examples which consider the convergence rate of the new
algorithm and confirm the theoretical result (on the
stability) are presented and critically discussed in Section
5. Conclusion and further research are presented in
Section 6.

2 Overview of the three-level explicit
time-split MacCormack scheme

This section considers a full description of a three-level
explicit time-split MacCormack method applied to
two-dimensional heat equations (1)-(3).

Let N and M be two positive integers. Set
k= At = %; h:=Ax=Ay= ﬁ, be the time step and
mesh size, respectively. Put 1" = kn, * = (n + r)k,
t* = (n+s)k, where 0 < r < s < 1, so t* € (¢",t"+1),
e (") n=10,1,2,..,N — 15 x; = ih; y; = jh;
0 <ij <M Also, let & = {",0<n < N}
Eh = {(-xiayj)70 < la.] < M}» Qh = ﬁh N and
th :5;,08.(2.

Using this, we define the following norms and scalar
products.

1
M—1 2
"l = Yl )
12 = = ”ij 5
L=

M—1M—1 2
(| 8etd" || 2 = ; ; |5x”z+ ] ;
1

M—1M—1 ) 2
[[8yu" |2 = Z Z |8y ,J+1| >

Jj=0 i=
H62n —h M7152n2 ’ 9
|| = 'le 0| ) )
i,j=

where A = x or y. Furthermore, the scalar products are
defined as

hzZ” Vijs

i,j=1
2M IM—1
< 6", 6" > =h Z 2514 j6xv;’+%7j;
j=1i=0
and
M—1M—1
< Su" 5" >y=h"Y Zﬁulﬁlﬁvﬁ . (10)
j=0 i= ’
We recall that a three-level explicit time-split
MacCormack [5, 27, 30] ”splits” the original

MacCormack scheme into a sequence of 1D operators, so
it achieves a good stability condition. More precisely,
splitting allows to advance the solution in each direction
with the maximum allowable time step ( [33], page 231).

Now, expanding the Taylor series about (x;,y;,#") at
the predictor and corrector steps with time step k/2 using
forward difference representations yields
2

- k
ujy = i+ S )+ )y + O(K);
- k o
U= u,j—f'2141)1]+§u2,)jj+0(k3)' an

Adopting the definition of the operator Ly(k/2), we can
consider the equation

u; — auyy = 0, which is equivalent to u; = auyy. (12)

Consider %, = {uf’],n =0,1,...,N;i,j=0,1,2,...M} Using equation (12), we find it easy to observe that
be the space of grid functions defined on 2}, x €. Let 2
uy = (auyy), = a“ugy.
* N Kk * n+l o oxx I3
w _ Hij Wi Sutt = Uij —Hij nt1 _ Ui i . . . . .
Oyuj; = k/2 SOl =T Sty = Tk2 This fact together with equation (11) provide
i1 U el T 5 ak K*a?
5"”?+%.,j = j = s Sy T = n ; ”:'kj = ”?j‘" 7[“39=]?]-+ 3 [”4y] +O(k );
o =6 | yu’?, =6 - ak - K22
5)(2’4:!/ _ +27_/ . i—3,] . 52 n _ Lj+3 . L,]— % (8) u;fj _ u:jl]_+ E[Myy];fjﬁL 2 [u4)] +0(k3) (13)
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The application of the Taylor series expansion about
(xi,yj,t") with mesh size h using central difference
representations provides

iy = ui+ OU); why ;= 8uf; + O(?);
Uy i = 52(52 i)+ o(n*);
u4y ij 52(52 i ) + O(hz) (14)
2.1 . . .
where &7w;; is given by relation (8). Substituting
equations (14) into equations (13) to obtain
5 k
ufy =+ 5 8uly+ K ply + O(K* +-e?)
=+ S 52u* KPP+ O(K + ki), (15)
where
o a’ 2(82,
pij = §5y (8yuij), (16)

where o0 = n,*. Substituting the first equation of (15) into

both (16) and the second one, straightforward
computations give

plj_ _62(62 ”)+0(k)

ujy = uli+ 3 K 52+ 2200+ p) + O + ). (17)
Taking the average of u ~and ul? to get

112 l]_ n 25}]2 :’l] 52(52 n)+0(k3+kh2)

(18)
On the other hand, to define the operator L,(k), we
should consider the equation

Uy = Allyy. (19)
It comes from equation (19), that
Uyt = Qllyyy = a°Uay. (20)

Applying the Taylor series expansion about (x;,y;,t*)
(where t* € (¢",#"+1) is the time used at the beginning of
the next step in a time-split MacCormack scheme) with
mesh size h using central difference representation, we
obtain

Shuf;+ O(?); iy, ;= 87(87ufy) + O(h?):

xxtji x “ij Iy Uij

52 **+0(l’l2)

xxtji v Ui
“4)(1/762(6,3 1*1*)+0(h2) (21

where 5fufj is defined by equation (8). Moreover,
expanding the Taylor series at the predictor and corrector
steps about (x;,y;,t*) with time step k using forward
difference, it becomes easy to observe that

2

FF * < Kk *

w; = +kug)j; + ?MQ’)I'PLO(P);

_ —_

i = k) o+ )+ O(K). 22

A combination of equations (22), (
provides

21), (19) and (20)

;= u; +ak6§ujj+—82(8f 1)+ O + ki)

uj; = uj;+akSiu; + —52(53 )+ Ok +kh?)23)

To obtain simple expressions of §7u}; + and 82(82u’7), we

Ui
should use the first equation in (23). Tracking the

infinitesimal term in this equation, direct computations
give
6)6214? ~ 62u’-‘< + ak§? (3xzufj)
and 82(82u;) ~ Sf(Sfufj)

x l]
The truncation of this error term does not compromise the
result. This fact together with relation (23) yield

53(54 i)

e Ui

= 3a
u = uj;+ak8luf + 82(8)3 W) + Ok +ki?).
(24)
Taking the average of ui * and ul g it becomes easy to see
that
I/l** 4u Sk

