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Abstract: The present paper considers an efficient time-split approach (i.e. a three-level explicit time-split MacCormack scheme) for

solving two-dimensional heat conduction equations. Computational cost reduces the two-level explicit MacCormack and splitting. Both

stability and convergence of the method are deeply analyzed in L∞(0,T ;L2)-norm under a suitable time step restriction. Numerical

experiments suggest that the new algorithm is fast, second order accurate in time and fourth order convergent in space. This shows

effectiveness of the numerical scheme and improves some well-known results in literature.

Keywords: A three-level explicit timesplit MacCormack method, Explicit MacCormack scheme, 2D heat equations, locally one-

dimensional operators (splitting), Stability and convergence. AMS Subject Classification (MSC). 35K05, 35A35, 65N35.

1 Introduction

Most real world problems are related to multi-physics,
multi-component and multi-time scale in nature [1, 3].
Some engineering applications of such problems include
various heat conduction models [2, 26]. For instance: heat
exchangers, mathematical finance (this model is obtained
by transforming the Black-Schole equation into the heat
one), various biological and chemical systems including
diffusion and transportation problems. Numerical
simulations of these problems are indispensable and
challenging. This paper considers the following
two-dimensional heat conduction model subject to the
initial and boundary conditions,

∂u

∂ t
−a

(
∂ 2u

∂x2
+

∂ 2u

∂y2

)
= 0, (x,y) ∈ Ω , t ∈ (0,T ]; (1)

u(x,y,0) = u0(x,y), (x,y) ∈ Ω ; (2)

u(x,y, t) = ϕ(x,y, t), (x,y) ∈ ∂Ω , t ∈ (0,T ]; (3)

where a is the thermal diffusivity, Ω = (0,1)× (0,1) and
∂Ω is the boundary of Ω . We assume that the initial
condition u0 and the boundary condition ϕ are assumed to

be regular enough and satisfy the condition
ϕ(x,y,0) = u0(x,y), for any (x,y) ∈ ∂Ω . This
requirement guarantees the existence and uniqueness of a
smooth solution to the heat equations (1)-(3).

In [3–11], a large class of efficient numerical schemes
are based on the collocation and time splitting methods
(i.e. operator splitting or fractional step methods).
Multiple natural splitting approaches are frequently
constructed according to either physical components and
subsystems, such as density, velocity, energy and pressure
or physical processes, such as reaction, diffusion and
convection. However, these splitting methods comprise
two major disadvantages: splitting error in the composite
algorithm and determination of boundary conditions for
the split equations [4, 6]. In literature [11–14], splitting
errors of time splitting methods have been extensively
investigated. Although the results have been appreciated
(stability results), the algorithms have provided
unsatisfactory convergence rate (less or equal than two).
High order time splitting schemes can be developed to
reduce splitting errors.

MacCormack approach [15–17] has been used to
solve a wide class of partial differential equations (PDEs).
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There exist both explicit and implicit versions of the
method, but the explicit predates the implicit by more
than a decade, and it is considered one of the milestones
of computational fluid dynamics. MacCormack explicit
method is popular because of its simplicity and ease of
implementation. The predictor and corrector steps use
forward differencing for first-order time derivatives, with
alternate one-side differencing for first-order space
derivatives. This is particularly advantageous for systems
of equations with nonlinear advective jacobian matrices
associated with one-side explicit schemes, such as
Lax-Wendroff approach (for example, [17–19]). The
drawback of this approach stems from its
inappropriateness for solving high Reynolds numbers
flows. To overcome this difficulty, MacCormack
constructed a hybrid version of his scheme (i.e.
MacCormack rapid solver method) [20]. This algorithm
has been used for solving a large set of nonlinear
PDEs [21–25]. The results suggested that the rapid solver
method had a good stability condition and was much
faster than numerical schemes adopted to solve both
steady and unsteady flows at high to low Reynolds
numbers [20].

The information gained from both MacCormack and
MacCormack rapid solver methods empowers us to
analyze a three-level explicit time-split MacCormack
approach for solving equations (1)-(3). Recently, the
authors [26] have applied a method of fundamental
solutions to initial-value problem (1)-(3). Although the
numerical experiments performed in their work have
suggested that a method of fundamental solutions was so
efficient, the convergence rate of the algorithm had not
been provided, which is a fundamental tool to appreciate
accuracy of a numerical scheme. Another drawback of
this technique stems from the fact that numerical
evidences have been discussed for large values of the
mesh grid h ∈ [0.5, 4]. In fact, the numerical solution
obtained using this method reduces for h ∈ [0, 0.5)
(see [26], page 9, Example 1). The time-split approach we
study for the model (1)-(3) is new, a three-level explicit
predictor-corrector scheme, second order accurate in time
and fourth order convergent in space under the time step
restriction: 2ak

h2 ≤ 1. In addition, and it is motivated by: (a)
the time step restriction (in fact, lots of explicit schemes
for solving equation (1)-(3), are stable under the
well-known condition of Courant-Friedrich-Lewy:
4ak
h2 ≤ 1); (b) the explicit MacCormack approach and (c)

the form of the splitting. Based on the numerical
examples presented by the two methods (see tests 2, 3,
section 5 of this paper and examples 1, 2, in [26], pages
9-12), the graphs show that both schemes seem to
converge with the same degree of accuracy.
Unfortunately, the only information provided by the
figures is insufficient to make this conclusion. The
above-mentioned discussion demonstrates that it is easy
to observe that the three-level explicit time-split
MacCormack approach is superior to a method of

fundamental solutions when solving the two-dimensional
heat conduction (1)-(3). An explicit time-split
MacCormack algorithm [10, 27–32] ”splits” the original
MacCormack scheme into a sequence of one-dimensional
operations, so it achieves a good stability condition. More
precisely, splitting allows to advance the solution in each
direction with the maximum allowable time step. This is
particularly advantageous if the allowable time steps ∆ tx
and ∆ ty are much different because of differences in the
mesh spacings ∆x and ∆y. To explain this method, we
will make use of the 1D difference operators Lx(∆ tx) and
Ly(∆ ty). Setting un

i j = u(xi,y j, t
n), the Lx(∆ tx) operator

applied to un
i j,

u∗i j = Lx(∆ tx)u
n
i j, (4)

is by definition equivalent to the two-step
predictor-corrector MacCormack formulation. The
Ly(∆ ty) operator is defined in a similar manner, i.e.

v∗i j = Ly(∆ ty)u
n
i j. (5)

These expressions make use of a dummy time index,
which is denoted by the asterisk. Now, letting ∆ tx = ∆ t

and ∆ ty = ∆ t
2m

, where m is a positive integer, a second
order accurate scheme can be constructed by applying the
Lx and Ly operators to un

i j, as follows:

un+1
i j =

[
Ly

(
∆ t

2m

)]m

Lx(∆ t)

[
Ly

(
∆ t

2m

)]m

un
i j.

This sequence is quite useful for the case ∆y << ∆x.

To construct this method, we consider the 1D
difference operators Lx(∆ tx) and Ly(∆ ty) defined by
equations (4) and (5), respectively. Following the
approach presented in ( [33], page 231), a second-order
accurate scheme can be constructed by applying the Lx

and Ly operators to un
i j in the following manner:

un+1
i j = Ly(k/2)Lx(k)Ly(k/2)un

i j. (6)

Using these tools, we can provide a three-level explicit
time-split MacCormack method for solving the
initial-boundary value problem (1)-(3). Putting ∆ tx = k,

∆ ty =
k
2

and ∆x = ∆y := h, it comes from equations (4),
(5) and (6) that

u∗i j = Ly(k/2)un
i j ,

u∗∗i j = Lx(k)u
∗
i j = Lx(k)Ly(k/2)un

i j , and un+1
i j = Ly(k/2)u∗∗i j .

(7)

In the following, we should find explicit expressions of
equations u∗i j = Ly(k/2)un

i j and u∗∗i j = Lx(k)u
∗
i j . This will

help giving an explicit formula of the equation
un+1

i j = Ly(k/2)u∗∗i j , which represents a ”one-step

time-split MacCormack algorithm”. For simplicity, we
use both notations: u)n

i j = un
i j and [u+ v]ni j = un

i j + vn
i j.
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The present paper aims to find an efficient solution to
the initial value problem (1)-(3), using a three-level
explicit time-split MacCormack approach. More
precisely, we focus on the following four items:

1.Detailed description of the three-level explicit time-split
MacCormack scheme for solving the two-dimensional
heat equations (1)-(3);

2.Analysis of the stability of the method;
3.Error estimates of the numerical scheme;
4.A large set of numerical evidences which provide the

convergence rate, asserts the theoretical results and
shows effectiveness of the method.

