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Abstract: Using g-analogue of Salagean operator, we investigate subclass of multivalent functions in the open unit disk A. We obtain

Fekete-Szegd inequalities for a certain class of analytic functions f satisfying 1+ % [ﬁ %
q P4

our results to certain functions defined by convolution products with a normalized analytic function are given. Moreover, Fekete-Szegd

—1| <TY(z). Applications of

inequalities for certain subclasses of functions defined through Poisson distribution are obtained.
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1 Introduction

In [18] Srivastava presented a brief overview of the
classical g-analysis versus the so-called (p,q)-analysis
with an obviously redundant additional parameter p. We
also briefly consider several other families of such
extensively investigated linear convolution operators as
(for example) the Dziok—Srivastava, Srivastava—Wright
and Srivastava—Attiya linear convolution operators,
together with their extended and generalized versions.
The theory of (p,q)-analysis has an important role in
various areas of mathematics and physics. Stages of the
g-calculus and the fractional qcalculus in geometric
function theory of complex analysis encourage significant
further developments on these and other relevant topics
(see Srivastava and Karlsson [20, pp. 350-351]&
Srivastava [16,17,19]). Our main objective in this
survey-cum-expository article is based chiefly upon the
fact that the recent and future usages of the classical
g-calculus and the fractional g-calculus in geometric
function theory of complex analysis encourage
conducting significant further researches on many of
these and other relevant subjects. Jackson [6,7] was the
first one to present some applications of g-calculus and
introduce the g-analogue of derivative and integral
operator (see also [1]).

Let 7 (p) denote the class of analytic and multivalent
functions in the open unit disk A = {z € C: |z] < 1} of the
form

fle)=2"+ i ak+pzk+” (peN={1,2,3,...}). (1)
k=1

In particular, we write
()= .

For functions f € <7 (p) given by (1) and g € < (p) given
by
g(2) =2+ Y b pdTP, 2
k=1
the Hadamard product ( or convolution ) of f and g is
defined by

(F*8)@) =+ Y arspbir s = (8% ). B)

k=1

A function f € A(p) is said to be p-valently starlike
of order o denoted by S, (e) if and only if f satisfies the
following inequality:

()
E"{ﬂz)

}>a(0§a<p;p€N;z€A).
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Definition 1. If f and .% are analytic functions in A, f
is subordinate to %, written f < %, if there exists a
Schwarz function w, which is analytic in A, with w(0) =0
and w(z)| < 1 for all z € A, such that f(z) = F(w(z)),
z € A. Furthermore, if the function % is univalent in A,
we have the following equivalence (see [3] and [11]):

f(z) = F(2) & f(0) = F(0) and f(A) C

Srivastava [18] made use of various operators of
g-calculus and fractional g-calculus. We recall the
definitions and notations as follows:

F(A).

(A:q)k =
(1-2)(1-2q)...(1-A¢*")  keN

Using the g-gamma function I;(z), we get

oy (=) L(A+k)
(q 7Q)k_ I—é(l) ) (keNo)7
where (see [5])
F — 17 11—z (q’q)cx)7 1
)= (- (L= (gl <)
Furthermore, we note that
(o). =T1(1-2d). (al<1),

k=0
and, the g-gamma function I;(z) is known

[z, I4(2),

where [k] o denotes the basic g-number defined as follows

L(z+1)=

1— k
T keC,

= @
14+ Y ¢, keN.

j=1

[klg ==

Using the definition formula (4) we have the next two
products:

(i) For any non negative integer k, the g-shifted factorial
is given by

1, if k=0,
| — k

Ka* =3 [, ifkeN.
n=1

(i) For any positive number r,
Pochhammer symbol is defined by

the g-generalized

1, if k =0,
Y

Mo = "1 1y, if ke .
n=r

It is known in terms of the classical (Euler’s) gamma
function I' (z) that
I (z) =T (z) asg—1".

Also, we observe that

. [ (de), |
qlﬁl { (1—¢g) =@

where (1), is the familiar Pochhammer symbol defined by

L,
Mh:{am+nm

The g-derivative of a function f(z) is Z,f(z) defined as
follows

if k=0,
(A+k—1),ifkeN.