5 4y = uf; + akS}uj; + a*k* 87 (87u;) + O(k> + kh?).
(25)
Similarly, starting with the one-dimensional equation:
u; — auyy, = 0, expanding the Taylor series about
(xi,y;,t**) (where ™ represents the time used at the last
step in a time-split MacCormack approach) at the
predictor and corrector steps with time step k/2 and mesh
size h, using forward difference representations to get

n+l+ +
5 _u**+¢12k5)2 ;z]_|_ 3d%k2 52(6y2 ;7)—0—0(/(3—0—/(]12).
(26)
To construct a three-level explicit time-split

MacCormack method for solving the heat conduction
equation (1)-(3), we must follow the ideas presented in
the literature to construct the explicit MacCormack
scheme [16, 20, 27, 30]. Specifically, we should neglect
the terms of second order together with the infinitesimal
term O(k® + kh?) in equations (18), (25) and (26). In
addition, the terms ul’fj, uy; and u’”rl must be defined as
the average of predicted and corrected values. That is,

e g e T
ujp = = = 2P andut = A
(27
Thus, equations
5= Ly(k/2)ul; wii = Ly(k)uj; and ufj“ Ly(k/2)ui;,
(28)
are by definition equivalent to
u;‘j:ul'-’jJr 5 5y2 wips wi = uj; -+ aks? u;;
and un+l —M**—f— 52 *ok (29)

ij 2yl]
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The property of the operator Ly (k/2)L,(k)Ly(k/2) related
to the symmetric, together with equations (18), (25) and
(26) suggest that the considered method is a three-level
explicit predictor-corrector numerical scheme, second
order accurate in time and fourth order convergent in
space. This result is asserted by a large set of numerical
examples (see section 5 for more details). Utilizing the
definition of the linear operators ”8;” and "8} given by
relation (8), equatlon (29) can be rewritten as follows:
Forn=0,1,....N—1;

ak
l]_ul]+2h2( ;l,j+1 2”‘ +ulj 1)
i=0,1,..M; j=172,..M—1; (30)

ak . .
1/ _ulj+h2( i+1,j 2” +Ml ]j)

i=12,.M—1; j=0,1,....M; 31
1 ak
Wi = o (e — 2057 ),
i=0,1,..M; j=12,...M—1, (32)
with the initial and boundary conditions. For
i,j=0,1,..M
0 . . . .
i = uo(Xi,yj): Ui = Pjo: Uiy = Pipss Up; = P
. 1. 1.
MMJ (pMj’ MOJ (p(};lj+ MMJ (PXT} 4
1. 1
‘P,o Wiy = ‘PJM sug; = ‘P(’)l;r Uyrj = ‘Pzrxz»
n+1, n+1,

(p]()
iy = P Uy = P03 Unj = Phrjr (33)

which represent a full description of a three-level explicit
time-split MacCormack method for solving the 2D heat
conduction equations (1)-(3).

jM (ij ’ 10 (pl()’

In the following, we prove the stability, the error
estimates and the convergence rate of our method under
the time step restriction

— <1, (34)

where a is the thermal diffusivity given in equation (1).
Estimate (34) is well known in literature as
Courant-Friedrich-Lewy condition. We assume that the
analytical solution
€ L?0,T;1*(Q)) n HYO,T;H*Q)) N
H?*(0,T;H' (Q)) N H*(0,T;L*(R)) N L*(0,T;H*(Q)).
Thus, there exists a nonzero constant C > 0, independent
of time step k and mesh size &, that satisfies

1@l 2= (0,7:22(2)) + 11|11 0,723 (02))
1wl 20,7200 (2
1l 20,7304 2)) < C- (35)

To prove the main results of this paper (namely
Theorem 1-2), we need some intermediate results
(Lemma 1-3).

) 20,752 00))

Lemma 1.Let uj; = u(xi,yj,t") be the numerical solution
provided by the scheme (30)-(33), u}; = u(x;,y;,1") be the

exact one and let e =uf ] — u” be the error. We recall that

Wit _ ***+
u; =~ U = i , satisfy relations (18) and (25),
respectively. uj; and u;; are given by equations (30) and

(31), respectively. The following equalities hold:

M-1

1
<5X27],,”j *hzzﬁ(e?ﬂj 2el; +e,lj)l’~’j
Jii=1
= —[18:€"[172(q): (36)
and
2 2M 1 1
n }'l
< ey ey >y=h Zlﬁ(ei-,jﬂ 2ejj+ e 1) €] ij
Ji=
2
= 7”6)76"”[‘2(9)7 37

where the operators &, and J, are defined in relation (8).

Proof.(of Lemma 1). We should prove equation (36) only.
The proof of relation (37) is similar.

Using the definition of the operator 6x2 and the scalar

product < -,- >, given by (8) and (10), respectively, it
becomes easy to show that
) szl 1
<8X :lj,:lj x:]’l Zﬁ(e?‘i'IJ 2@ +€l lj)::lj
ij=1

M-
Z[ Civ1,j— e, eij—

(e el — 9771,1) EZ] =

_ thjz:ll [ 5c¢ +%,j) e (5)561"7. )elnj} =
thl ((6)663’])8?] (5xe£,j)e’{1)+

7,J)eSJ (665 )e5/)+"'+

(10 g el 0y el ) + (B ety By e, ) | =

1 I 1 y y v 1 1 u
h ): { (ezj—e]j) ﬁxe%f— (631—921) 5Xe%.j— (‘34]_‘33]) Sxe%’j—‘.._

j=1

(erlllfl—lj_exfl—z,j)éxeM 3 +(59M ! )ex/l—l,j_((sxer;j)e?,j}
(38)
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From the boundary condition (33), we have that ej;; =

Y/ S— 7 7 — n n o
ep; = 0. Hence (5xeM7%7j)eMj =0 and (5xe%7j)e0j =0.

This fact together with equation (38) result in

h2 Zlh2 l+1] 2@ +€l 1])
i,J

= Z;. { (‘Sxeé,j)z - (6)‘6271')2 T (5)‘6"%%,1)2

©)

where 6,7 € (xi,Xi41);
2 Jx! W
Vi = Vi1 +hvi 1+ 7 Vaxi + g Vil + g Vi1
h ST
0. 42
]20V5x1 1+720V6X( i )a (42)
where Gl-( Ve (rio1,x1).