Items 1, 2 and 3 represent our original contributions since
as far as we know that no piece of literature solves the 2D
heat conduction equations (1)-(3) using a three-level
explicit time-split MacCormack scheme.

This paper is organized, as follows: In section 2, we
present some notations as well as function spaces. We
also provide a detailed description of a three-level explicit
time-split MacCormack method for solving problem
(1)-(3). In Section 3, we explore stability of numerical
scheme under the time-step restriction provided in
Section 1. Section 4 analyzes the error estimates and the
convergence of the method. A wide set of numerical
examples which consider the convergence rate of the new
algorithm and confirm the theoretical result (on the
stability) are presented and critically discussed in Section
5. Conclusion and further research are presented in
Section 6.

2 Overview of the three-level explicit

time-split MacCormack scheme

This section considers a full description of a three-level
explicit time-split MacCormack method applied to
two-dimensional heat equations (1)-(3).

Let N and M be two positive integers. Set
k := ∆ t = T

N
; h := ∆x = ∆y = 1

M
, be the time step and

mesh size, respectively. Put tn = kn, t∗ = (n + r)k,
t∗∗ = (n + s)k, where 0 < r < s < 1, so t∗ ∈ (tn, tn+1),
t∗∗ ∈ (t∗, tn+1); n = 0,1,2, ...,N − 1; xi = ih; y j = jh;
0 ≤ i, j ≤ M. Also, let Ωk = {tn,0 ≤ n ≤ N};

Ω h = {(xi,y j),0 ≤ i, j ≤ M}; Ωh = Ω h ∩ Ω and

∂Ωh = Ω h ∩∂Ω .

Consider Uh = {un
i j,n = 0,1, ...,N; i, j = 0,1,2, ...,M}

be the space of grid functions defined on Ωh ×Ωk. Let

δtu
∗
i j =

u∗i j −un
i j

k/2
; δtu

∗∗
i j =

u∗∗i j −u∗i j

k
; δtu

n+1
i j =

un+1
i j −u∗∗i j

k/2
;

δxun
i+ 1

2
, j
=

un
i+1, j −un

i j

h
; δyun

i, j+ 1
2

=
un

i, j+1 −un
i j

h
;

δ 2
x un

i j =
δxun

i+ 1
2
, j
−δxun

i− 1
2
, j

h
; δ 2

y un
i j =

δyun
i, j+ 1

2

−δyun
i, j− 1

2

h
.(8)

Using this, we define the following norms and scalar
products.

‖un‖L2 = h

(
M−1

∑
i, j=1

|un
i j|2
) 1

2

;

‖δxun‖L2 = h

(
M−1

∑
j=1

M−1

∑
i=0

|δxun

i+ 1
2 , j

|2
) 1

2

;

‖δyun‖L2 = h

(
M−1

∑
j=0

M−1

∑
i=1

|δyun

i, j+ 1
2

|2
) 1

2

;

‖δ 2
λ un‖L2 = h

(
M−1

∑
i, j=1

|δ 2
λ un

i j|2
) 1

2

, (9)

where λ = x or y. Furthermore, the scalar products are
defined as

(un,vn) = h2
M−1

∑
i, j=1

un
i jv

n
i j;

< δxun,δxvn >x= h2
M−1

∑
j=1

M−1

∑
i=0

δxun

i+ 1
2 , j

δxvn

i+ 1
2 , j

;

and

< δyun,δyvn >y= h2
M−1

∑
j=0

M−1

∑
i=1

δyun

i, j+ 1
2

δyvn

i, j+ 1
2

. (10)

We recall that a three-level explicit time-split
MacCormack [5, 27, 30] ”splits” the original
MacCormack scheme into a sequence of 1D operators, so
it achieves a good stability condition. More precisely,
splitting allows to advance the solution in each direction
with the maximum allowable time step ( [33], page 231).

Now, expanding the Taylor series about (xi,y j, t
n) at

the predictor and corrector steps with time step k/2 using
forward difference representations yields

u∗i j = un
i j +

k

2
ut)

n
i j +

k2

8
u2t)

n
i j +O(k3);

u∗i j = un
i j +

k

2
ut)

∗
i j +

k2

8
u2t)

∗
i j +O(k3). (11)

Adopting the definition of the operator Ly(k/2), we can
consider the equation

ut − auyy = 0, which is equivalent to ut = auyy. (12)

Using equation (12), we find it easy to observe that

u2t = (auyy)t
= a2u4y.

This fact together with equation (11) provide

u∗i j = un
i j +

ak

2
[uyy]

n
i j +

k2a2

8
[u4y]

n
i j
+O(k3);

u∗i j = un
i j +

ak

2
[uyy]

∗
i j +

k2a2

8
[u4y]

∗
i j
+O(k3). (13)
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The application of the Taylor series expansion about
(xi,y j, t

n) with mesh size h using central difference
representations provides

un
yy,i j = δ 2

y un
i j +O(h2); u∗yy,i j = δ 2

y u∗i j +O(h2);

un
4y,i j = δ 2

y (δ
2
y un

i j)+O(h2);

u∗4y,i j = δ 2
y (δ

2
y u∗i j)+O(h2), (14)

where δ 2
y wl

i j is given by relation (8). Substituting

equations (14) into equations (13) to obtain

u∗i j = un
i j +

ak

2
δ 2

y un
i j + k2ρn

i j +O(k3 + kh2)

u∗i j = un
i j +

ak

2
δ 2

y u∗i j + k2ρ∗
i j +O(k3 + kh2), (15)

where

ρα
i j =

a2

8
δ 2

y (δ
2
y uα

i j), (16)

where α = n,∗. Substituting the first equation of (15) into
both (16) and the second one, straightforward
computations give

ρ∗
i j =

a2

8
δ 2

y (δ
2
y un

i j)+O(k)

u∗i j = un
i j +

ak

2
δ 2

y un
i j + k2(2ρn

i j +ρ∗
i j)+O(k3 + kh2). (17)

Taking the average of u∗i j and u∗i j to get

u∗i j + u∗i j

2
= un

i j+
ak

2
δ 2

y un
i j+

3a2k2

16
δ 2

y (δ
2
y un

i j)+O(k3+kh2).

(18)
On the other hand, to define the operator Lx(k), we

should consider the equation

ut = auxx. (19)

It comes from equation (19), that

u2t = auxx,t = a2u4x. (20)

Applying the Taylor series expansion about (xi,yi, t
∗)

(where t∗ ∈ (tn, tn+1) is the time used at the beginning of
the next step in a time-split MacCormack scheme) with
mesh size h using central difference representation, we
obtain

u∗xx,i j = δ 2
x u∗i j +O(h2); u∗4x,i j = δ 2

x (δ
2
x u∗i j)+O(h2);

u∗∗xx,i j = δ 2
x u∗∗i j +O(h2);

u∗∗4x,i j = δ 2
x (δ

2
x u∗∗i j )+O(h2), (21)

where δ 2
x ul

i j is defined by equation (8). Moreover,
expanding the Taylor series at the predictor and corrector
steps about (xi,y j , t

∗) with time step k using forward
difference, it becomes easy to observe that

u∗∗i j = u∗i j + kut)
∗
i j +

k2

2
u2t)

∗
i j +O(k3);

u∗∗i j = u∗i j + kut)
∗∗
i j +

k2

2
u2t)

∗∗
i j +O(k3). (22)

A combination of equations (22), (21), (19) and (20)
provides

u∗∗i j = u∗i j + akδ 2
x u∗i j +

a2k2

2
δ 2

x (δ
2
x u∗i j)+O(k3 + kh2);

u∗∗i j = u∗i j + akδ 2
x u∗∗i j +

a2k2

2
δ 2

x (δ
2
x u∗∗i j )+O(k3 + kh2).(23)

To obtain simple expressions of δ 2
x u∗∗i j and δ 2

x (δ
2
x u∗∗i j ), we

should use the first equation in (23). Tracking the
infinitesimal term in this equation, direct computations
give

δ 2
x u∗∗i j ≈ δ 2

x u∗i j + akδ 2
x

(
δ 2

x u∗i j

)
+

a2k2

2
δ 2

x (δ
4
x u∗i j)

and δ 2
x (δ

2
x u∗∗i j )≈ δ 2

x (δ
2
x u∗i j).

The truncation of this error term does not compromise the
result. This fact together with relation (23) yield

u∗∗i j = u∗i j + akδ 2
x u∗i j +

3a2k2

2
δ 2

x (δ
2
x u∗i j)+O(k3 + kh2).

(24)

Taking the average of u∗∗i j and u∗∗i j , it becomes easy to see
that

u∗∗i j + u∗∗i j

2
= u∗i j +akδ 2

x u∗i j +a2k2δ 2
x (δ

2
x u∗i j)+O(k3 + kh2).

