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Abstract: In this paper, reliability function based on the Rayleigh distribution with two parameters is obtained. The location and

scale parameters are estimated using different methods. The maximum likelihood, the first and second modified moment and Bayesian

estimation methods are established. A numerical study depends on simulated observation is introduced. Rayleigh distribution was

conducted to compare different estimation methods based on their mean square error.
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1 Introduction

As a special case of the three parameters Weibull
distribution, Lord Rayleigh introduced the Rayleigh
distribution [1]. Life time of the random phenomenon can
be modeled by the model theory reliability using the
Rayleigh distribution, which has several applications in
medicine and industry. It is used as survival data analysis
and in large scale test in life and reliability [2]. Thus,
various studies addressed this type of distribution. For
instance, it is used in physics for studying various types
of radiation, such as sound and light measurement. An
important characteristic of the Rayleigh distribution is
related to its hazard function or failure rate, which is an
increasing linear function of time. It means that when
failure time is distributed according to the Rayleigh
distribution an intense aging of item occurs in a system. It
is important to address reliability to develop the efficient
future and improve the performance of the systems.
Mousa and Al-Sagheer [3] calculated the maximum
likelihood estimators and Bayes estimators for the
parameters and the reliability function. Balakrishnan et al.
[4] introduced the parameter estimation for the reliability
function of the Weibull and Rayleigh distributions. Ragab
and Madi [5] discussed the Bayesian predictive methods
for the total time on test using doubly censored data with

a Rayleigh distribution and the scale parameters as well
as applied the methods to a real data set. Kim and Han [6]
applied Bayesian inference method based on the
conjugate prior of the scale parameter of the Rayleigh
distribution under general progressive censoring. Khan et
al. [7] predicated the inference from two parameters
Rayleigh life model for doubly censored sample.

Sultan and Balakrishnan [8] explored the higher order
moments of record values from Rayleigh and Weibull
distributions. Kundu and Ragab [9] obtained the
generalized Rayleigh distribution. Ragab and Ahsanullah
[10] estimated the location and scale parameters of the
generalized exponential distribution based on order
statistics. For additional details and recent results for this
distribution, see [11,12].

In this paper, we derived the reliability function for
the two parameters Rayleigh distribution and estimated its
parameters using different methods. A program of
simulation was presented depending on observation with
different parameter’s values and sample sizes from
Rayleigh distribution. Comparing the different methods
depends on the mean square errors (MES). It was shown
that the second modified maximum likelihood method is
the best method to estimate reliability function, [13,14,
15].
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The probability density function (pdf) for the Rayleigh
distribution with two parameters α,β takes the form:

f (t,α,β ) =
(t −α)

β 2
exp

{

− (t −α)2

2β 2

}

, α < t < ∞,

(1)
where α(> 0) is the location parameter, and β (> 0) is the
scale parameter.

The Rayleigh distribution can be applied to the systems
and equipment that have a hazard rate changes with times
and when failure time starts with certain time α 6= 0. α
represents the guarantee for the item or component. The
cumulative distribution function is

F(t,α,β ) = 1− exp

{

− (t −α)2

2β 2

}

, (2)

then the reliability function is

R(t) = exp

{

− (t −α)2

2β 2

}

. (3)

And the hazard function is:

h(t) =
f (t)

R(t)
=

t −α

β 2
. (4)

From Equation (4) the hazard rate is a function of time t.

2 Methods of Estimation

In this section, we derived the different methods for
estimating the parameters of reliability function for
Rayleigh distribution.

2.1 Maximum likelihood estimation

The maximum likelihood estimation (MLE) is the most
important method. This technique aims to maximize the
likelihood function L(t;α,β ) and then get the values α̂ ,

β̂ which maximize L(ti;α,β ). The log-likelihood function
based on the random sample (t1, · · · , tn) of two parameters
Rayleigh distribution is given by

L(t1, · · · , tn;α,β ) =
n

∏
i=1

f (t;α,β )

=

[

n

∏
i=1

(ti −α)

β 2

]

e
−∑n

i=1
(ti−α)2

2β2
. (5)

By taking the logarithm for both sides of equation (5), we
get

ln(L) =−2n ln(β )+
n

∑
i=1

ln(ti −α)−
n

∑
i=1

(ti −α)2

2β 2
. (6)