Similarly, applying the Taylor expansion for both
derivative and higher order derivatives of v to obtain

€Mj— €1, €l =€ 2 3 4
— ==L §e" | — L)t h h
h M—3.j h 3. Viitl = Vi +hvoy i+ o V3w + g Vi + 22 5xi
Mot , JE S
=ty Y (814, -) =~ 18" l72(q)- +=ve(61), 43)
= & 120
(5) e
Lemma 2.Consider v € H*(Q) as a function satisfying where 6,7 € (xi,xi+1);
V] € €Olxi,xiv1], for i = 0,1,2,....M — 1. Then, it 2 Jx: n
hOidS Vxi—1 = Vx,i — thx,i + ?V3x,i - gv4x,i + ﬂVSx,i
5
it ~ 2V v v (6, (44)
n h 3) @)
= Ev4x,i ~ 720 [Véx(ei )+V6x(9i )} ) where Gi(é) € (xi—1,%i);
for i=1,2,..M—1, 2 3 e
im v i e )
where 91'(4) € (xi—1,%i), 91-(3) € (xj,Xi+1) and vpy denotes Y2+l = Vani V3 2 Vaxi+ 6 Vst 24v6x( i)
the derivative of order m of v. Furthermore, for ; (45)
i=23,...,.M-2, where 91'( ) e (i, Xi+1)3
— (Viga —4vipr 6V —4vi Vi) —vay 2 3 4
i h h (8)
i1 = Vaxi — vy + = Vayi — —Vsyi + —Vex(60;")
L M @ 241 ¢ ‘ Vox,i—1 = Vax,i 3x,i 4x,i 5x,i 6x\Y; ),
=" {ﬁ {V""(e )+ e, (92)] 3220 {V“(e‘}))ﬂs"(e‘“)”’ : 0 4 (46)
(8) ) .
where 8% € (xi_axi1), 6% € (xio1,x1), 00 € (wixiy)  Where 6 € (xi1,x1);
and 6V € (Xit+1,Xi+2)- 2 n 9
! (ki1 %i42) Vax,it1 = Vay,i +hvay; + 7V5x,i+ gvsx(ei( )),
Proof.(of Lemma 2) Expanding the Taylor series about x; 2 3
With grid spacing'h using both forward and backward Vi1 = Vg — hVapi+ =Vsgi— — véx(ei(lo))7 (47)
differences to obtain 2 6
2 3 4 ) (10) .
h h where 6.7 € (x;,xi11), 0 € (xi_1,%);
Viy2 = Vit +hvx,i+1+?V2x,i+1 +gv3x,i+1 +ﬂv4x,i+1 ! (i, %i1), 6, , (ei-1,%1)
h (11)
n ho (1) Vax,it1 = Vax,i +hvsy i+ —=ver(6; ),
120V5x i1+ 720V6x(9,' )a (39) 22 l(lz)
1 = Vaxs — hvsy ) 48
where 9,~( ) e (Xig1,Xi12); Vaxi=1 = Vaxi — Vst 2 Vex( ) (48)
2 " h* where Gi(ll) S (X,’,X,'Jr]), 9( ) (x,;] ,x,');
Vico = Vi —hvy 1+ S Vaxio1 T e Vanicl + 27 Vaxi=1
)/ ho 2) V5x,i+1 = V5x,i +hV6x(9i(l3))7 Vsx,i—1 = V5x,i — hv6x(9(]2))
———=Vsx,i-1t _V6x(9i ); (40) (49)
120 720 13) (14)
2 where Ol- S (X,’,X,'Jr]), Ol- € (x,;] ,x,').
where 6, € (xi_2,x;i-1); Now, adding equations (41)-(42) side by side gives
h? n h h?
Vi = Vig1 —hve i + S V2RiHl T e Vakit] + g Vet 2vi = Vg1 + Vit —h(vyip1 — Veio1) + ?(sz’”l +Vorio1)
n h® 3 n
]ZOVSX i+1 + 720V6X(9i( ))5 (41) 7€(v3x,i+l - V3X,i71)+
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h* /8
Y — (Vax,it1 + Vaxi-1) — 120 ——(Vsxit1 — Vsxio1)

]’l6
235 ee(6) +vea (). (50)

Subtracting (44) from (43), adding (45) and (46), using
equations (47), (48) and (55), simple calculations provide

3

= Vax,i
3

(a8 +v6u(8)): 5

Viitl — Vo1 = 2hvog; +
hS

720

2
Vo itl T Vaxi—1 = 2Vox i+ W V4

a ) ®)).
+24 (Véx(e )+V6x(9,' )) N (52)
h3
Vax il — V3xio1 = 2hvay ;i + 3 (st(ei(g)) + st(ei(lo)) ;
(53)

h2

Vix,i+1 T Vax,i—1 = 2V4x1+ (VGX(ei(H)) +V6x(9i(12))) 5

2
14
Vsxitl = Vsyi1 =h (V6x( 6 )) +V6x(9,'( ))) : (54)
Combining  equations  (43)-(54),  straightforward
computations result in
2 K
2vi =vig1 +Vvic1 —hvpy i — T3 Vi

1
#10{ 350067 416

L 6e(0) +v6:(8®))

120

! 1
15 0607 6 (01) — S (6x(6) +ve(8'))

48 36
1
25 060" i (6]')) =
1 (13) (14)
Since 91() 9( ),9(7) 9(9)791'(11)791'(13) € (xi,xi+1) and

) ) Vi
Gl-(4),9i( ) (8) 9(10),9i( ),91»(14) € (xj—1,x;), without loss
of generahty, we can assume that
gi(3) _ gi(5) _ 91'(7) _ 91'(9) _ Gi(]l) _ 91'(]3) and
6 =6 = 0® = 0" — 6" = 9" Using this,
relation (55) becomes

hZ

1
ﬁ(viﬂ =20+ Vis1) — Vori = 2

h4
720

This completes the proof of the first item of Lemma 2.
Now, we can prove the second item of Lemma 2.