(25)
Similarly, starting with the one-dimensional equation:

ut − auyy = 0, expanding the Taylor series about
(xi,y j, t

∗∗) (where t∗∗ represents the time used at the last
step in a time-split MacCormack approach) at the
predictor and corrector steps with time step k/2 and mesh
size h, using forward difference representations to get

un+1
i j +un+1

i j

2
= u∗∗i j +

ak
2

δ 2
y un

i j +
3a2k2

16
δ 2

y (δ
2
y u∗∗i j )+O(k3 + kh2).

(26)
To construct a three-level explicit time-split

MacCormack method for solving the heat conduction
equation (1)-(3), we must follow the ideas presented in
the literature to construct the explicit MacCormack
scheme [16, 20, 27, 30]. Specifically, we should neglect
the terms of second order together with the infinitesimal
term O(k3 + kh2) in equations (18), (25) and (26). In

addition, the terms u∗i j, u∗∗i j and un+1
i j must be defined as

the average of predicted and corrected values. That is,

u∗i j =
u∗i j+u∗i j

2
; u∗∗i j =

u∗∗i j +u∗∗i j

2
and un+1

i j =
un+1

i j +un+1
i j

2
.

(27)
Thus, equations

u∗i j = Ly(k/2)un
i j; u∗∗i j = Lx(k)u

∗
i j and un+1

i j = Ly(k/2)u∗∗i j ,
(28)

are by definition equivalent to

u∗i j = un
i j +

ak

2
δ 2

y un
i j; u∗∗i j = u∗i j + akδ 2

x u∗i j

and un+1
i j = u∗∗i j +

ak

2
δ 2

y u∗∗i j . (29)
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The property of the operator Ly(k/2)Lx(k)Ly(k/2) related
to the symmetric, together with equations (18), (25) and
(26) suggest that the considered method is a three-level
explicit predictor-corrector numerical scheme, second
order accurate in time and fourth order convergent in
space. This result is asserted by a large set of numerical
examples (see section 5 for more details). Utilizing the
definition of the linear operators ”δ 2

x ” and ”δ 2
y ” given by

relation (8), equation (29) can be rewritten as follows:
For n = 0,1, ...,N − 1;

u∗i j = un
i j +

ak

2h2
(un

i, j+1 − 2un
i j + un

i, j−1),

i = 0,1, ...,M; j = 1,2, ...,M− 1; (30)

u∗∗i j = u∗i j +
ak

h2
(u∗i+1, j − 2u∗i j + u∗i−1, j),

i = 1,2, ...,M− 1; j = 0,1, ...,M; (31)

un+1
i j = u∗∗i j +

ak

2h2
(u∗∗i, j+1 − 2u∗∗i j + u∗∗i, j−1),

i = 0,1, ...,M; j = 1,2, ...,M− 1, (32)

with the initial and boundary conditions. For
i, j = 0,1, ...,M,

u0
i j = u0(xi,y j);un

i0 = ϕn
i0; un

iM = ϕn
iM; un

0 j = ϕn
0 j;

un
M j = ϕn

M j; u∗0 j = ϕn+1
0 j ;u∗M j = ϕn+1

M j ;

u∗j0 = ϕn+1
j0 ;u∗jM = ϕn+1

jM ;u∗∗0 j = ϕn+1
0 j ; u∗∗M j = ϕn+1

M j ;

u∗∗j0 = ϕn+1
j0 ;u∗∗jM = ϕn+1

jM ;uN
i0 = ϕN

i0 ;

uN
iM = ϕN

iM;uN
0 j = ϕN

0 j; uN
M j = ϕN

M j , (33)

which represent a full description of a three-level explicit
time-split MacCormack method for solving the 2D heat
conduction equations (1)-(3).

In the following, we prove the stability, the error
estimates and the convergence rate of our method under
the time step restriction

2ak

h2
≤ 1, (34)

where a is the thermal diffusivity given in equation (1).
Estimate (34) is well known in literature as
Courant-Friedrich-Lewy condition. We assume that the
analytical solution
u ∈ L∞(0,T ;L2(Ω)) ∩ H1(0,T ;H3(Ω)) ∩
H2(0,T ;H1(Ω)) ∩ H2(0,T ;L2(Ω)) ∩ L2(0,T ;H4(Ω)).

Thus, there exists a nonzero constant C̃ > 0, independent
of time step k and mesh size h, that satisfies

‖|u|‖L∞(0,T ;L2(Ω))+ ‖|u|‖H1(0,T ;H3(Ω))

+‖|u|‖H2(0,T ;H1(Ω))+ ‖|u|‖H2(0,T ;L2(Ω))

+‖|u|‖L2(0,T ;H4(Ω)) ≤ C̃. (35)

To prove the main results of this paper (namely
Theorem 1-2), we need some intermediate results
(Lemma 1-3).

Lemma 1.Let un
i j = u(xi,y j, t

n) be the numerical solution

provided by the scheme (30)-(33), un
i j = u(xi,y j , t

n) be the

exact one and let en
i j = un

i j −un
i j be the error. We recall that

u∗i j =
u∗i j+u∗i j

2
, u∗∗i j =

u∗∗i j +u∗∗i j

2
, satisfy relations (18) and (25),

respectively. u∗i j and u∗∗i j are given by equations (30) and

(31), respectively. The following equalities hold:

< δ 2
x en

i j,e
n
i j >x= h2

M−1

∑
j,i=1

1

h2

(
en

i+1, j − 2en
i j + en

i−1, j

)
en

i j

=−‖δxen‖2
L2(Ω), (36)

and

< δ 2
y en

i j,e
n
i j >y= h2

M−1

∑
j,i=1

1

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

=−‖δyen‖2
L2(Ω), (37)

where the operators δx and δy are defined in relation (8).

Proof.(of Lemma 1). We should prove equation (36) only.
The proof of relation (37) is similar.

Using the definition of the operator δ 2
x and the scalar

product < ·, · >x given by (8) and (10), respectively, it
becomes easy to show that

< δ 2
x en

i j,e
n
i j >x= h2

M−1

∑
i, j=1

1

h2

(
en

i+1, j − 2en
i j + en

i−1, j

)
en

i j

=
M−1

∑
i, j=1

[(
en

i+1, j − en
i j

)
en

i j −
(
en

i, j − en
i−1, j

)
en

i j

]
=

h
M−1

∑
i, j=1

[(
en

i+1, j − en
i j

h

)
en

i j −
(

en
i, j − en

i−1, j

h

)
en

i j

]

= h
M−1

∑
i, j=1

[(
δxen

i+ 1
2 , j

)
en

i j −
(

δxen

i− 1
2 , j

)
en

i j

]
=

h
M−1

∑
j=1

(
(δxen

3
2 , j

)en
1 j − (δxen

1
2 , j
)en

1 j

)
+

(
(δxen

5
2 , j

)en
2 j − (δxen

3
2 , j

)en
2 j

)

+
(
(δxen

7
2 , j
)en

3 j − (δxen
5
2 , j

)en
5 j

)
+ · · ·+

(
(δxen

M− 3
2 , j

)en
M−2, j − (δxen

M− 5
2 , j
)en

M−2, j

)
+

(
(δxen

M− 1
2 , j

)en
M−1, j − (δxen

M− 3
2 , j

)en
M−1, j

)}
=

h
M−1

∑
j=1

{
−
(

en
2 j − en

1 j

)
δxen

3
2 , j

−
(

en
3 j − en

2 j

)
δxen

5
2 , j

−
(

en
4 j − en

3 j

)
δxen

7
2 , j

−·· ·−

(
en

M−1, j − en
M−2, j

)
δxen

M− 3
2 , j

+(δxen

M− 1
2 , j

)en
M−1, j − (δxen

1
2 , j

)en
1, j

}
.

(38)
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From the boundary condition (33), we have that en
M j =

en
0 j = 0. Hence (δxen

M− 1
2 , j

)en
M j = 0 and (δxen

1
2 , j

)en
0 j = 0.

This fact together with equation (38) result in

h2
M−1

∑
i, j=1

1

h2

(
en

i+1, j − 2en
i j + en

i−1, j

)
en

i j

= h2
M−1

∑
j,i=1

{
−
(

δxen
3
2 , j

)2

−
(

δxen
5
2 , j

)2

−·· ·−
(

δxen

M− 3
2 , j

)2

−
(

en
M j − en

M−1, j

h

)
δxen

M− 1
2 , j

−
(

en
1 j − en

0, j

h

)
δxen

1
2 , j

}

=−ah2
M−1

∑
i=0

M−1

∑
j=1

(
δxen

i+ 1
2 , j

)2

=−‖δxen‖2
L2(Ω).