Then by taking the partial derivative, we get the derivative
of equation (6) with respect to α and β , respectively, and
then equating the results to zero, we get

−
n

∑
i=1

(

1

ti − α̂

)

+
1

β̂ 2

n

∑
i=1

(ti − α̂) = 0, (7)

−2n

β̂
+

1

β̂ 2

n

∑
i=1

(ti − α̂)2 = 0, (8)

and because α is the minimum value of ti,

α̂MLE = min(t1, t2, · · · , tn) = t(1). (9)

Thus, from equation (9), we have the value of parameter
α which makes the likelihood function maximize, where
t(1) is the first order statistic form the random sample.
Substituting from equation (9) in (8) and solving it with
respect to α and β , we get

β̂MLE =

√

1

2n

n

∑
i=1

(ti − α̂MLE)2. (10)

Depending on property invariant by the maximum
likelihood estimation, the estimator maximum likelihood
to reliability function will be as

R̂MLE(t) = exp

{

1

2β̂ 2
MLE

n

∑
i=1

(ti − α̂MLE)
2

}

. (11)

2.2 The first modified maximum likelihood

method

In this method we notice that the cumulative distribution
for the random variable T(1) is

FT(1)
(t) = P[T(1) ≤ t] = 1−P[T(1) > t] = 1− [R(t)]n. (12)

Also, the probability density function for first order
statistics, T(1), is given by

fT(1)
(t) = n

(

t −α

β 2

)

exp

{

−n
(t −α)2

2β 2

}

. (13)

From equation (13), the expected value for T(1) is

E[T(1)] =

∫ ∞

α
t fT(1)

dt = α +β

√

π

2n
, (14)

where t(1) the statistic represents the first order of values t.

If (α̂ , β̂ ) are unbiased estimators for (α,β ), we get

α̂ = t(1)−β

√

π

2n
. (15)
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Supposing that β̂ = s, the standard deviation for the
random sample values of t we get

α̂MLE1 = t(1)− s

√

π

2n
. (16)

Using equation (7) and solving it with respect to β̂ , we get

β̂MLE1 =

√

√

√

√

∑n
i=1(ti −αMLE1)

∑n
i=1

(

1
ti−αMLE1

) . (17)

The reliability function will be as follows

R̂MLE1(t) = exp

{

∑n
i=1(ti − α̂MLE1)

2

2β̂ 2
MLE1

}

. (18)

2.3 The second modified maximum likelihood

method

Using equation (14) and if β̂ equals the standard deviation
for (t) values we get

α̂MLE2 = t(1)− s

√

π

2n
, (19)

and

β̂MLE2 =

√

∑n
i=1(ti − α̂MLE2)2

2n
. (20)

Hence, reliability function is

R̂MLE2(t) = exp

{

− (ti − α̂MLE2)
2

2β̂ 2
MLE2

}

. (21)

2.4 Method of moments

The method of moments is an old and simple technique
on the idea that the sample moments are estimation of
population moments. We derived the estimators in this

method from equation (14). If we suppose that β̂ = s is
the first estimator for β and s is the standard deviation, we
get

µ1 = E[T ] = β

√

π

2
+α (22)

µ2 = E[T 2] = 2β 2 +
√

2παβ +α2
. (23)

Consequently, the variance is given by

V (T ) = β 2
(

2− π

2

)

. (24)

By equating the sample first and second moments by the
population of first and second moment, we get

T̄ = ᾱ + β̂

√

π

2
(25)

S2 = β̂ 2
(

2− π

2

)

. (26)

From equation (26), the parameter estimator for β takes
the form

β̂ME =
s

√

2− π
2

. (27)

And from equations (25), (27), we get α estimator, as
follows:

α̂ME = T̄ − β̂ME

√

π

2
. (28)

Hence, the estimated reliability function by the moment
method is

R̂ME(t) = exp

{

− (ti − α̂ME)
2

2β̂ 2
ME

}

. (29)

2.5 Bayesian estimation

In this section, the two unknown parameters for the
Rayleigh distribution are estimated using Bayesian
estimation when both parameters are unknown.