T Vi

v6u(67) +ver(6)]

Plugging equations (39) and (41), (40) and (42), (41)
and (42), respectively, it becomes easy to see that

]’l4
Vita = 2Vip1 +vi = hvag i + T3 Vit
n® | 3
35 (a0 + (6)): (56)
2 h
Vi—2vi 1 +vica =hvay i1+ 13 Vil
h @), h° (3)
— 0. 0.7);
3207607+ 7556 (6,7);
and
4vi = 2(vig1 +vie1) = 2h(Vip1 — Vrio1)
+h (Va1 +Vario1)
h K
*?(V3x,i+1 —V3ygio1)+ ]2(V4x i1+ Vaxi-1)
hS
60 (V5x i+1 — VSx,ifl)
ho
255 (v6x(9( ))+v6x(9,.<4>)). (57)
A combination of equations (56)-(57) yields
Vig2 —4vip1 +0v; —4vi | + Vi
= —2h(Vis1 — Vui1) + 2 (Vaxis1 +Voxio1)
h3 h4
*g(‘@x,m —V3pio1)+ 3 (Vax,it1 + Vaxi-1)
hS

~go Wsni1 ~ Vsxi-1)
h6
55 o0 +v6a (643 (veul6) +var(6) )| 58)
Substituting (51)-(54) into (58),simple computations
result in

Vigs —4vip) +6vi —4vi g +vio

2Kt 2h
3 Vani R RE) A 5

1
e { 720 [V6x(9<1)) +V6x(9i<2)) +3 <v6x(9,‘(3>) + v6x(9i<4)))]

2
= —4h vy, i — Viyi

1 1
T 60 (Vﬁx(9(5>)+véx(9,~<6))> T (VGX(B( >)+V6x(9i<8))>
% (Lm(g( )+ v (6“0))) iz (L(, (9( ))+st(9f]2)))
|

+
%0 (VGY 9(1 ) )+ vex ]4) }

which is equivalent to

4
Vigo —4vip1 +6v; —4vip +vig = hvay

10 { 5 D86 3 (s v -

1 1
%0 (st(el( )) +V6x<91(6))) + D) (V6x(9[(7)) +vsx(9;(8)))

2 (6@ +va(e™)
1

—5 (a6 +v6x<ef‘4>>)} (59)

1 1 12
T (Vﬁx(Q( ) v (6] )))
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Assuming that 6 =g — g =g — g1V _ (13

and 6" — 9° = /¥
(59) becomes

Viso —4vig +6v; —4vio +vig

1
=g+ h® {% {v&r(ef”) + V5x(9i(2))+} +

, equation

241
5 @) e8]}

which is equivalent to

1
m (Viga —4vipy +6v; —4vi g +vig) —vay

=K { % [qu(e( )) +ve (6(2))+} + % {xm(d )) +ve (6(4))}}
This ends the proof of Lemma 2.

Lemma 3.The term p} given by equation (16) can be
bounded as

2
Pl = 188 < Ci[1+Cn?]. (60)

where o = n,x. C;, | = 1,2, are positive constant
independent of the time step k and the mesh size h.

Proof.(of Lemma 3). It comes from the definition of the
operator ”5)?” that

a*a—252(52_a
Pij =g % )
aZ

= S (o — 4l 461 — 4

—0 —0
g g ).

This fact together with Lemma 2 give

o)
<R

)

1, 1 — 2 241 [, 3 . 4
% {“Ax i 2 <% {ugy(.\'iﬁ](» ))+ugv(.\'iﬁ](» ))} + 3220 [ug‘y(xi.e; ))+ugy(x,<.6; ))}ﬂ

Where 91(2) € (yl 2))’1’*1)7 91(4) S (yi—la)’i)7
9}) € (yi,yi+1) and 9 € (¥it1,Yit+2). On the other
hand, #(x,,1)[y, 5., € %(b},,yHl] for every

€ (0,1), r € (0,T) and j = 0,1, M —1 and
H|u|||Lw(O’T;Lz(Q)) < C (according to estimate (35)).
Taking the absolute value, there exist positive constants

CA‘l, ! = 1,2, independent of the time step k and the mesh
grid & so that

P <G (14+Cn?).
This completes the proof of Lemma 3.

Using Lemmas 1, 2 and 3, we can prove the main
results of this paper (Theorems 1-2).

3 Stability analysis of a three-level time-split
MacCormack scheme

In this section we analyze stability of the three-level time-
split MacCormack scheme (30)-(33) applied to problem

(D-(3).

Theorem 1.Suppose u is the solution provided by the
scheme (30)-(33). Under the time step restriction (34), it
holds _
) <
s ]2 < €.
where C is given by estimate (35).

Proof.Combining equations (18), (25) and (30), simple
calculations yield

3ak

e =eli+ = 3 63 e+ 62(62_")+0(k3+kh2) (61)

Utilizing the definition of the operator ”6y2”, equation (61)
is equivalent to

t]iet]+2h2(zr'l,j+l 2@ +elj l)

3ak? B
16h4( ij+2 4u} 1 +6“ ,j,] +u,’-’,j72)
+O(K> + kh?). 62)

We recall that the present paper aims to provide a general
picture of the stability analysis of the scheme (30)-(33).
Since the formulas can become quite heavy, for the sake of
readability, we must neglect the higher order terms in both
time step k and mesh grid 2. However, the truncation of
these terms does not compromise the result on the stability
analysis. Using this fact, equation (62) provides

2@ +elj l)

ak
6‘ *@ +2h2( 2j+l

ij

Taking the square, it holds

(€57 = (e 4 Sy (e = 26l -l )l
a*k?

T

Now, using inequality (a+5b)? < 2(a*+b?), for any a,b €
R, by simple computations, it becomes easy to observe that

(€] jr1—2ef;+ €} ;1) (63)

(e} jp1—2ef;+ef i 1)?
leq2 [(ei,j+1 - eij)2 +(efjo1 — e?j)z] . (64)

A combination of equation (37) and estimates (63)-(64)
results in

. ak
(eij)2 < (E%)ZJFE(E?,;‘H 2e];+eijy)el;

s [(@el j+2) + (SyEZj;)z] . (65)

Summing estimate (65) up from i,j =1,2,...,M — 1, this
gives

M—1 , M .y akM=1

Z (e:'kj) < Z z] hz Z l]+1 2€ +ez} 1)
i,j=1 i,j=1 i,j=1

ZkZM 1

L [() (3,
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which implies

M-1 ) M-1 2 akM 1

* 7
Z (eij) < Z lj h2 Z 1j+l 26 +€” l) ij
i,j=1 i,j=1 i,j=1

2a2k2M IM—1

ZZ(’,,+)' (66)