Lemma 2.Consider v ∈ H4(Ω) as a function satisfying

v|[xi,xi+1] ∈ C 6[xi,xi+1], for i = 0,1,2, ...,M − 1. Then, it

holds

1

h2
(vi+1 − 2vi+ vi−1)− v2x,i

=
h2

12
v4x,i −

h4

720

[
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
]
,

for i = 1,2, ...,M− 1,

where θ
(4)
i ∈ (xi−1,xi), θ

(3)
i ∈ (xi,xi+1) and vmx denotes

the derivative of order m of v. Furthermore, for
i = 2,3, ...,M− 2,

1

h4
(vi+2 −4vi+1 +6vi −4vi−1 + vi−2)− v4x,i

= h2

{
1

720

[
v6x(θ

(1)
i )+ v6x(θ

(2)
i )
]
+

241

3220

[
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
]}

,

where θ
(2)
i ∈ (xi−2,xi−1), θ

(4)
i ∈ (xi−1,xi), θ

(3)
i ∈ (xi,xi+1)

and θ
(1)
i ∈ (xi+1,xi+2).

Proof.(of Lemma 2) Expanding the Taylor series about xi

with grid spacing h using both forward and backward
differences to obtain

vi+2 = vi+1 + hvx,i+1 +
h2

2
v2x,i+1 +

h3

6
v3x,i+1 +

h4

24
v4x,i+1

+
h5

120
v5x,i+1 +

h6

720
v6x(θ

(1)
i ), (39)

where θ
(1)
i ∈ (xi+1,xi+2);

vi−2 = vi−1 − hvx,i−1 +
h2

2
v2x,i−1 −

h3

6
v3x,i−1 +

h4

24
v4x,i−1

− h5

120
v5x,i−1 +

h6

720
v6x(θ

(2)
i ), (40)

where θ
(2)
i ∈ (xi−2,xi−1);

vi = vi+1 − hvx,i+1 +
h2

2
v2x,i+1 −

h3

6
v3x,i+1 +

h4

24
v4x,i+1

− h5

120
v5x,i+1 +

h6

720
v6x(θ

(3)
i ), (41)

where θ
(3)
i ∈ (xi,xi+1);

vi = vi−1 + hvx,i−1 +
h2

2
v2x,i−1 +

h3

6
v3x,i−1 +

h4

24
v4x,i−1

+
h5

120
v5x,i−1 +

h6

720
v6x(θ

(4)
i ), (42)

where θ
(4)
i ∈ (xi−1,xi).

Similarly, applying the Taylor expansion for both
derivative and higher order derivatives of v to obtain

vx,i+1 = vx,i + hv2x,i +
h2

2
v3x,i +

h3

6
v4x,i +

h4

24
v5x,i

+
h5

120
v6x(θ

(5)
i ), (43)

where θ
(5)
i ∈ (xi,xi+1);

vx,i−1 = vx,i − hv2x,i +
h2

2
v3x,i −

h3

6
v4x,i +

h4

24
v5x,i

− h5

120
v6x(θ

(6)
i ), (44)

where θ
(6)
i ∈ (xi−1,xi);

v2x,i+1 = v2x,i + hv3x,i+
h2

2
v4x,i +

h3

6
v5x,i +

h4

24
v6x(θ

(7)
i ),

(45)

where θ
(7)
i ∈ (xi,xi+1);

v2x,i−1 = v2x,i − hv3x,i+
h2

2
v4x,i −

h3

6
v5x,i +

h4

24
v6x(θ

(8)
i ),

(46)

where θ
(8)
i ∈ (xi−1,xi);

v3x,i+1 = v3x,i + hv4x,i+
h2

2
v5x,i +

h3

6
v6x(θ

(9)
i ),

v3x,i−1 = v3x,i − hv4x,i+
h2

2
v5x,i −

h3

6
v6x(θ

(10)
i ), (47)

where θ
(9)
i ∈ (xi,xi+1), θ

(10)
i ∈ (xi−1,xi);

v4x,i+1 = v4x,i + hv5x,i+
h2

2
v6x(θ

(11)
i ),

v4x,i−1 = v4x,i − hv5x,i+
h2

2
v6x(θ

(12)
i ), (48)

where θ
(11)
i ∈ (xi,xi+1), θ

(12)
i ∈ (xi−1,xi);

v5x,i+1 = v5x,i + hv6x(θ
(13)
i ), v5x,i−1 = v5x,i − hv6x(θ

(12)
i ),

(49)

where θ
(13)
i ∈ (xi,xi+1), θ

(14)
i ∈ (xi−1,xi).

Now, adding equations (41)-(42) side by side gives

2vi = vi+1 + vi−1 − h(vx,i+1 − vx,i−1)+
h2

2
(v2x,i+1 + v2x,i−1)

−h3

6
(v3x,i+1 − v3x,i−1)+
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h4

24
(v4x,i+1 + v4x,i−1)−

h5

120
(v5x,i+1 − v5x,i−1)

+
h6

720
(v6x(θ

(3)
i )+ v6x(θ

(4)
i )). (50)

Subtracting (44) from (43), adding (45) and (46), using
equations (47), (48) and (55), simple calculations provide

vx,i+1 − vx,i−1 = 2hv2x,i +
h3

3
v4x,i

+
h5

720

(
v6x(θ

(5)
i )+ v6x(θ

(6)
i )
)

; (51)

v2x,i+1 + v2x,i−1 = 2v2x,i + h2v4x,i

+
h4

24

(
v6x(θ

(7)
i )+ v6x(θ

(8)
i )
)

; (52)

v3x,i+1 − v3x,i−1 = 2hv4x,i+
h3

6

(
v6x(θ

(9)
i )+ v6x(θ

(10)
i )

)
;

(53)

v4x,i+1 + v4x,i−1 = 2v4x,i +
h2

2

(
v6x(θ

(11)
i )+ v6x(θ

(12)
i )

)
;

v5x,i+1 − v5x,i−1 = h
(

v6x(θ
(13)
i )+ v6x(θ

(14)
i )

)
. (54)

Combining equations (43)-(54), straightforward
computations result in

2vi = vi+1 +vi−1 −h2v2x,i −
h4

12
v4x,i

+h6

{
1

720
(v6x(θ

(3)
i )+v6x(θ

(4)
i ))

− 1

120
(v6x(θ

(5)
i )+v6x(θ

(6)
i ))

+
1

48
(v6x(θ

(7)
i )+v6x(θ

(8)
i ))− 1

36
(v6x(θ

(9)
i )+v6x(θ

(10)
i ))

+
1

48
(v6x(θ

(11)
i )+v6x(θ

(12)
i ))−

1

120
(v6x(θ

(13)
i )+ v6x(θ

(14)
i ))

}
. (55)

Since θ
(3)
i ,θ

(5)
i ,θ

(7)
i ,θ

(9)
i ,θ

(11)
i ,θ

(13)
i ∈ (xi,xi+1) and

θ
(4)
i ,θ

(6)
i ,θ

(8)
i ,θ

(10)
i ,θ

(12)
i ,θ

(14)
i ∈ (xi−1,xi), without loss

of generality, we can assume that

θ
(3)
i = θ

(5)
i = θ

(7)
i = θ

(9)
i = θ

(11)
i = θ

(13)
i and

θ
(4)
i = θ

(6)
i = θ

(8)
i = θ

(10)
i = θ

(12)
i = θ

(14)
i . Using this,

relation (55) becomes

1

h2
(vi+1 − 2vi + vi−1)− v2x,i =

h2

12
v4x,i

− h4

720

[
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
]
.

This completes the proof of the first item of Lemma 2.
Now, we can prove the second item of Lemma 2.

