
Applied Mathematics & Information Sciences 5 (2) (2011), 179S-185S
– An International Journal
© 2011 NSP

Research on Implement Snapshot of pNFS Distributed File System

Liu-Chao, Zhang-Jing Wang, Liu Zhenjun , Wang-Chao, Zhang-Jun Wei

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
LiuChao@nrchpc.ac.cn

Received Jun 8, 2010; Revised Jan 20, 2011

Abstract: Snapshot plays an increasingly important role in the online-backup and
data-protection of distribute file systems. As a new generation standard of NFS,
pNFS doesn’t provide design scheme on snapshot concretely. And the current
snapshot implementations depending on their own file system architecture heavily,
can’t be used in pNFS. This paper takes a careful study on pNFS structure , adopts a
suitable metadata organized solutions, proposes an method to get a consistent state of
file system based on COW and a novel source-reserved read/write process flow,
which resolve the problem of interaction between client and server, consistence and
efficient of creating snapshots. To our knowledge, we firstly implement snapshot
function of pNFS in Linux kernel 2.6 and the tests which shows creating snapshot has
little affect on performance of pNFS. Snapshot is quick to create(less than 1 second)
and can be created frequently (one snapshot per second) without serious performance
degradation(less than 10% degradation to write bandwidth).

Keywords: snapshot, pNFS, Distributed file system (DFS), copy on write(COW)

1 Introduction
Snapshot defines that a fully usable copy of a defined collection of data that contains
an image of the data as it appeared at a single instant in time [1]. Differing from the
current local file system or virtual block device snapshot, the distribute file system
now facing the following problems and challenges: Firstly ,in the distributed file
system with the out-of-band accessing mode, client can read or write storage devices
directly. Secondly, because of computer failure or network interrupt and other
abnormalities, it is awfully difficult to get the consistent state of system. Thirdly,
because that distributed file system needs to provide continuous service, ensuring the
consistency of snapshot becomes a serious problem.

pNFS (parallel network file system NFSv4.1)[2]distributed file system framework, is
an extension of NFSv4 . As the future of NFS, it inherits the advantage which pNFS
will be accepted by most of users as a standard. In the near future, Linux kernel may
make it to be a necessary part, every file system should support it. Taking into
consideration that creating snapshot should be compatible with the pNFS standard, it
brings a new challenge to us.

In the context of our knowledge , we highlight three main contributions in this paper,
firstly, we implement the high performance pNFS distributed file system with
snapshot function under block layout protocol for the first time，secondly，we
propose a method based on all data COW to get the consistence state, Finally, we put
forward a novel resource-reserved read/write process flow for the distributed
snapshot system. Our tests shows creating snapshot doesn’t affect the performance of

Liu-Chao et al 180
pNFS distribute file system. The rest of the paper is organized as follows. In the next
section，we provide a brief background of pNFS, and the related work about the
snapshot in other distributed file systems. Section 3 explains in detail about the key
technologies to create snapshots in pNFS. Section 4 presents some experimental
results, Finally, section 5 presents our conclusions.

2 Backgrounds and Related work
The classical NFS has been reviewed consistently. However, its data throughput and
scalability cannot satisfy the growing demands of larger clusters because the data and
metadata has to pass through a single NFS server. Under such circumstance, some
research institutions and incorporations advocate pNFS, which is based on NFSv4
and out-band data transmission, allowing the clients to access the storage device
directly. It profoundly reduces the possibility of the server becoming a bottleneck of
the system and provides much higher scalability and throughput. Meanwhile, With
the expectation to be the standards of distributed file system in future, pNFS has win
much support from IBM, NetApp, panasas, EMC etc. pNFS can provide higher
availability and reliability with snapshot functionality.

2.1 pNFS

pNFS consists of three main components: server, client and storage-node. Server
manages the metadata, client issuing I/O requests and storage-node responsible for
storing data. The whole procedure is like this: a client obtains a layout from the
metadata server, than this client will read or write the storage-node according the
layout information.

Figure 2.1 pNFS Arichitecture

The implementation of snapshot relies on the mechanism of pNFS which are all
about its layout. The layout of pNFS defines how the blocks of a specific file
distribute on a single or multiple storage devices. It contains the following parts.

1. Layout Type. This represents the type of storage devices that the clients can
access. This paper will focus on block device on which to create snapshots.