Definition 2. The g-derivative operator for f is defined
by ('see [7])

f(ga)—f(z)
@J@y{ mq>§f0 )

provided that f(0) exists.
We note that

flgqz) — f(2)

q]l)r}L @qf( ) q1~i>nl]’ Z(q B 1) = f (Z)
From (1) and (5), we have
D4f(2) = Zk—i—p e p? P 2 £ 0,

(6)
where [p], is defined by (4). Now, using the g-derivative

operator Dys we introduce the operator
Dy g (p) — < (p) as follows:

z o [k+p],
qf( ) [p]q gqf(z) =7r +/§1 [p]q ak+pzk+p
, > ik 2
P f() = ﬁ‘@" <9[1,qf(z)) :Zp+kzl <[ [:]f;]q) P
q =

Z

T30l @) = (- %0(%54'10)

> k+p],\" k+
P Z q p 7
: k:l( gr ) et @
(peN, neNy=NU{0},0<g<1).
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Specializing the parameters p and g, we obtain the
following operators:

(i) lim 7, ,f(z) =

q—1~

P,f(z —z”—i-Z( )asz ,

such that 27 is called Salagean in p-valent (see Kamali
and Orhan [8], Orhan and Kiziltunc [12]);

(i) 714/ (@) = 73 £z —%+Z( ) @
®)
(iii) lim 2 f(z) = 2"f(z) =2+ Y K'ad,
g1 k=2
where 2" is called Salagean opeator (see Salagean [15]).
Using the operator @g,q given by (7), we introduce the
subclass .7 (p, &) of p-valently (n,q) starlike functions

of order ¢¢ in A as follows

1 29,(2},f(2))
flz) e 7 (p,a) &R TP T L S
(@) € Znal P, 71/Q
(peN,neNy, 0<g<1,0<a<1,ze€A)9)

The following classes are included in the class
yn*,q (P; OC) :

i A, (p,a) = F;(p,0) defined and studied by
Srivastava et al. [21];

(i) q]ir}lﬁ 0.4(p, @) = 75 () defined and studied by

Patil and Thakare [13].
Now, we define the following subclass of functions
4,9(L,T) as follows:

Definition 3. Let

Y(z) = 1+(%’1Z+%222+%3Z3+ ., ZEA, B >0, be
a starlike (univalent) function with respect to 1, which
maps the unit disk A onto a region included in the right
half plane which is symmetric with respect to the real
axis. For § € C* = C\{0}, and the function f € o is
said to be in the class 9, (C,Y) if

1] 1 42 23,0@)
1+chmq T o/ 1]
is analytic in A and satisfies
1] 1 AT, f@)
Y IDA i I

(peN,0<g<1,neNy, §C").
We note that:

i) ATy =2"1(L.T)

1} <T(Z)},

. 1 [2(24(221(2))
:{f(Z)EJZ{. ]+E %—

where

(0<g<1,neNy, §€C")and the operator 7 is given
by (8);

(it) 9,)9(C.7) = 4L, T)

1y 2o
{f(Z)ed(p): HZ[@ %(L

where (peN,0<g< 1, { €C*);

1} <T(z)},

(iii) 94 (1 — ﬁe*’“ cos ), @) = #,;"(at, A, D)

A 24(20 . .
ﬁ {4 Zp1 () gj(;‘,.q’ﬁ;(z)v —Acosa—i [p],sina

([p]q—l)cosa

f@) e (p): <

<7T(z)

where
(peN,neNo,O<q<l, |(X|<%,O§l<[p]q);

(i) 9 (1 — 2% cos ), 1) = 7" (@, 1, T)
],
o[ 4 Zg(Z41(2) .
e (%)7lcosaﬂ sin o
= f(Z) ed . (1—=A)cosa = T(Z) ’

where

(neNp, 0<g<1,|a|<F, 0<A<1).

2 Fekete-Szego problem for functions in the
class 4,"(y, @)

Let © be the class of functions w(z) of the form
W(Z):W12+W2Z2+WSZ3+ ...... ,ZEA. (10)

The following lemmas will be needed to prove our results.

Lemma 1.(/9])
(10), then

Let the function w(z) € & be given by

‘wzf’rwﬂ <max{l;|7]}, (r€C).