Let the prior distribution for the parameters α and β be

g(β ) ∝
1

β
, (30)

g(α) = min ti = t(1). (31)

The joint prior distribution for α and β is

g(α,β ) ∝
1

β
. (32)

And the posterior distribution is

p(α,β |t) ∝ L(t;α,β )g(α,β ). (33)

Substituting from equations (5) and (32) into equation
(33), we have

p(α,β |t) ∝
1

β

n

∏
i=1

(ti −α)

β 2
exp

{

−
n

∑
i=1

(ti −α)2

2β 2

}

∝
1

β 2n+1

n

∏
i=1

(ti −α)exp

{

−
n

∑
i=1

(ti −α)2

2β 2

}

= K
1

β 2n+1
exp

{

−
n

∑
i=1

(ti −α)2

2β 2

}

, (34)
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where

K−1 =

∫ ∞

0

1

β 2n+1
exp

{

−
n

∑
i=1

(ti −α)2

2β 2

}

dβ

=
Γ (n)

21−n

(

n

∑
i=1

(ti −α)

)−n

,

and

K =
21−n

Γ (n)

(

n

∑
i=1

(ti −α)

)n

. (35)

Substituting (35) into (34), the joint posterior distribution

p(α,β |t)= 2

βΓ (n)

(

n

∑
i=1

(ti −α)

2β 2

)n

exp

{

−
n

∑
i=1

(ti −α)2

2β 2

}

.

(36)
Using squared error loss function:

L(β̂ ,β ) =C(β ∗−β )2
, (37)

where C is a constant.

R(β̂ ) =
∫ ∞

0
C(β ∗−β )2 p(β ,α|t)dβ

= Cβ ∗2 +
C

n− 1

(

∑n
i=1(ti −α)2

2

)

−

2β ∗CΓ
(

2n−1
2

)

Γ (n)

√

∑n
i=1(ti −α)2

2
.

Using
∂R(β ∗)

∂β
= 0.

Then

α̂ = minti = t(1),

β̂ =
Γ
(

2n−1
2

)

Γ (n)

√

∑n
i=1(ti −α)2

2
.

3 Simulation

In this section, we carried out simulation to compare mean
square error of all parameters, the program is written in
Fortran language, the results are based on 1000 simulation
runs.

I II III IV V VI

α 0.5 1 1 1.5 2 2
β 1 0.5 1 2 1.5 2

Tables 1-6 show the mean square errors (MSEs) for the
different cases. Figures 1-6 represent the plots for the
MSEs for each case all methods.

Table 1 and Figure 1 indicate the following:

1.For n = 10, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.

Table 1: The MSE for the estimation methods, for Case I.

n MLE MMLE1 MMLE2 ME BAYES

10 0.01835 0.01133 0.01023 0.01036 0.01350

20 0.00862 0.00446 0.00427 0.00502 0.00579

30 0.00559 0.00289 0.00152 0.00341 0.00400

50 0.00318 0.00256 0.00212 0.01083 0.00254

100 0.00157 0.00137 0.00098 0.00114 0.00121

Fig. 1: The MSE for the estimation methods, for Case I.

2.For n = 20, the mean square error,
MMLE2 < MMLE1 < ME < Bayes < MLE.

3.For n = 30, the mean square error,
MMLE2 < MMLE1 < ME < Bayes < MLE.

4.For n= 50, the mean square error, MMLE2<Bayes<
MMLE1 < MLE < ME.

5.For n = 100, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
6.When the value of n is increased the mean square error

is decreased.

Table 2: The MSE for the estimation methods, for Case II.

n MLE MMLE1 MMLE2 ME BAYES

10 0.017056 0.01016 0.01013 0.01027 0.01303

20 0.00773 0.00468 0.00435 0.00450 0.00443

30 0.00558 0.00362 0.00334 0.00446 0.00669

50 0.00320 0.00246 0.00102 0.00210 0.00235

100 0.00145 0.00147 0.00098 0.00100 0.00127

Fig. 2: The MSE for the estimation methods, for Case II.
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Table 2 and Figure 2 show the following:

1.For n = 10, the mean square error,
MMLE2 < MMLE1 < ME < Bayes < MLE.

2.For n= 20, the mean square error, MMLE2<Bayes<
ME < MMLE1 < MLE.

3.For n = 30, the mean square error,
MMLE2 < MMLE1 < ME < MLE < Bayes.

4.For n = 50, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
5.For n= 100, the mean square error, MMLE2<ME <

Bayes < MLE < MMLE1.
6.When the value of n increases, the mean square error

is decreases.