Multiplying both sides of inequality (66) by h* and using
equation (37) we obtain

* n . 2a°k "
lle HiZ(Q) < |le HiZ(Q)*akHaye Hiﬁ(g)+ 2
From the time step restriction (34), ie. 1 — 2—“k >0, it
follows
le* 1720y < lle"lI72q)- (67)

Similarly, combining equations (25), (27) and (32)

(respectively, equations (26), (27) and (32)), it becomes

easy to show that

< e
(68)

Now, plugging estimates (67) and (68), straightforward

computations yield

+112
[e" ||L2(_Q)

e 11720y < lle*lI72(q)» and [le" 72

< ||en||i2(g)

Summing this up from n = 0,1,2,..,p — 1, for any

nonnegative integer p satisfying 1 < p <N, to get
|‘ep|‘1%2(g) < HEOH%}(Q)' (69)

It stems from the initial condition given in (33) that e?j =

0, for 0 < i, j < M. This fact together with estimate (69)
result in
lle”ll 2 () =0 (70

We have that [[uf[[2o) = [[# || 2(q) < [[uP = 0[] 2oy =
[€?]l,2(q)- A combination of this inequality together with
equation (70) give

4[| 20) < @[] 20

Since 7 is the exact solution, using estimate (35), the proof
of Theorem 1 is complete.

4 Convergence of the Method

This section considers the error estimates of a three-level
explicit time-split method (30)-(33) for solving equations
(1)-(3), under the time step restriction (34). We assume
that the exact solution 7 satisfies estimate (35). Let

%h = {Lt

=0,1,2,..,N;i,j=0,1,2,...M}, (71)

lj7

be the space of grid functions defined on £, x £, where
={",0<n<N}and
Q= {(x1,y;),0<i,j <M}PNQ.

We introduce the following discrete norms

|||”|||L°°(0,T;L2(Q)) = 0r<na<xNHu HL2

1

N 2
n=0

N
Q) = k;)””n”LZ(Q

ealll 20,722 (2))

and

|||“|||L1(0,T;L2( y: for ue U,. (72)

Theorem 2. Let u be the solution provided by a
three-level time-split MacCormack approach (30)-(33).
Under the time step restriction (34), the error term
e = u — u satisfies

lelllz=0,7:2()) < Ok + )

Proof. We recall that the error term provided by the
scheme (30)-(33) is denoted by e]; = uj; —u};, where u
satisfies equations (18), (25) and (26) and u are given by
relations (30)-(33). Thus, it comes from equation (62)
that
ak el 2
lj _elj+2h2( ij+1 26 +e1] 1)+ k (zplj
+p;;) + Ok +kh?),

which is equivalent to

ey =l S (el — 2+ el )+ 3200+ )+ Cr(k + ki),

where C, is a parameter that depends neither on the time
step k nor the grid spacing / and p/ is defined by (16).
Taking the square, it is becomes easy to show that

N ak
(eij)z = (e?j)z"' 72 (e?,j+1 2efi+el i) el
+K2 (207 + piy)ef; +2C. (I + ki) e

272
a‘k
+W(€ﬁj+1 2e}i+€f 1)
ak? N
+ﬁ(ei,j+l 2€ +elj l)(2p11+p11)
aC,

+—5 hz ( l]+1 26 +elj 1)(k4+k2h2)
+ (e +py))
+C (K +kh?)? + Co (K + Kh*) (2p]5+ pj)). (73)

Applying  the inequalities: 2ab < a*> + b2,

(a+b)? <2(a*+b?) and (a+£b+c)? <3(a® +b*+?),
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Analysis of stability and convergence of a three-level explicit time-split MacCormack method with a = 1.

ex.sol.(H), num. sol.(G), err.(E),h=2'1

ex.sol.(H), num. sol.(G), err.(E),h=2'2

4 3 4
3 3 k
E
2 N : 2 H
* G
1 1
+ E L E
o— O-HHHHHHHHHHHHH A
0 0.5 1 0 0.5 1
O<t<1 O<t<1
ex.sol.(H), num. sol.(G), err.(E),h=2‘3 ex.sol.(H), num. sol.(G), err.(E),h:.’:r4
3 3
2 2
1 * G 1 * G
+ E + E
0" e 0- -
0 0.5 1 0 0.5 1
O<t<1 O<t<1
Case: k = %hz
ex.sol.(H), num. sol.(G), err.(E),h=2‘2 x 10"
2 ! 8
o H ES
1.5 6 * G
+ E
1 - H 4
0 ! * G 2 1
S + E *
0 B T B B S B A S T ol i 0’
0 0.5 1 0 0.5 1
Ot O<ts 1, h=2"3
ex.sol.(H), num. sol.(G), err.(E),h=2'1 x10'%
3 6
H X ——H *
* G * G
2 + E 4 + E
14 2 *
+ + 1 k3
0 = 0
0 0.5 1 0 0.5 1
Ot O<t< 1, h=2"*
Case: k = h?
Fig. 1 u(x,y,t) = 1 +exp <t — @xf @y)
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Analysis of stability and convergence of a three-level explicit time-split MacCormack method with a = 1.

exa.sol.(H), num.sol.(G), err(E), h=2""1

exa.sol.(H), num.sol.(G), err(E), h=2"2

6 4
4 i 3 [
——H
2 -
9/ * G ¢ H
2 CE ] * G
+ E
0++*++++’ Q- b
0 0.5 1 0 0.5 1
0< t<1 0< t<1
exa.sol.(H), num.sol.(G), err(E), h=2"3 exa.sol.(H), num.sol.(G), err(E), h=2"4
4
3
2 ———H
’ * G
+ E
(0 O e
0 0.5 1
0< t<1
Case:k:%h2

exa.sol.(H), num.sol.(G), err(E), h=2""

exa.sol.(H), num.sol.(G), err(E), h=2"2

6
*
4
29
+
v | +
0
0 0.5 1 0 0.5 1
0< <1 0< <1
x 10°° x10'"°
15 e 15
H ——H
10 * G 10f * G ¥
+ E - E
X
5 5
*,
%
0~ 0]
0 0.5 1 0 0.5 1
0< t<1, h=2"3 0< t<1, h=2"*
Case: k = h?
Fig. 2 u(x,y,t) = exp(x+y)cos(4t +x+y)
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Analysis of stability and convergence of a three-level explicit time-split MacCormack method with a = 1.