The result is sharp for the functions given by

w(z) =z or wg)=2",  (z€A).
Lemma 2.(/2] and [10])  Let w(z) € Q, then
Kk, k< -1
lwo—kwi| <q 1,  —1<k<1, (11)
k k>1.

3

When k < —1 or k > 1, the equality holds if and only if
w(z) = z or one of its rotations. If —1 < k < 1, then the
equality holds true in (11) if and only if w(z) = 2> or one
of its rotations. If k = —1, the equality holds true in (11) if
and only if
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The sets Dy (k=1,2,...... ,12) are defined as follows
w) =2 <<y
1+nz -7

or one of its rotations. If k = 1, the equality holds if and
only if

z(z+
14+1nz

Moreover, the above-mentioned upper bound in (11) is

sharp and can be improved when —1 < k < 1 as follows:

<1).

wo —kwf| + (k+1)[wi > <1 (-1<k<0), (12)

and

lwa —kwi|+(1=k) | <1 (0<k<1). (13)

Lemma 3./14]  Let the function w(z) € Q given by (10).
Then, for any real numbers py and pa, the following sharp
estimates hold true:

W3+ prwiwa + pawi| < (p1,p2),

where

H(p1,p2) =

1 ((p1,p2) GDlUDz)
| ((p1,p2) € U{_3Dx)
((

Y
%(|P1|+1)(3(‘)f?fﬁ)z p1.p2) € DgUDy)
1
p [ _pi—4 pi—4 \?2
3 (,,12,4,,2) <3(p2,1>)
2 o1 [+1
3Upil=1) (W)

The extremal functions, up to rotations, are of the form
given by

(p1p2) € D1gUDy; € {£2,1}

=

((p1,02) € D12).

w(z) =1z,
Z[(] —-A)& +A€1}Z—8182
1—[(1-A4)e; +A&)z

w(z) = 25,

w(z) = wo(z) =

w(@) = mi() = 32,
w(@) = w2(0) = J2E ey = el = 1,

€ =1 —eii(ﬂﬁ(aqib)7 &= —eii(%”(ia:i:b),

b+
a:tocos(%),b: l—tgsinz(%), A= a’

to =

[=)

( 2p2(p +2) = 3p} )]
3(p2—1)(pf —4p2)

=

=

lp1|+1 )
3(lp1|+1+p2)

g
QTS

1=

3(lp1|=1—-p2)

and

248)—2(p?+2
COS(%):& pz(p1+2) (p1+2) A
2\ 2p2(pi+2)—3pj

1 1
Dy = {(Pl,Pz) Heil < 5 and |pa| < 5}’

Dy = {(p1p2) : 3 < |pu|l < 2andy <
(Ipil+1 ) =(lpr|+1) <pp <13,

1
Ds = {(Pl,Pz) Hpil < 5 and py < 1}7

1 2
Dy = {(PI,PZ) el > 3 and py < _§(|p1|+1 )}7
={(p1,p2) : |p1| <2 and p> > 1},

1
Do :={<p1 p)i2< o1l < band pr > 1 (pF+3)

2
Dri={ (oo Il = 4andpr < - S(0pil- 1)},

Dg:={(p1.p2): 5 <|p1| <2and —3(|p1|+1) < p2 <
27(|P1|+1) (|P1|+1)},
Dg::{(pl,pz):Ipl\22and7%(\p1|+1)§p2§%},
Dy =

{(Pl,Pz) :2<|pi| <4and 72",p'+|2‘ﬁ,']||++]4 <p2 < ﬁ(P%+8)}7

. . Z\Pll(\PlHl 2\91\(\#’1\ 9]
Du= {(pl‘m) Hor z 4 and g T < P2 S e }

and

Dy := {(Pl,Pz) :|p1| >4 and % <

2 < 3ml- 1)}

Otherwise, we shall assume in the remainder of this paper
thatpe N, 0<g<1l,neNpandz € A.