Table 3: The MSE for the estimation methods, for Case III.

n MLE MMLE1 MMLE2 ME BAYES

10 0.01768 0.01192 0.01167 0.01170 0.01940

20 0.00903 0.00577 0.00552 0.00560 0.00663

30 0.00558 0.00377 0.00213 0.00216 0.00306

50 0.00304 0.00249 0.00203 0.00210 0.00220

100 0.00153 0.00140 0.00077 0.00105 0.00150

Fig. 3: The MSE for the estimation methods, for Case III.

Table 3 and Figure 3 reveal the following:

1.For n = 10, the mean square error, MMLE2 < ME <

MMLE1 < MLE < Bayes.
2.For n = 20, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
3.For n = 30, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
4.For n = 50, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
5.For n = 100, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
6.When the value of n increases, the mean square error

decreases.

Table 4 and Figure 4 demonstrate the following:

1.For n = 10, the mean square error,
MMLE2 < MMLE1 < ME < Bayes < MLE.

Table 4: The MSE for the estimation methods, for Case IV.

n MLE MMLE1 MMLE2 ME BAYES

10 0.01864 0.01141 0.01107 0.01162 0.01308

20 0.00843 0.00578 0.00428 0.00521 0.00582

30 0.00449 0.00357 0.00313 0.00321 0.00404

50 0.00320 0.00205 0.00172 0.00199 0.00221

100 0.00150 0.00131 0.00027 0.00102 0.00151

Fig. 4: The MSE for the estimation methods, for Case IV.

2.For n = 20, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
3.For n = 30, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
4.For n = 50, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
5.For n = 100, the mean square error, MMLE2 < ME <

MMLE1 < MLE < Bayes.
6.When the value of n increases, the mean square error

decreases.

Table 5: The MSE for the estimation methods, for Case V.

n MLE MMLE1 MMLE2 ME BAYES

10 0.01824 0.01191 0.01163 0.01526 0.01448

20 0.00807 0.00503 0.00326 0.00569 0.00581

30 0.00602 0.00405 0.00304 0.00364 0.00403

50 0.00320 0.00239 0.00200 0.00215 0.00226

100 0.00157 0.00185 0.00011 0.00401 0.00131

Fig. 5: The MSE for the estimation methods, for Case V.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1072 A. El-Faheem et al. : Estimating the parameters of reliability function based on...

Table 5 and Figure 5 show the following:

1.For n = 10, the mean square error,
MMLE2 < MMLE1 < Bayes < ME < MLE.

2.For n = 20, the mean square error,
MMLE2 < MMLE1 < ME < Bayes < MLE.

3.For n = 30, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
4.For n = 50, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
5.For n = 100, the mean square error,

MMLE2 < Bayes < MLE < MMLE1 < ME.
6.When the value of n increases, the mean square error

decreases.

Table 6: The MSE for the estimation methods, for Case VI.

n MLE MMLE1 MMLE2 ME BAYES

10 0.01796 0.01119 0.01110 0.01176 0.01316

20 0.00901 0.00590 0.00543 0.00551 0.00608

30 0.00562 0.00388 0.00340 0.00353 0.00392

50 0.00312 0.00230 0.00200 0.00203 0.00227

100 0.00152 0.00150 0.00087 0.00104 0.00109

Fig. 6: The MSE for the estimation methods, for Case VI.

Table 6 and Figure 6 illustrate the following:

1.For n = 10, the mean square error,
MMLE2 < MMLE1 < ME < Bayes < MLE.

2.For n = 20, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
3.For n = 30, the mean square error, MMLE2 < ME <

MMLE1 < Bayes < MLE.
4.For n = 50, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < MLE.
5.For n = 100, the mean square error, MMLE2 < ME <

Bayes < MMLE1 < ME.
6.When the value of n increases, the mean square error

decreases.

4 Conclusion

In this article, reliability function for the two parameters
Rayleigh distribution was obtained. The location and

scale parameters in reliability function were estimated by
maximum likelihood, Bayesian estimation, first and
second modified moment methods. Also, a numerical
study that depends on simulated observation was
analyzed with different parameter values and several
sample’s sizes from reliability function. Rayleigh
distribution was conducted to compare different methods.
Thus, the second modified moment method is the best
method to estimate reliability function.
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