2. Layout IOmode. This defines the layout permissions. Table 2.1 shows that
four kinds of permissions in the block layout type protocol.

Research on Implement Snapshot of …………… 181

Table 2.1 Layout explanations

Read/write permission Explanation

READ_WRITE_DATA Range indicated by layout can be read or written

READ_DATA Range indicated by layout can only be read

INVALID_DATA Represents the new allocated but uninitialized data

NONE_DATA Represents the file hole

3. The logical offset and range in a file. This part demonstrates the logical area
of a file corresponding to the layout information.

4. The layout content. It describes the physical device distribution of a file system.

pNFS contains four operations for interaction :

1. Obtaining a Layout. The client gets the layout of a file through LAYOUTGET.

2. Commit a layout. The client synchronizes the layout with the server by the
operation LAYOUTCOMMIT after it has changed it.

3. Return a layout. The client returns the layout previously obtained to the
server by the operation LAYOUTRETURN.

4. Recall a layout. The server revokes the layout previously granted to the
client by the operation CB_LAYOUTRECALL.

2.2 Related Work

Lots of work has been done in the snapshot of DFSs. Google FS’s snapshot [3] is
also based on the technology of Copy on Write (COW). General Parallel File System
(GPFS) [4] can snapshot the whole file system and roll back files to any snapshots.
Lustre [5], developed by Cluster file system, uses Object based Storage Devices
(OSD). The mapping from file to the block position is done by the object based
storage devices, which support snapshot. Write Anywhere File Layout (WAFL) is a
file system used by NAS application of NetApp, using Checkpoint and COW in its
snapshot. But these snapshots are highly coupling with their systems and cannot be
well integrated into pNFS framework.

3 Key Technologies on Snapshot
3.1 Metadata Organization

The organization and management of metadata is of vital magnitude in file system. In
DFSs, to prevent the concurrency and synchronization complexities of distributed
metadata updates, centralized metadata management is preferred. As a flexible
distributed file system framework, pNFS’s block layout protocol supports manifold
back-end file systems. These file systems, which correspond to the metadata server in
pNFS architecture, are responsible for the organization and representation of
metadata. It also has the main functionalities for creating snapshots.

Liu-Chao et al 182
Due to its highly efficient storage and fast retrieval, B+ tree is widely used in
metadata organization. Rodeh’paper provides with us an improved B+ tree structure,
which ensures good performance under COW, and further, when combined with
reference count mechanism, a well-establish snapshot functionality [6]. This
advancement relies on the following skills:

1. top-down updates.

2. Leaf links removed.

3. Lazy updates of reference count.

The question that how to create snapshots on B+ trees and the details of these skills
are beyond the scope of this paper. Readers of interest can refer to the Rodeh’ paper
[6].

3.2 Resource-reserved Read/Write Process

In distributed snapshot file system, the read/write process is essential to keep
snapshot semantics. Client mounts the file system exported by pNFS,，As Figure 3.1
shows:

Figure 3.1 pNFS read/write process

1. Client mount the file system and get the device lists and device information.

If client want to read a file:

2. Client get the layout, server receives the request and inquires mapping
information, if demands, reserving the disk space information of the file in
memory, then sends the reply to client.

3. Client resolve the layout information, find the physical location in the
devices.

4. Client read the data from the devices

If client want to write a file, continuing the 3th step, then:

5. Client write the data to the devices directly

6. Client commit the modifications to the Metadata server.

3.3 Get Consistence State

Research on Implement Snapshot of …………… 183
The obvious difference between the block device snapshot and file system snapshot
is that the file system should ensure the consistency when creating snapshot. Because
of the running file system always updating its data, if when these operations doesn’t
finish, the snapshot will contain these unfinished data, and data set of snapshot is
inconsistent. We work out a very simple approach based on all data COW to get a
consistent state, taking a look at table 3.1 about layout type.

Table 3.1 Layout types of interaction

Request the layout type of file Layout type returned

Read/ Write Hole NONE_DATA INVALID_DATA

Read/Write Common layout READ_DATA/READ_WRITE_DATA

Read/Write Snapshot layout READ_DATA/READ_DATA&INVALID_DATA

Client can modify the corresponding part according to READ_WRITE_DATA layout
. So when creating a snapshot , it must recall this layout Recalling a layout is long
time process in DFS. Taking considerations to performance, our approach to get the
consistent state is that, with all data cow, avoiding granting this layout to client.