Theorem 1. Let the function f given by (1) belong to
the class 9,1(§,Y), with Y (z) = 1 + Bz + B + ...
satisfying the conditions of the Definition 3, and ® is a
complex number, then

B0l ([Pl )"
‘“Hf"’“iﬂ g ([pig]q)

%, (B 0P 2 bla) (1l )"
max {1, 22 + 5t (1 - o gl ()|
(14)

and

€121 [p] plg_\"
Japia| < e (2e-)" #(prp2),  (15)

where

_ 23 $AIPlClpl—lp+1l~p+2]y)
L= T o e Bl 2l ) (16)
and

_ A um(2[p]q7[p+uq7[p+z1q>,(@ ALY )
P2 =2 — Tl (p 2=l \Z T To+ile-1rly
tBplg \?

_([Pﬂ]r[zq?]q) : (17)

This result is sharp.
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Proof. Let f(z)
function w(z) € 2 such that

1|1 AZ(Z
¢ |1,

el (2)

1 RS otk S
* T )

It follows that

R I CMVAC) R

Since

- ( ( 1) g

p+2q p+2 4 )
B
P
B o
ap+3| 2
. p+1,\" ([p+1], 1Z3
+ §> <<p” 0
(BB
and

E(rw(z)—1)
= (PBiwiz+ ¢ [e%’le -in%’zwﬂ 2
+8[Biws +2wiwr By + Bywi] +

=T (w(z)).

€%,(L,Y), then there exists a Schwarz

(18)

(19)

- (20)

1)

Substituting (20) and (21) in (19) then equating the

coefficients of like powers of z, we obtain

o= (o) (o) - @

ap2 = <[p E?L[ﬁ]?p]) ([p[i] ;]q)”

et (Gt

(23)

and

o= (i) (o) L [

_ 8% [plg2lplg— [P +1]q— [P +2]g)
([P +1g—[plg)([p+2]g— [Plg)

B ( %[l )2

#1 \lp+1]q—Iply

_ EBi1[plg(2[plg— [P+ 1]g— [P +2]g)
(lp+1g = [Plg)(lp+ 2] — [Ply)

From (22) and (23), we get

P $#ply [Plq n. W — VW2
ap+2 = @ [p]q><[ o) leeved),

} wiwz

+

([p+2]4— p+2,
(25)
where
_ ol (ol Al (Walpr2e\" ) 2
([p+114-[plg) p+1lg=Tplg \ ([p+1],) EiN
(26)

By application of Lemma 1 and Lemma 3 we get (14)
and (15), respectively. These results are sharp for the
functions

11 2@ ]
”cl[p]q R
and
[ 1 (225,00 ]
B, 7,0 =T

The proof is complete.

The next results can be obtained using Lemma 2.

Theorem 2.  Let the function f given by (1) belongs to
the class 9,1 (L, Y), with Y(z) = | + Bz + Br> + ...
satisfying the conditions of the Definition 3 and ®, %, € R,
and § > 0, then

¢lr] ol \"
3Tl (—[p+5lq>

'(“52"'%( —w%)) if <oy
‘ap+2 wap+1’ < [pi;?][f][f,]q ([I,[i]g]) ifor<o< oy,
PRy (%)
(il (0 —1)~2) if 0> 0, ,
(27)

where

o1 = A Pl (10+ 21— 7lg) Pllp+7

(28)

([PJFl]q*[P]q) [(332*%1)([P*”q*[ﬂ]q)*ggﬂp]q] ( ([P+1]q)2 >n
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oy — [ alplo) (22420 (114 lpla)+ 2 ] <([p+11q)2)”

A plg([p+2lg—[plg) (Plqlp+2lq
(29)

and

_pt2glply [ Plalp2 "
< (lp+1]g=[plq) (([p+1]q)2) .

The result is sharp.

Proof. With the same technique that EI-Deeb and
Bulboaca [4, Theorem 2.2]adopted, we prove our result.
Also, (25) and (26) are satisfied.

(1) According to the first part of Lemma 2, we have

|wa —kwi| < —k, ifk < —1.

Using (26), simple computation shows that the inequality
k < —1 is equivalent to u < o7, and from (25) combined
with the inequality |wz - kwﬂ < —k the first part of our
theorem is proved.

(i1) The second part of Lemma 2 shows that

lwa—kwi| <1, if—1<k< 1

From (26), it is easy to see that the inequality —1 <k <1
is equivalent to o7 < u < 0,. From the relation (25), the
inequality ‘wz — kwﬂ < 1 proves the second part of our
result.