Plugging equations (39) and (41), (40) and (42), (41)
and (42), respectively, it becomes easy to see that

vi+2 − 2vi+1+ vi = h2v2x,i+1 +
h4

12
v4x,i+1

+
h6

720

(
v6x(θ

(1)
i )+ (θ

(3)
i )
)

; (56)

vi − 2vi−1 + vi−2 = h2v2x,i−1 +
h4

12
v4x,i−1

+
h6

720
v6x(θ

(2)
i )+

h6

720
v6x(θ

(3)
i );

and

4vi = 2(vi+1 + vi−1)− 2h(vx,i+1 − vx,i−1)

+h2(v2x,i+1 + v2x,i−1)

−h3

3
(v3x,i+1 − v3x,i−1)+

h4

12
(v4x,i+1 + v4x,i−1)

− h5

60
(v5x,i+1 − v5x,i−1)

+
h6

720

(
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
)
. (57)

A combination of equations (56)-(57) yields

vi+2 −4vi+1 +6vi −4vi−1 +vi−2

=−2h(vx,i+1 −vx,i−1)+2h2(v2x,i+1 +v2x,i−1)

−h3

3
(v3x,i+1 −v3x,i−1)+

h4

6
(v4x,i+1 +v4x,i−1)

− h5

60
(v5x,i+1 −v5x,i−1)

+
h6

720

[
v6x(θ

(1)
i )+v6x(θ

(2)
i )+3

(
v6x(θ

(3)
i )+v6x(θ

(4)
i )
)]

.(58)

Substituting (51)-(54) into (58),simple computations
result in

vi+2 −4vi+1 +6vi −4vi−1 +vi−2

=−4h2v2x,i −
2h4

3
v4x,i +4h2v2x,i +2h4v4x,i −

2h4

3
v4x,i

+h6

{
1

720

[
v6x(θ

(1)
i ) +v6x(θ

(2)
i )+3

(
v6x(θ

(3)
i )+v6x(θ

(4)
i )
)]

− 1

60

(
v6x(θ

(5)
i )+v6x(θ

(6)
i )
)
+

1

12

(
v6x(θ

(7)
i )+v6x(θ

(8)
i )
)

− 1

18

(
v6x(θ

(9)
i )+ v6x(θ

(10)
i )

)
+

1

12

(
v6x(θ

(11)
i )+ v6x(θ

(12)
i )

)

− 1

60

(
v6x(θ

(13)
i )+ v6x(θ

(14)
i )

)}
,

which is equivalent to

vi+2 −4vi+1 +6vi −4vi−1 + vi−2 = h4v4x,i

+h6

{
1

720

[
v6x(θ

(1)
i )+ v6x(θ

(2)
i )+3

(
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
)]

−

1

60

(
v6x(θ

(5)
i )+ v6x(θ

(6)
i )
)
+

1

12

(
v6x(θ

(7)
i )+ v6x(θ

(8)
i )
)

− 1

18

(
v6x(θ

(9)
i )+ v6x(θ

(10)
i )

)
+

1

12

(
v6x(θ

(11)
i )+ v6x(θ

(12)
i )

)

− 1

60

(
v6x(θ

(13)
i )+ v6x(θ

(14)
i )

)}
. (59)
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Assuming that θ
(3)
i = θ

(5)
i = θ

(7)
i = θ

(9)
i = θ

(11)
i = θ

(13)
i

and θ
(4)
i = θ

(6)
i = θ

(8)
i = θ

(10)
i = θ

(12)
i = θ

(14)
i , equation

(59) becomes

vi+2 −4vi+1 +6vi −4vi−1 + vi−2

= h4v4x,i +h6

{
1

720

[
v6x(θ

(1)
i )+ v6x(θ

(2)
i )+

]
+

241

3220

[
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
]}

,

which is equivalent to

1

h4
(vi+2 −4vi+1 +6vi −4vi−1 + vi−2)− v4x,i

= h2

{
1

720

[
v6x(θ

(1)
i )+ v6x(θ

(2)
i )+

]
+

241

3220

[
v6x(θ

(3)
i )+ v6x(θ

(4)
i )
]}

.

This ends the proof of Lemma 2.

Lemma 3.The term ρα
i j given by equation (16) can be

bounded as

|ρα
i j |=

a2

8
|δ 2

y (δ
2
y uα

i j)| ≤ Ĉ1

[
1+ Ĉ2h2

]
, (60)

where α = n,∗. Ĉl , l = 1,2, are positive constant

independent of the time step k and the mesh size h.

Proof.(of Lemma 3). It comes from the definition of the
operator ”δ 2

y ” that

ρα
i j =

a2

8
δ 2

y (δ
2
y uα

i j)

=
a2

8h4

(
uα

i, j+2 − 4uα
i, j+1 + 6uα

i j − 4uα
i, j−1 + uα

i, j−2

)
.

This fact together with Lemma 2 give

ρα
i j =

a2

8

[
uα

4y,i j +h2
(

1

720

[
uα

6y(xi ,θ
(1)
j

)+uα
6y(xi ,θ

(2)
j

)

]
+

241

3220

[
uα
6y(xi ,θ

(3)
j

)+uα
6y(xi ,θ

(4)
j

)

])]
,

where θ
(2)
j ∈ (yi−2,yi−1), θ

(4)
j ∈ (yi−1,yi),

θ
(3)
j ∈ (yi,yi+1) and θ

(1)
j ∈ (yi+1,yi+2). On the other

hand, u(x, ·, t)|[y j ,y j+1] ∈ C
6([y j,y j+1]), for every

x ∈ (0,1), t ∈ (0,T ) and j = 0,1,2, ...,M − 1 and

‖|u|‖L∞(0,T ;L2(Ω)) ≤ C̃ (according to estimate (35))).
Taking the absolute value, there exist positive constants

Ĉl , l = 1,2, independent of the time step k and the mesh
grid h so that

|ρα
i j | ≤ Ĉ1

(
1+ Ĉ2h2

)
.

This completes the proof of Lemma 3.

Using Lemmas 1, 2 and 3, we can prove the main
results of this paper (Theorems 1-2).

3 Stability analysis of a three-level time-split

MacCormack scheme

In this section we analyze stability of the three-level time-
split MacCormack scheme (30)-(33) applied to problem
(1)-(3).

Theorem 1.Suppose u is the solution provided by the

scheme (30)-(33). Under the time step restriction (34), it

holds

max
0≤n≤N

‖un‖L2(Ω) ≤ C̃,

where C̃ is given by estimate (35).

Proof.Combining equations (18), (25) and (30), simple
calculations yield

e∗i j = en
i j +

ak

2
δ 2

y en
i j +

3ak2

16
δ 2

y (δ
2
y un

i j)+O(k3+kh2). (61)

Utilizing the definition of the operator ”δ 2
y ”, equation (61)

is equivalent to

e∗i j = en
i j +

ak

2h2
(en

i, j+1 − 2en
i j + en

i, j−1)

+
3ak2

16h4
(un

i, j+2 − 4un
i, j+1 + 6un

i j − 4un
i, j−1 + un

i, j−2)

+O(k3 + kh2). (62)

We recall that the present paper aims to provide a general
picture of the stability analysis of the scheme (30)-(33).
Since the formulas can become quite heavy, for the sake of
readability, we must neglect the higher order terms in both
time step k and mesh grid h. However, the truncation of
these terms does not compromise the result on the stability
analysis. Using this fact, equation (62) provides

e∗i j = en
i j +

ak

2h2
(en

i, j+1 − 2en
i j + en

i, j−1).

Taking the square, it holds

(e∗i j)
2 = (en

i j)
2 +

ak

h2
(en

i, j+1 − 2en
i j + en

i, j−1)e
n
i j

+
a2k2

4h4
(en

i, j+1 − 2en
i j + en

i, j−1)
2. (63)

Now, using inequality (a±b)2 ≤ 2(a2+b2), for any a,b∈
R, by simple computations, it becomes easy to observe that

(en
i, j+1 − 2en

i j + en
i, j−1)

2

leq2
[
(en

i, j+1 − en
i j)

2 +(en
i, j−1 − en

i j)
2
]
. (64)

A combination of equation (37) and estimates (63)-(64)
results in

(e∗i j)
2 ≤ (en

i j)
2 +

ak

h2
(en

i, j+1 − 2en
i j + en

i, j−1)e
n
i j

+
a2k2

h2

[(
δyen

i, j+ 1
2

)2

+
(

δyen

i, j− 1
2

)2
]
. (65)

Summing estimate (65) up from i, j = 1,2, ...,M − 1, this
gives

M−1

∑
i, j=1

(e∗i j)
2 ≤

M−1

∑
i, j=1

(en
i j)

2 +
ak

h2

M−1

∑
i, j=1

(en
i, j+1 − 2en

i j + en
i, j−1)e

n
i j

+
a2k2

h2

M−1

∑
i, j=1

[(
δyen

i, j+ 1
2

)2

+
(

δyen

i, j− 1
2

)2
]
,
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which implies

M−1

∑
i, j=1

(e∗i j)
2 ≤

M−1

∑
i, j=1

(en
i j)

2 +
ak

h2

M−1

∑
i, j=1

(en
i, j+1 − 2en

i j + en
i, j−1)e

n
i j

+
2a2k2

h2

M−1

∑
i=1

M−1

∑
j=0

(
δyen

i, j+ 1
2

)2

. (66)

Multiplying both sides of inequality (66) by h2 and using
equation (37) we obtain

‖e∗‖2
L2(Ω) ≤ ‖en‖2

L2(Ω)−ak‖δyen‖2
L2(Ω)+

2a2k2

h2
‖δyen‖2

L2(Ω).

From the time step restriction (34), i.e. 1 − 2ak
h2 ≥ 0, it

follows

‖e∗‖2
L2(Ω) ≤ ‖en‖2

L2(Ω). (67)

Similarly, combining equations (25), (27) and (32)
(respectively, equations (26), (27) and (32)), it becomes
easy to show that

‖e∗∗‖2
L2(Ω) ≤ ‖e∗‖2

L2(Ω), and ‖en+1‖2
L2(Ω) ≤ ‖e∗∗‖2

L2(Ω).