exa.sol.(H), num.sol.(G), err(E), h=2"" exa.sol.(H), num.sol.(G), err(E), h=2"2
8 6
H k ——H
6 * G * G
+ E 4/ + E
4
2
29 E
(S O —
0 0.5 1 0 0.5 1
0< t<1 0=t
exa.sol.(H), num.sol.(G), err(E), h=2"3 exa.sol.(H), num.sol.(G), err(E), h=2"*
6 6
—H ——FH
* G *x G
a4 . E 41 ¢ E
21 2
0 - 0 -
0 0.5 1 0 0.5 1
0< t<1 0= t<1

L 172
Case: k= ;h

exa.sol.(H), num.sol.(G), err(E), h=2"" exa.sol.(H), num.sol.(G), err(E), h=2"2

A 8
——H
6 * G k
+ E
4
2
E
) o I A A A A A A
1 0 0.5 1
0< t<1
x10110
4 *
H
<
3 * G
+ E
2
2 A 1 4
* 5
(0 0
0 0.5 1 0 0.5 1
0<t<1, h=2"3 0< t<1, h=2"%
Case: k = h?

Fig. 3 u(x,y,r) = 4t + x> +*
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Table 1 Case: k = 1h2.

h | E@I] r
0.516x10~

B

IE ()] e IE ()]l Ty
21 — 0.735x 107! — 0.497x 107! —
2721 0.129%10° T | 4.0000 | 0.192x10°T | 3.8281 | 0.123x10° T | 4.0407
2731 034x1072 | 37941 | 0.52x 1072 | 3.6923 | 0.33x 1072 | 3.7273
2 4
2 5

09x1073 | 37778 | 0.14x 1072 | 3.7143 | 0.8x 1073 | 4.1250
02x1073 | 45000 | 03x1073 | 4.6667 | 0.2x1073 | 4.0000

Table 2 Case: k = h?.

h IE ()|l ra IE ()] i IE ()]l '
2T 0.2079 — 0.2805 — 0.5611 —
272 043x107! 4.8349 0.663x 1071 4.2308 0.412x 107! 13.6189
2731 0.1007x10%0 | 0.427x10720 | 0.7345x10%0 0.9x 1021 0.195x 1010 | 0.213x10~ 1
2747170348 10™ [ 0.2894x 1073 | 0.5207x 10710 | 0.1411x10°%9 | 0.31x10™8 | 0.629x10~%

Table 3 Case: k = $h2.

h IE ()| 1]2 r [I1E ()|]| e Il ()] 1 rl
21 0.4054 — 0.5676 — 0.3672 —
272 0.1214 3.3394 0.1589 3.5721 0.1166 3.1492
2731 0336x10°T | 3.6131 | 0.432x10°T | 3.6782 | 0.334x10°T | 3.4910
2 4

2 5

0.88x1072 | 3.8182 | 0.112x10° T | 3.8571 | 0.83x10°2 | 4.0241
0.22x1072 | 4.0000 | 0.29x107% | 3.8621 | 0.204x10~2 | 4.0686

for every a,b,c € R, together with the time step
restriction (34) (i.e. 2ak < h?), equation (73) provides

ak
() < ()2 + 55 (e =26l + el ) el

+I2[(2p0 + piy)el] 4 2CH (K + ki) el}|

212
a“k
+ g (i = 26+ e
k2 -
+Z|e?,j+1—29Z+eﬁj71||2pfj+l)ij|
k
C 232 (o2 Fon pn gy o
+_|e;l,j+1_ze;lj+e;l,j71|(k3 +kh2) (elj) = (el]) +/’l2 (et,j+1 2e1]+el,]71) elj
2 kz 2 n * n 2C k3 khz n
s 0 Ly - +k7[(2p7; + pij)ei| + 2C (k7 + kh7)|ej|
+—(2pij +pij)” +2C (kK +kh)”. 22
2 +a [( n . 11)2+(n7 n )2]
oA L1 ) €ij~ €ij-1
K2 -
oyl = 2ei+ e 12+ pijl
C
+7r|e:'l,j+l _2e?j+e;‘l,j71|(k3 +kh?)

which implies
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K* -
+ (20} + i) +2CH (K +kh?)?

ak
S(@Z)2+ﬁ(€?‘j+l 2@ +€l] 1)

1 n *
+5 [k3(2p,.j + P52+ 8C2(K +kh4)}
2k2 ) )
+k( ) + W42 [(Syei,j+%) +(6yei’j,§l) :|

IS 3k
5 2Pl P+ g () +4(elp) + (efj1)’]

3k .
JFCZ(kZ +k2h2) 16 ((e zj+1) +4(e], ) + (e i,jfl)z)
K -
+ (20} +p; D7+ 2CH(KE + kh?). (74)

Utilizing the time step restriction (34), i.e. 2ak < h?,
estimate (74) results in

ak
( ) S( t])2+ﬁ(e?,j+1 26 +el] 1) i

1 ¥
) {k3 (200 + pj;)* +8CH(K + kh4)} T H(e)”

ak

(3 7 @, ]+

0+ S [ 4+ (e

FCH IR 4 2 (e )+ A (el ))
+%4(2p;; +pi)F +2CH (K + ki)

Summing this up from i, j =1,2,...M — 1, provides

M—1 , M—1 i
()" < Z (ef})
ij=1 Pt
M=1 4
+akz ﬁ( A 2¢; +el] 1) n
ij=1
ClkM71 ,
+Z"f [(5}’6;”%) (% ’e?,j }*kZ eij)
17]71 = X
9kM71 . 2 n\2 2
+1—6'Zl [(ei’jH) +4(eu) +( i, 1) }
L,]j=
i3 M—1
+534+20) Y [4(oh) + (p5)’]
ij=1

M—1
+2C7k Y (K 4 2k% + 3% + 2k (k* + %)) .
ij=1

Combining the boundary
e"Mj = egj =0, forall j =0,1,...,

condition  (33), ie.
M, Lemmas 1 and 3,

and multiplying both sides of inequality (75) by A2,

straightforward computations yield

h2 Z l] <h2 Z l] _akllé}e HL2(_Q

i,j=1 i,j=1
ak 25kh? M|
100y + =g X ()
iL,j=
K h?
(3 +2k) (M —1)?