3.4 Create Snapshots

If do the COW to the all data at any time, we can create snapshots in Meta server
directly, but the problem of file fragmentation become serious. If segmentation isn’t
referred by a snapshot, server can grant the READ_WRITE_DATA to client, and the
client update data in the same place. Under this circumstance，the process to create
snapshots shows as follows, First, Server enables all data cow and recall the layout
asynchronously, then creates snapshot, at last, disables function of all data cow.

 Because that the modifications to metadata and creation of snapshots are protected
by the transaction mechanism of metadata server, the file mapping relation of active
file system and snapshot can keep consistence.

4 Implementation and Experimental Evaluation
We used the open-source pNFS as DFS framework and btrfs as the back-end
metadata file system. With the Linux core 2.6.32, we exported the pNFS module
from btrfs, Our metadata server uses 2.2GHz Xeon E5410 CPU and 4G memory.
Two machines of the same configuration are used as clients. Three shared disks
(750G, 7200RPM, STATII) are configured as RAID 0, exported by the fiber for MDS
and the clients. We tested the performance of metadata server and the disk data I/O.

4.1 Metadata performance test

We want to show by this test that our implementation of snapshot in pNFS doesn’t
exert extra influence on the creation speed of files and directories. The test recursively
builds a directory tree. In each of the directory, a certain amount of files of designated
size will be created and we just count how much time these operations will take
eventually. Shows in Figure4.1, we can see that the number of snapshots doesn’t
compromise, if not improve, the performance of the metadata.

Liu-Chao et al 184

Figure 4.1 The speed of create and delete files under different number of snapshots

4.2 Data performance test

The data performance is tested under different number of snapshots and different
frequency of creating snapshots. Tests shows the performance of reading or writing a file
of 8G size with 1M block size at a time. Figure 4.2 shows that there are few varies among
these tests. It indicates that the frequency of creating snapshot has no much negative
effects on bandwidth performance.

Figure 4.2 Read/ Write bandwidth Figure 4.3 no_cow and all_cow write bandwidth

Without the COW for any data at any time (no_cow), we tested the initial write
performance before creating any snapshots, the rewrite performance, the write
performance when creating a snapshot every 1 or 10 seconds. With the COW for all data
(all_cow), we made the similar tests. As Figure4.3 shows, frequent creation of snapshots
also play a minor role in the writing performance.

5 Conclusion
In this paper, we study on the key technologies on implementing snapshot under

pNFS framework, and the snapshot shows very good performance. we highlight the
contributions in this paper, firstly, we implement pNFS distributed file system with
snapshot function under block layout protocol for the first time，secondly，we propose
a method based on all data COW to get the consistence state, Finally, we put forward a
novel source-reserved read/write process flow for the snapshot system. The test results
indicate that research methods are effective under the block layout protocol of pNFS.

Research on Implement Snapshot of …………… 185

Acknowledgements

This work is supported in part by the National High-Tech Research and
Development Plan of China under grants No. 2009AA01A403, China Information
Security Special (NDRC) fund for Disaster Backup and Recovery Standard
Architecture Construction.

References

[1] SNIA. http://www.snia.org/education/dictionary/s/. 2010
[2] S. Shepler, M. Eisler, D. Noveck, Network File System (NFS) Version 4 Minor Version 1

Protocol.http://www.ietf.org/rfc/rfc5661.txt, January 2010.
[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The Google File System , in:

Symposium on Operating Systems Principles (SOSP’03).pp. 29-43. 2003.
[4] Frank Schmuck and Roger Haskin, GPFS: A Shared-Disk File System for Large Computing

Clusters, in: Proceedings of the Conference on File and Storage Technologies, pp. 231–
244.January 2002.

[5] Cluster File Systems Inc., Lustre: A Scalable, High-Performance FileSystem, www.lustre.org,
2002.

[6] Ohad Rodeh, B-trees, Shadowing, and Clones, In: ACM Transactions on Computational
Logic, Vol. V, No. N, August 2007.

LiuChao received the bachelor degree in information security
from HuNan University (HNU), China in 2009, He is currently a
Master Student in the ICT/CAS. His research interests include
the areas of computer architecture, distributed storage systems
and database system.

http://www.lustre.org/�

Applied Mathematics & Information Sciences 5 (2) (2011), 33S-37S
– An International

	23.pdf
	Received Jun 8, 2010; Revised Jan 20, 2011