(68)
Now, plugging estimates (67) and (68), straightforward
computations yield

‖en+1‖2
L2(Ω) ≤ ‖en‖2

L2(Ω).

Summing this up from n = 0,1,2, .., p − 1, for any
nonnegative integer p satisfying 1 ≤ p ≤ N, to get

‖ep‖2
L2(Ω) ≤ ‖e0‖2

L2(Ω). (69)

It stems from the initial condition given in (33) that e0
i j =

0, for 0 ≤ i, j ≤ M. This fact together with estimate (69)
result in

‖ep‖L2(Ω) = 0. (70)

We have that ‖up‖L2(Ω) −‖up‖L2(Ω) ≤ ‖up − up‖L2(Ω) =

‖ep‖L2(Ω). A combination of this inequality together with

equation (70) give

‖up‖L2(Ω) ≤ ‖up‖L2(Ω).

Since u is the exact solution, using estimate (35), the proof
of Theorem 1 is complete.

4 Convergence of the Method

This section considers the error estimates of a three-level
explicit time-split method (30)-(33) for solving equations
(1)-(3), under the time step restriction (34). We assume
that the exact solution u satisfies estimate (35). Let

Uh = {un
i j, n = 0,1,2, ...,N; i, j = 0,1,2, ...,M}, (71)

be the space of grid functions defined on Ωh ×Ωk, where
Ωk = {tn, 0 ≤ n ≤ N} and
Ωh = {(xi,y j), 0 ≤ i, j ≤ M}∩Ω .

We introduce the following discrete norms

‖|u|‖L∞(0,T ;L2(Ω)) = max
0≤n≤N

‖un‖L2(Ω);

‖|u|‖L2(0,T ;L2(Ω)) =

(
k

N

∑
n=0

‖un‖2
L2(Ω)

) 1
2

,

and

‖|u|‖L1(0,T ;L2(Ω)) = k
N

∑
n=0

‖un‖L2(Ω); for u ∈ Uh. (72)

Theorem 2. Let u be the solution provided by a

three-level time-split MacCormack approach (30)-(33).
Under the time step restriction (34), the error term

e = u− u satisfies

‖|e|‖L∞(0,T ;L2(Ω)) ≤ O(k+ h4).

Proof. We recall that the error term provided by the
scheme (30)-(33) is denoted by en

i j = un
i j − un

i j, where u

satisfies equations (18), (25) and (26) and u are given by
relations (30)-(33). Thus, it comes from equation (62)
that

e∗i j = en
i j +

ak

2h2
(en

i, j+1 − 2en
i j + en

i, j−1)+
1

2
k2(2ρn

i j

+ρ∗
i j)+O(k3 + kh2),

which is equivalent to

e∗i j = en
i j +

ak
2h2 (e

n
i, j+1 − 2en

i j + en
i, j−1)+

1
2
k2(2ρn

i j +ρ∗
i j)+Cr(k

3 + kh2),

where Cr is a parameter that depends neither on the time
step k nor the grid spacing h and ρα

i j is defined by (16).
Taking the square, it is becomes easy to show that

(e∗i j)
2 = (en

i j)
2 +

ak

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

+k2(2ρn
i j +ρ∗

i j)e
n
i j + 2Cr(k

3 + kh2)en
i j

+
a2k2

4h4
(en

i, j+1 − 2en
i j + en

i, j−1)
2

+
ak3

2h2
(en

i, j+1 − 2en
i j + en

i, j−1)(2ρn
i j +ρ∗

i j)

+
aCr

h2
(en

i, j+1 − 2en
i j + en

i, j−1)(k
4 + k2h2)

+
k4

4
(2ρn

i j +ρ∗
i j)

2

+C2
r (k

3 + kh2)2 +Cr(k
5 + k3h2)(2ρn

i j +ρ∗
i j). (73)

Applying the inequalities: 2ab ≤ a2 + b2,
(a± b)2 ≤ 2(a2 + b2) and (a± b± c)2 ≤ 3(a2 + b2 + c2),

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1084 E. Ngondiep: An efficient three-level explicit time-split approach...

Analysis of stability and convergence of a three-level explicit time-split MacCormack method with a = 1.
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Analysis of stability and convergence of a three-level explicit time-split MacCormack method with a = 1.
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Fig. 2 u(x,y, t) = exp(x+y)cos(4t +x+y)
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Analysis of stability and convergence of a three-level explicit time-split MacCormack method with a = 1.
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Table 1 Case: k = 1
2 h2.

h ‖|E(u)|‖L2 r2
u ‖|E(u)|‖L∞ r∞

u ‖|E(u)|‖L1 r1
u

2−1 0.516×10− —- 0.735×10−1 —- 0.497×10−1 —-

2−2 0.129×10−1 4.0000 0.192×10−1 3.8281 0.123×10−1 4.0407

2−3 0.34×10−2 3.7941 0.52×10−2 3.6923 0.33×10−2 3.7273

2−4 0.9×10−3 3.7778 0.14×10−2 3.7143 0.8×10−3 4.1250

2−5 0.2×10−3 4.5000 0.3×10−3 4.6667 0.2×10−3 4.0000

Table 2 Case: k = h2.

h ‖|E(u)|‖L2 r2
u ‖|E(u)|‖L∞ r∞

u ‖|E(u)|‖L1 r1
u

2−1 0.2079 —- 0.2805 —- 0.5611 —-

2−2 0.43×10−1 4.8349 0.663×10−1 4.2308 0.412×10−1 13.6189

2−3 0.1007×1020 0.427×10−20 0.7345×1020 0.9×10−21 0.195×1019 0.213×10−19

2−4 0.348×10109 0.2894×10−89 0.5207×10110 0.1411×10−89 0.31×10108 0.629×10−89

Table 3 Case: k = 1
2 h2.

h ‖|E(u)|‖L2 r2
u ‖|E(u)|‖L∞ r∞

u ‖|E(u)|‖L1 r1
u

2−1 0.4054 —- 0.5676 —- 0.3672 —-

2−2 0.1214 3.3394 0.1589 3.5721 0.1166 3.1492

2−3 0.336×10−1 3.6131 0.432×10−1 3.6782 0.334×10−1 3.4910

2−4 0.88×10−2 3.8182 0.112×10−1 3.8571 0.83×10−2 4.0241

2−5 0.22×10−2 4.0000 0.29×10−2 3.8621 0.204×10−2 4.0686

for every a,b,c ∈ R, together with the time step
restriction (34) (i.e. 2ak ≤ h2), equation (73) provides

(e∗i j)
2 ≤ (en

i j)
2 +

ak

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

+k2|(2ρn
i j +ρ∗

i j)e
n
i j|+ 2Cr(k

3 + kh2)|en
i j|

+
a2k2

4h4
(en

i, j+1 − 2en
i j + en

i, j−1)
2

+
k2

4
|en

i, j+1 − 2en
i j + en

i, j−1||2ρn
i j +ρ∗

i j|

+
Cr

2
|en

i, j+1 − 2en
i j + en

i, j−1|(k3 + kh2)

+
k4

2
(2ρn

i j +ρ∗
i j)

2 + 2C2
r (k

3 + kh2)2.

which implies

(e∗i j)
2 ≤ (en

i j)
2 +

ak

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

+k2|(2ρn
i j +ρ∗

i j)e
n
i j|+ 2Cr(k

3 + kh2)|en
i j|

+
a2k2

2h4

[
(en

i, j+1 − en
i j)

2 +(en
i j − en

i, j−1)
2
]

+
k2

4
|en

i, j+1 − 2en
i j + en

i, j−1||2ρn
i j +ρ∗

i j|

+
Cr

2
|en

i, j+1 − 2en
i j + en

i, j−1|(k3 + kh2)
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+
k4

2
(2ρn

i j +ρ∗
i j)

2 + 2C2
r (k

3 + kh2)2

≤ (en
i j)

2 +
ak

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

+
1

2

[
k3(2ρn

i j +ρ∗
i j)

2 + 8C2
r (k

5 + kh4)
]

+k(en
i j)

2 +
a2k2

2h2

[
(δyen

i, j+ 1
2

)2 +(δyen

i, j− 1
2

)2
]

+
k3

4
(2ρn

i j +ρ∗
i j)

2 +
3k

8

[
(en

i, j+1)
2 + 4(en

i j)
2 +(en

i, j−1)
2
]

+C2
r (k

3
2 + k

1
2 h2)2 +

3k

16

(
(en

i, j+1)
2 + 4(en

i j)
2 +(en

i, j−1)
2
)

+
k4

2
(2ρn

i j +ρ∗
i j)

2 + 2C2
r (k

3 + kh2)2. (74)

Utilizing the time step restriction (34), i.e. 2ak ≤ h2,
estimate (74) results in

(e∗i j)
2 ≤ (en

i j)
2 +

ak

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

+
1

2

[
k3(2ρn

i j +ρ∗
i j)

2 + 8C2
r (k

5 + kh4)
]
+ k(en

i j)
2

+
ak

4

[
(δyen

i, j+ 1
2

)2 +(δyen

i, j− 1
2

)2
]
+

k3

4
(2ρn

i j

+ρ∗
i j)

2 +
3k

8

[
(en

i, j+1)
2 + 4(en

i j)
2 +(en

i, j−1)
2
]

+C2
r (k

3
2 + k

1
2 h2)2 +

3k

16

(
(en

i, j+1)
2 + 4(en

i j)
2 +(en

i, j−1)
2
)

+
k4

2
(2ρn

i j +ρ∗
i j)

2 + 2C2
r (k

3 + kh2)2.