(iii) Finally, form the third part of Lemma 2 we have

|wy —kwi| < —k, if k> 1.

The relation (26) shows that k > 1 is equivalent to it > 0>,
while (25) combined with the inequality |w, — kw}| < —k
proves the last part of our result.

Theorem 3.  Let the function f given by (1) belong to
the class 9,1(§,Y), with Y (z) = 1 + Bz + B + ...
satisfying the conditions of the Definition 3 and
0,%, € R, and § > 0, then the following inequalities
hold:

(i) for o1 < o < 03, we have

(Ip+1l-1p)y)° ([pmq n

2
’ap+2 wap+1‘+g@ﬂp]q([wzlr[plq) [Pl

(p+2l=1ply) ( IPlalp+2l " 2
[ (1- 0t (e ) )] e
(Aly [ g \"
= [p+2]q—[}:]q([p+éﬁq) ,
(30)

(ii) for o3 < @ < 0y, we have

(Ip+11g-[pl)* (muq)z"

)
‘“”*2 Oy ’ Y L@ (2l \ g

where 61 and 0, are defined by (28) and (29), respectively,

(Ip+11g~lpla) [ (Ip+ 1)y [plo) + £ 43 L] (([pwq 2)”.

9= Aol (2l [pla) [PlTp+2lq

Proof. Form the proof of Theorem 1 we have the
relations (22) and (23). Also, from (22), we conclude that

B ([PJFl]q*[P]q) [PJFl]q
W‘( {2l >< 7],

(1) Using the inequality (12), we prove the first part of the
result. Thus, according to (22) , (23) and the
above-mentioned relation, it is easy to see that (12) could
be written in the equivalent form (30), while the
assumption —1 < k < 01is equivalent to 01 < @ < 03;

(i1) Considering the second part of the result we will use
the inequality (13). In view of (22) , (23) and (32), it
implies that (13) can be written in the form (31), and the
assumption 0 < k < 1 is equivalentto 03 < @ < 0».

) apir. (32)

3 Applications to functions defined by
Poisson distribution

Definition 4. For the function g given by (2) and the
function f € </ (p) is said to be in the class 9,({,g,T)
iffxg€9y4¢,T) that is

U1 A2 (F49) ()

LT 2L e

(peN,neN), 0<g<1,{eC).

A variable y has Poisson distribution if it takes the values

1| <T(2),

0, 1, 2, 3,...with probabilities
e, mﬁ;m, ’"226; z ’"339; Z. , respectively, where m is
called the parameter. Thus
k ,—m
@(yzk)zm;' . k=0,1,2,3,...,

we introduce a power series whose coefficients are
probabilities of the Poisson distribution:

o k—1_,—m
m e
A" =z+ ) ——7,
& -1

and
~1 o M e
TP =F A = L e
Now, we introduce &)} : 7 (p) — </ (p) defined by
ok
PrfR) = IR f(2) =2 +k; e a2, ze .

Applying Theorem 1, Theorem 2 and Theorem 3 for the
function f *x g given by (3) we get following results
respectively:

T (o (p+2-1g) [ lalrt2l, " 2
(@;E [3]32) [<]‘" P \ () ) [ap-
i )4
< Pl ([p+51q) ;
(31)
© 2020 NSP
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Theorem 4. Let the function f given by (1) belong to
the class 951 (§,g,Y), with Y (z) = 1 + Biz+ Boz® + ...
satisfying the conditions of the Definition 3, and ® is a
complex number, then

AP ( [Pl >"
2([p+2l—plg) \Ip+2ly

|api2— wa%Hl‘ < b,

. % $%#11plg b )+2([P+2]q*[P]q) [p] n
max{l 2+[p +lo=lrly (1 whl12>+l<[p+1]q*[P]q) <[I’+ﬁq> ‘}
and

|C|%’1[P]q < [P]q >n
a < N4 , ,
9l < G o+ el \p 3l ) 7 PP

where p; and p, are given by (16) and (17). This result is
sharp.