[4C1(1+C2h2) +c1(1+62h2)2}
+2C2kh* (M — 1)* [k +2k* + 3h* + 2k(K* + %)) .

Since h = %, k <1+k?and h? < 1+ h*, this becomes

Y ) < (e

ak n
?Héye Hi2(g)

Jii=1 Jii=1
25kh2 M= 5C2k PN
6 X (@)= (5+2k2)( +Cr+Oh')?

Jri=1
+2C2k [k +2k* + 3h* + 2k(k* + 1)

which implies

lle” 172,y < ll€"l17

L2(Q) =

+c4{k\|e"\|,2 @ +k3 [1+k2+k3+h4+h8+k2h4+k%8] +k(1+k)h4}, (75)

where we absorb all constants into a constant 64.
Similarly, one shows that

Hok (|2 12
e 22y < 1" 220

+Cs {kue* o)+ K (14K 4K+ 41 2R+ 2R + k(1 +k)h4} . (76)
where all the constants have been absorbed into a constant
Cs, and

e 22 g < lle™ 12

+Cs {kHe**H,z(m +k3 [1 TR A BRI R k(1 +k)h4} .7
where all the constants have been absorbed into a constant
Cs.

Now, setting

@1 (k,h) =13 [1+ &2+ K+ h* + h® + kKh* + KR8] + k(14 k)h?,
(78)
plugging  estimates (75)-(77), straightforward

computations give

12 2
Hen+ ||L2(_Q) < HenHLZ(Q)

+k [64 +65 +66 +k (6465 =+ 66(64 +65) +k€46566)] He"”iz

Q)

+ [64 + 65 + 66 +k (6465 + 6466 + 6566 + k@@@)} o1 (k,h).
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Absorbing all the constants into a constant 67 yields

12 2
||e”+ HL2(Q) < ||e”HL2(Q)

+Co {1+ (LK) lle" 2 )+

Summing this up from n = 0,1,2,..,p — 1, for any
nonnegative integer p such that 1 < p <N, to get

2
le? |22 0

+C {k[1 +k(14K)]

012
<112

p—1

Y le" 72 gy + P [T +K(1+K)] @1 (k?h)}A (79)
n=0

It comes from the initial condition given in (33), that
e?j =0, for 0 <i,j <M. Applying the Gronwall Lemma,
estimate (79) provides

leP |22 ) < Crexp{ Copk[1+k(1+K)]} p[1 +k(1+K)] @1 (k).
R ~ R (80)
However, k = %, s0 C7kp = C;T ] < GT (since p < N).

This fact, together with estimate (80) yield
le? 122 ) < CrT exp{ G [1+k(1 4+ )]} [14+K(1 + )] ga(k, )2,

where ¢ (k,h)> = k'@ (k,h), @i(k,h) is defined by
equation (78). Taking the square root, it becomes easy to
observe that

le?lz(ay < /G [1+ k(1 + B exp { GE[1+K(1+K))} @ (k).

(81)
It comes from equality @ (k,h)*> = k~'¢;(k,h), and

equation (78) that
@k, h)? = K [1+ I3+ K+ 1+ B+ k2h* + Pk
(LR < (k+ 1) (Cs + @a(k. ),

where 58 is a positive constant independent of k and h,
and @3(k,h) tends to zero when k,h — 0. Taking the
maximum over p of estimate (81), for 0 < p < N, the
proof of Theorem 2 is completed thanks to equation (72).

5 Numerical Experiments and Convergence
Rate

We construct an exact solution to the initial value problem
(1)-(3). Some numerical experiments in two-dimensional
case are performed using Matlab. We observe satisfactory
results, so our algorithm provides good performances for
multidimensional problems. More precisely, we consider
the constructed solution which is associated with the
thermal diffusivity @ = 1, together with two examples
introduced in [26]. The numerical evidences assert both
stability and predicted convergence rate from the theory
(see Theorem 1 and section 2, Page 6, last paragraph).
This convergence rate is obtained by listing in Tables 1-6

[1+k(1 +k)](p1(k,h)}.

the errors between the computed solution and the exact
one with different values of mesh size 4 and time step k,
satisfying k = 142,

Now, assuming that the exact solution to problem
(1)-(3) is of the form u(x,y,7) = [1 +exp(ct +dx+by)]",
where 7 is an integer. By straightforward computations, it
is easy to see that

u(x,y,1) = ncexp(ct +dx+by) [1 4 exp(ct + dx+ by)]" !
(82)
uy(x,y,1) = nd exp(ct +dx+by) [1 + exp(ct + dx + by)]"™"

and

U (x,y,1) = nd*exp(ct + dx + by)

[1 4 nexp(ct +dx +by)] [1 +exp(ct +dx+ by)]" *. (83)
Analogously

yy (x,,1) = nb? exp(ct +dx + by)

[1 + nexp(ct 4 dx + by)] [1 +exp(ct 4 dx + by)]" 2. (84)
Combining equations (82)-(84), it is easy to see that

up — (thex + ttyy)

=nexp(ct +dx+by) (1 +exp(ct +dx+by))"

{e— (d*+b*)[1 +nexp(ct +dx+ by)]

-1

(1 —I—exp(ct—i—dx—i—by))*]}

Setting ¢ = d? + b?, this becomes
up — (tyx +1tyy) = n(d* +b*)exp(ct + dx+ by)
x (1+exp(ct +dx+by))" {1 —[1 + nexp(ct + dx + by)]

(1 +exp(ct+dx+by))7]}
= n(1 —n)(d*>+ b?)exp|2(ct + dx + by)]

x (14 exp(ct +dx+by))" 2 (85)

For n = 1, equation (85) provides
up — (thex + ttyy) = 0.

For instance, taking d> + b*> = 1, this is equivalent to
b* = 1 —d?. Since b*> must be greater than zero, this
implies d> < 1. Ford = i‘/TE, this results in b = i@ and
¢ = 1. Thus, the exact solution is given by

u(x,y,t) =1+ exp (t \[ -2 for + € [0,1] and

),
(x,y) € [0,1]>. The m1t1a1 and boundary conditions are
defined by this solution.