Summing this up from i, j = 1,2, ...M− 1, provides

M−1

∑
i, j=1

(e∗i j)
2 ≤

M−1

∑
i, j=1

(en
i j)

2

+ak
M−1

∑
i, j=1

1

h2

(
en

i, j+1 − 2en
i j + en

i, j−1

)
en

i j

+
ak

4

M−1

∑
i, j=1

[
(δyen

i, j+ 1
2

)2 +(δyen

i, j− 1
2

)2
]
+ k

M−1

∑
i, j=1

(en
i j)

2

+
9k

16

M−1

∑
i, j=1

[
(en

i, j+1)
2 + 4(en

i j)
2 +(en

i, j−1)
2
]

+
k3

2
(3+ 2k)

M−1

∑
i, j=1

[4(ρn
i j)

2 +(ρ∗
i j)

2]

+2C2
r k

M−1

∑
i, j=1

[
k2 + 2k4 + 3h4+ 2k(k4 + h4)

]
.

Combining the boundary condition (33), i.e.
en

M j = en
0 j = 0, for all j = 0,1, ...,M, Lemmas 1 and 3,

and multiplying both sides of inequality (75) by h2,

straightforward computations yield

h2
M−1

∑
i, j=1

(e∗i j)
2 ≤ h2

M−1

∑
i, j=1

(en
i j)

2 − ak‖δyen‖2
L2(Ω)

+
ak

2
‖δyen‖2

L2(Ω)+
25kh2

16

M−1

∑
i, j=1

(en
i j)

2 +

k3h2

2
(3+ 2k)(M− 1)2

[
4Ĉ2

1(1+ Ĉ2h2)2 + Ĉ2
1(1+ Ĉ2h2)2

]

+2C2
r kh2(M− 1)2

[
k2 + 2k4 + 3h4+ 2k(k4 + h4)

]
.

Since h = 1
M
, k ≤ 1+ k2 and h2 ≤ 1+ h4, this becomes

h2
M−1

∑
j,i=1

(e∗i j)
2 ≤ h2

M−1

∑
j,i=1

(en
i j)

2 − ak

2
‖δyen‖2

L2(Ω)

+
25kh2

16

M−1

∑
j,i=1

(en
i j)

2 +
5Ĉ2

1k3

2
(5+ 2k2)(1+ Ĉ2 + Ĉ2h4)2

+2C2
r k
[
k2 + 2k4 + 3h4 + 2k(k4 + h4)

]
,

which implies

‖e∗‖2

L2(Ω )
≤ ‖en‖2

L2(Ω )

+Ĉ4

{
k‖en‖2

L2(Ω )
+ k3

[
1+ k2 + k3 +h4 +h8 + k2h4 + k2h8

]
+ k(1+ k)h4

}
, (75)

where we absorb all constants into a constant Ĉ4.

Similarly, one shows that

‖e∗∗‖2

L2(Ω )
≤ ‖e∗‖2

L2(Ω )

+Ĉ5

{
k‖e∗‖2

L2(Ω )
+ k3

[
1+ k2 + k3 +h4 +h8 + k2h4 + k2h8

]
+ k(1+ k)h4

}
, (76)

where all the constants have been absorbed into a constant
Ĉ5, and

‖en+1‖2

L2 (Ω )
≤ ‖e∗∗‖2

L2(Ω )

+Ĉ6

{
k‖e∗∗‖2

L2 (Ω )
+ k3

[
1+ k2 + k3 +h4 +h8 + k2h4 + k2h8

]
+ k(1+ k)h4

}
,(77)

where all the constants have been absorbed into a constant
Ĉ6.
Now, setting

ϕ1(k,h) = k3
[
1+ k2 + k3 + h4 + h8 + k2h4 + k2h8

]
+ k(1+ k)h4,

(78)
plugging estimates (75)-(77), straightforward
computations give

‖en+1‖2
L2(Ω) ≤ ‖en‖2

L2(Ω)

+k
[
Ĉ4 + Ĉ5 + Ĉ6 + k

(
Ĉ4Ĉ5 + Ĉ6(Ĉ4 + Ĉ5)+ kĈ4Ĉ5Ĉ6

)]
‖en‖2

L2(Ω)

+
[
Ĉ4 + Ĉ5 + Ĉ6 + k

(
Ĉ4Ĉ5 + Ĉ4Ĉ6 + Ĉ5Ĉ6 + kĈ4Ĉ5Ĉ6

)]
ϕ1(k,h).
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Absorbing all the constants into a constant Ĉ7 yields

‖en+1‖2
L2(Ω) ≤ ‖en‖2

L2(Ω)

+Ĉ7

{
k(1+ k(1+ k))‖en‖2

L2(Ω)+[1+ k(1+ k)]ϕ1(k,h)
}
.

Summing this up from n = 0,1,2, .., p − 1, for any
nonnegative integer p such that 1 ≤ p ≤ N, to get

‖ep‖2
L2(Ω) ≤ ‖e0‖2

L2(Ω)

+Ĉ7 {k [1+k(1+k)]

p−1

∑
n=0

‖en‖2
L2(Ω)+ p [1+k(1+k)]ϕ1(k,h)

}
. (79)

It comes from the initial condition given in (33), that
e0

i j = 0, for 0 ≤ i, j ≤ M. Applying the Gronwall Lemma,

estimate (79) provides

‖ep‖2
L2(Ω)

≤ Ĉ7 exp
{

Ĉ7 pk [1+ k(1+ k)]
}

p [1+ k(1+ k)]ϕ1(k,h).

(80)

However, k = T
N
, so Ĉ7kp = Ĉ7T

p
N
≤ Ĉ7T (since p ≤ N).

This fact, together with estimate (80) yield

‖ep‖2
L2(Ω)

≤ Ĉ7T exp
{

Ĉ7T [1+ k(1+ k)]
}
[1+ k(1+ k)]ϕ2(k,h)

2,

where ϕ2(k,h)
2 = k−1ϕ1(k,h), ϕ1(k,h) is defined by

equation (78). Taking the square root, it becomes easy to
observe that

‖ep‖L2(Ω) ≤
√

Ĉ7T [1+ k(1+ k)]exp
{

Ĉ7T
2

[1+ k(1+ k)]
}

ϕ2(k,h).

(81)
It comes from equality ϕ2(k,h)

2 = k−1ϕ1(k,h), and
equation (78) that

ϕ2(k,h)
2 = k2

[
1+ k2 + k3 + h4 + h8 + k2h4 + k2h8

]

+(1+ k)h4 ≤ (k+ h4)2(C̃8 +ϕ3(k,h)),

where C̃8 is a positive constant independent of k and h,
and ϕ3(k,h) tends to zero when k,h → 0. Taking the
maximum over p of estimate (81), for 0 ≤ p ≤ N, the
proof of Theorem 2 is completed thanks to equation (72).

5 Numerical Experiments and Convergence

Rate

We construct an exact solution to the initial value problem
(1)-(3). Some numerical experiments in two-dimensional
case are performed using Matlab. We observe satisfactory
results, so our algorithm provides good performances for
multidimensional problems. More precisely, we consider
the constructed solution which is associated with the
thermal diffusivity a = 1, together with two examples
introduced in [26]. The numerical evidences assert both
stability and predicted convergence rate from the theory
(see Theorem 1 and section 2, Page 6, last paragraph).
This convergence rate is obtained by listing in Tables 1-6

the errors between the computed solution and the exact
one with different values of mesh size h and time step k,
satisfying k = 1

2
h2.

Now, assuming that the exact solution to problem
(1)-(3) is of the form u(x,y, t) = [1+ exp(ct + dx+ by)]n ,
where n is an integer. By straightforward computations, it
is easy to see that

ut(x,y, t)= ncexp(ct+dx+by) [1+ exp(ct + dx+ by)]n−1 ,
(82)

ux(x,y, t)= nd exp(ct+dx+by) [1+ exp(ct + dx+ by)]n−1 ,

and

uxx(x,y, t) = nd2 exp(ct + dx+ by)

[1+ nexp(ct + dx+ by)][1+ exp(ct + dx+ by)]n−2 . (83)

Analogously

uyy(x,y, t) = nb2 exp(ct + dx+ by)

[1+ nexp(ct + dx+ by)][1+ exp(ct + dx+ by)]n−2 . (84)

Combining equations (82)-(84), it is easy to see that

ut − (uxx + uyy)

= nexp(ct + dx+ by)(1+ exp(ct + dx+ by))n−1

{
c− (d2 + b2) [1+ nexp(ct + dx+ by)]

(1+ exp(ct + dx+ by))−1
}

Setting c = d2 + b2, this becomes

ut − (uxx +uyy) = n(d2 +b2)exp(ct +dx+by)

×(1+exp(ct +dx+by))n−1 {1− [1+nexp(ct +dx+by)]

(1+ exp(ct + dx+ by))−1
}

= n(1− n)(d2+ b2)exp[2(ct + dx+ by)]

×(1+ exp(ct + dx+ by))n−2 . (85)

For n = 1, equation (85) provides

ut − (uxx + uyy) = 0.

For instance, taking d2 + b2 = 1, this is equivalent to
b2 = 1 − d2. Since b2 must be greater than zero, this

implies d2 ≤ 1. For d =±
√

2
2
, this results in b =±

√
2

2
and

c = 1. Thus, the exact solution is given by

u(x,y, t) = 1 + exp
(

t −
√

2
2

x−
√

2
2

y
)
, for t ∈ [0,1] and

(x,y) ∈ [0,1]2. The initial and boundary conditions are
defined by this solution.

We take the mesh size h ∈ { 1
2
, 1

22 ,
1
23 ,

1
24 ,

1
25 } and time

step k ∈ { 1
22 ,

1
23 ,

1
24 ,

1
25 ,

1
26 ,

1
27 ,

1
28 ,

1
29 ,

1
210

1
211 }. In addition,

we set k = 1
2
h2 (because of the time step restriction (34))

and we compute the error estimates: ‖|E(u)|‖L2(0,T ;L2),

‖|E(u)|‖L∞(0,T ;L2) and ‖|E(u)|‖L1(0,T ;L2) associated with

the time-split method to see that the algorithm is stable,
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Table 4 Case: k = h2.

h ‖|E(u)|‖L2 r2
u ‖|E(u)|‖L∞ r∞

u ‖|E(u)|‖L1 r1
u

2−1 1.4054 —- 2.1771 —- 1.2870 —-

2−2 0.4541 3.0949 0.6393 3.4054 0.4103 2.9909

2−3 0.2009×1019 0.226×10−20 0.1465×1022 0.44×10−21 0.389×1020 0.1106×10−19

2−4 0.701×10110 0.2866×10−88 0.1051×10112 0.1394×10−88 0.63×10109 0.6175×10−88

Table 5 Case: k = 1
2 h2.

h ‖|E(u)|‖L2 r2
u ‖|E(u)|‖L∞ r∞

u ‖|E(u)|‖L1 r1
u

2−1 0.2073 —- 0.2188 —- 0.2031 —-

2−2 0.522×10−1 3.9713 0.539×10−1 4.0594 0.52×10−1 3.9058

2−3 0.14×10−1 3.7286 0.143×10−1 3.7892 0.139×10−1 3.7510

2−4 0.36×10−2 3.8889 0.37×10−2 3.8649 0.36×10−2 3.8611

2−5 0.9×10−3 4.0000 0.9×10−3 4.1111 0.9×10−3 4.0000

Table 6 Case: k = h2.

h ‖|E(u)|‖L2 r2
u ‖|E(u)|‖L∞ r∞

u ‖|E(u)|‖L1 r1
u

2−1 0.7806 —- 0.8750 —- 0.75 —-

2−2 0.1861 4.1945 0.2474 3.5368 0.184 4.0761

2−3 0.715×1020 0.26×10−20 0.5216×1021 0.47×10−21 0.138×1020 0.1333×10−19

2−4 0.25×10110 0.286×10−89 0.375×10111 0.1391×10−89 0.23×10109 0.6000×10−88

second order accurate in time and fourth order convergent
in space. Furthermore, we plot the approximate solution,
the exact one together with the errors versus n. Analysis
shows that the three-level explicit time-split method is
more effective than the method of fundamental
solutions [26]. In fact, although the authors proved that
their method provide good results, they did not give the
convergence rate of their algorithm. Finally, when h

varies in the given range, we observe from Tables 1-6 that

the approximation errors O(kβ ) + O(hθ ) are dominated

by the k-terms O(kθ ) (or h-terms O(hβ )). Consequently,
the ratio r

p
u , where p = 1,2,∞, of the approximation

errors on two adjacent mesh levels Ω2h and Ωh is
approximately (2h)θ/hθ = 2θ , where p refers to the
Lp(0,T ;L2(Ω)-error norm. Thus, we should use r

p
u to

estimate the corresponding convergence rate with respect
to h. Define the norms for the approximate solution u, the
exact one u, and the errors E(u), as follows

‖|u|‖L2(0,T ;L2) =

[
k

N

∑
n=0

‖un‖2
L2

f

] 1
2

;

‖|u|‖L2(0,T ;L2) =

[
k

N

∑
n=0

‖un‖2
L2

f

] 1
2

;

‖|E(u)|‖L2(0,T ;L2) =

[
k

N

∑
n=0

‖un − un‖2
L2

f

] 1
2

;

‖|E(u)|‖L1(0,T ;L2) = k
N

∑
n=0

‖un − un‖L2
f
;

and

‖|E(u)|‖L∞(0,T ;L2) = max
0≤n≤N

‖un − un‖L2
f
.

• Test 1. Suppose Ω is the unit square (0,1)× (0,1)
and T = 1. We assume that the thermal diffusivity a = 1,
so the exact solution u is given by

u(x,y, t) = 1+ exp

(
t −

√
2

2
x−

√
2

2
y

)
.

The initial and boundary conditions are given by this
solution.

Tables 1-2. Analyzing convergence rate O(hθ +∆ tβ )
for time-split MacCormack by r

p
u , with varying time step

k = ∆ t and mesh grid h = ∆x.
• Test 2. In this example, we choose the domain Ω to be
the unit square (0,1)2 and T = 1. The thermal diffusivity
a is assumed equals 1. The exact solution is taken in [26]

u(x,y, t) = exp(x+ y)cos(4t + x+ y),
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the initial and boundary conditions (2) and (3) have been
obtained from this solution.

Tables 3-4. Convergence rates O(hθ +∆ tβ ) for time-
split MacCormack by r

p
u , with varying spacing h and time

step k.
• Test 3. In this example, we choose the domain Ω as in
Test 1 and we consider the exact solution given in [26]

u(x,y, t) = 4t + x2 + y2.

The initial and boundary conditions are also given by the
exact solution u.

Tables 5-6. Convergence rates O(hθ + ∆ tβ ) for
time-split MacCormack by r

p
u , with varying spacing h and

time step k.
Section 4 shows that the algorithm is first order
convergent in time and fourth order accurate in space. If
the result provided in Section 2, page 6, last paragraph is
asserted, the considered method is inconsistent.
Surprisingly, Figures 1-3 and Tables 1-6 show that the
three-level explicit time-split approach is stable, second
order accurate in time and fourth order convergent in
space under the time step restriction (34). This confirms
the theoretical result provided in Section 2, pages 6-7.
Thus, the time-split MacCormack scheme for solving the
initial-boundary value problem (1)-(3) is stable,
consistent, second order convergent in time and fourth
order accurate in space.

6 Conclusion and Further Research

In this paper, we provided a detailed study of stability,
error estimates and convergence rate of a three-level
explicit time-split MacCormack method for solving the
2D heat conduction equation (1)-(2). The analysis
illustrated that our method was stable, consistent, second
order accurate in time and fourth order convergent in
space under the time step restriction (34). This
convergence rate was asserted by a wide set of numerical
evidence (see Figures 1-3 and Tables 1-6). Numerical
examples also showed that the new algorithm was (1)
More effective than the method of fundamental solutions
introduced in [26], (2) Fast and robust tools for the
integration of general systems of parabolic PDEs. For
high Reynolds number flows where the viscous region
becomes very thin, MacCormack developed a hybrid
version of his scheme (i.e. MacCormack rapid solver
method [20]). This hybrid scheme is an explicit-implicit
method which proved to be from 10 to 100 more faster
than a time-split MacCormack algorithm (see [33], P.
632). We will apply the rapid solver method to the
two-dimensional heat equations in our future
investigations.
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