We take the mesh size h € {3,2—2,2—3,?,5} and time
step k € {?’2_3’2_4’2_5’2_6’2_7’2_8’?’2T2T} In addition,
we set k = lh2 (because of the time step restriction (34))

and we compute the error estimates: |||E(u)|[|;2(0 7.12),
HE@l| =0 722) and [1E(w)[[l130 742 associated with
the time-split method to see that the algorithm is stable,
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Table 4 Case: k = hZ.

h IE G|l ra I ()] i IE ()| n',
21 1.4054 — 21771 — 1.2870 —
272 0.4541 3.0949 0.6393 3.4054 0.4103 2.9909
273 1 0.2009%10™ | 0.226x10720 | 0.1465x10%2 0.44%x10721 | 0.389x10%° | 0.1106x 10T
2% 1 0.701x10M° | 0.2866x 10758 | 0.1051x10"2 | 0.1394x 1078 | 0.63x10'° | 0.6175x10~%8
Table 5 Case: k = +h?.
h IE G|l ra [IE ()]l e IE ()| r),
21 0.2073 — 0.2188 — 0.2031 —
272 1 0.522x107T | 3.9713 | 0.539x10~T | 4.0594 | 0.52x10~" | 3.9058
273 ] 0.14x10°T | 3.7286 | 0.143x10~ T | 3.7892 | 0.139x10~" | 3.7510
2741 036x1072 | 3.8889 | 0.37x10°% | 3.8649 | 0.36x10~2 | 3.8611
275 ] 09x107% [4.0000 | 0.9x1073 [ 41111 | 0.9x1073 [ 4.0000
Table 6 Case: k = h2.
h IE G|l 2 ra [E ()]l e IE ()|l r
2T 0.7806 — 0.8750 — 0.75 —
272 0.1861 4.1945 0.2474 3.5368 0.184 4.0761
273 1 0.715x10%° | 0.26x1072° | 0.5216x10°T | 0.47x1072T | 0.138x10%" | 0.1333x10° 1
27% 1 0.25x10™0 | 0.286x107% | 0.375x10™T | 0.1391x107% | 0.23x10'™ | 0.6000x 1038

second order accurate in time and fourth order convergent
in space. Furthermore, we plot the approximate solution,
the exact one together with the errors versus n. Analysis
shows that the three-level explicit time-split method is
more effective than the method of fundamental
solutions [26]. In fact, although the authors proved that
their method provide good results, they did not give the
convergence rate of their algorithm. Finally, when h
varies in the given range, we observe from Tables 1-6 that
the approximation errors O(kP) + O(h®) are dominated
by the k-terms O(k?) (or h-terms O(hP)). Consequently,
the ratio 77, where p = 1,2,00, of the approximation
errors on two adjacent mesh levels €, and € is
approximately (24)%/h® = 29 where p refers to the
LP(0,T;L%()-error norm. Thus, we should use 7/ to
estimate the corresponding convergence rate with respect
to h. Define the norms for the approximate solution u, the
exact one #, and the errors E (u), as follows

H|“|HL2 0,T:12) [kZ””"”LZ] ;

1%l 20,7:22) [kZ”ﬁn”LZ] ;

]

IE @) ll2007:22) = lkZIM —ﬁ”lel ;

NE @) L1 0,7:02) = kZ [l _ﬁnHL?;
n=0

and

= max ||u" —u"HLz

[[|E (u |||L°°0TL2) 0<neN

e Test 1. Suppose  is the unit square (0,1) x (0,1)
and T = 1. We assume that the thermal diffusivity a = 1,
so the exact solution % is given by

2 2
u(x,y,t) =1+exp (t—%x—%y) .

The initial and boundary conditions are given by this
solution.

Tables 1-2. Analyzing convergence rate O(h® + AP )
for time-split MacCormack by rf, with varying time step
k = At and mesh grid h = Ax.

o Test 2. In this example, we choose the domain £ to be
the unit square (0,1)? and 7 = 1. The thermal diffusivity
a is assumed equals 1. The exact solution is taken in [26]

u(x,y,t) = exp(x+y)cos(4t +x+y),

© 2020 NSP
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the initial and boundary conditions (2) and (3) have been
obtained from this solution.

Tables 3-4. Convergence rates O(h% + AtP) for time-
split MacCormack by rf/, with varying spacing & and time
step k.

e Test 3. In this example, we choose the domain Q as in
Test 1 and we consider the exact solution given in [26]

i(x,y,1) = 41 + x> +y°.

The initial and boundary conditions are also given by the
exact solution u.

Tables 5-6. Convergence rates O(h® + AtP) for

time-split MacCormack by rf;, with varying spacing & and
time step k.
Section 4 shows that the algorithm is first order
convergent in time and fourth order accurate in space. If
the result provided in Section 2, page 6, last paragraph is
asserted, the considered method is inconsistent.
Surprisingly, Figures 1-3 and Tables 1-6 show that the
three-level explicit time-split approach is stable, second
order accurate in time and fourth order convergent in
space under the time step restriction (34). This confirms
the theoretical result provided in Section 2, pages 6-7.
Thus, the time-split MacCormack scheme for solving the
initial-boundary ~value problem (1)-(3) is stable,
consistent, second order convergent in time and fourth
order accurate in space.

6 Conclusion and Further Research

In this paper, we provided a detailed study of stability,
error estimates and convergence rate of a three-level
explicit time-split MacCormack method for solving the
2D heat conduction equation (1)-(2). The analysis
illustrated that our method was stable, consistent, second
order accurate in time and fourth order convergent in
space under the time step restriction (34). This
convergence rate was asserted by a wide set of numerical
evidence (see Figures 1-3 and Tables 1-6). Numerical
examples also showed that the new algorithm was (1)
More effective than the method of fundamental solutions
introduced in [26], (2) Fast and robust tools for the
integration of general systems of parabolic PDEs. For
high Reynolds number flows where the viscous region
becomes very thin, MacCormack developed a hybrid
version of his scheme (i.e. MacCormack rapid solver
method [20]). This hybrid scheme is an explicit-implicit
method which proved to be from 10 to 100 more faster
than a time-split MacCormack algorithm (see [33], P.
632). We will apply the rapid solver method to the
two-dimensional heat equations in our future
investigations.
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