Theorem 5. Let the function f given by (1) belong to
the class 9,°1(£,g,Y), with Y (z) = 1 + B2+ Br* +
satisfying the conditions of the Definition 3 and
0,%, €R, and § >0, then

[ a)af,+1|

{lrlg ( [Py )”
bp+2([p+2] [ ]11) [P+2]

Ay . .
o g sl ez
j] . « .
= bp+2 P+2] q ( p+]2 ) ifof <w <o,
¢lplg Plg
bp+2([P2+2] ~[plq) ([PH] )
{%1[p] . i
[ @A -1 -2 o> 05,
where
oF — bf)ﬂ([pﬂ]q*[}’]q)[(ﬂz*ﬂl)([I’+1] ~1plg) +$ A [plq) ([p+1]q) "
! LAl (P 2la Pl pa o )

(33)

oF = b%+1([ﬁ+l]q [Plg )[ PBr+RB) ([P+1]q [Plg )+C@]2[P]q] (([erl]q)z)n
2 (& 52 [P]q([!’+2 P]q)bp+2 [[’]q [F+2]q
(34)
and

i = bp+z<[p+z]q—[p]q>([plq[p+21q>"
521 (P + 1= [plg) \ ([p+ 1))

The result is sharp.

Theorem 6.  Let the function f given by (1) belong to
the class 951 ($,8,Y), with Y (z) = 1 + B2+ Br* +
satisfying the conditions of the Definition 3 and
0,%, € R, and { > 0, then the following inequalities
hold:

(i) for 6] < @ < o3, we have

(Ip+1lg=1p)g)° ([p+uq>2"
S ply(lp+2lg—[plg) \ [Plg .
_ _ _ bp2([p+2)g=[plg) [ [plglp+2lg 2
-1 “’b;H([pmq—[p]q)(([p+1]q)2) )}‘““"

% [plq < [Plg
- bp+2([p+2]q*[l']q) [1’+z]q ’

2
’ap+2 - a)ap+] ‘ +

(ii) for o5 < u < 65, we have

(Ip+11g=Iply)’* ([,m] )2

a wa +

‘ P27 ”“‘ S ply( p+2]q p]q [Plg
p+2 ([p+2]4—| p+2
by (P11 [p+l]

1) ol
$%[p] [P]
e s P ) <[p+§']q) ;

where 6| and o5 are defined by (33) and (34) respectively,
o = o1 (1= (01) [ (4 1lg=[ply)+ A1 L] ( (Ip+1)g
’ S Pla (I +2a—[Pla)bps2 P+, )

For g := .7 we have

-

2 3

m m
—m
bp+2 = _2 e and bp+3 = —¢ y

_ —m
bp+] = me ’ 6

and for this special case from Theorem 4, Theorem 5 and
Theorem 6, we deduce the following result:

Theorem 7. Let the function f given by (1) belong to
the class Gy E, 20T, with

Y(2) =1+B1z+ B> +... satlsfymg the conditions of
the Definition 3, and ® is a complex number, then

21| %Pl ( [Plg )"
m2e"([p+2]g—[plg) \[P+2]4

‘ap+2 - wa?prl‘ <

CZ [F’]q ([p+2]q*[p]q) [F’]q n
'ma"{l %.ﬂp = [plq“f“’zfm([pﬂ]f[pm(wuq) }
and
68| %1(plq ( [Plq )
a S % ) 9
931 = e o+ 3=l \ip 13, 7 PP

where p; and p, are given by (16) and (17). This result is
sharp.

Theorem 8. Let the function f given by (1) belong to
the class Gy (E, 20T, with

Y(2) =1+B1z+ B> +... satlsfymg the conditions of
the Definition 3 and 0,%, € R, and { > 0, then

|ap2 —oap | <
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28] ( [Plg )n
m2e=([p+2q-[ply) \ P42
SA11p]
|t it (1 -0 )|

28%1(plq ( [Plq )n
mZe—m([ZELT]q,[p]q) [[1[+]2]q
2 rlg \"
m2e— m([p+2] [ ] ) ([[J+Z] )

iz
'[W] o (02— 1)~

ifo<nf,

ifn <o<n;,

2:| lfw S nika
where

* _ 267"’([1"*1]11_[17]17)[(L@Z_%l)([17+1]q_[17]q)+§%%[17]q] ([1’+1]q)2
= Cp)a (P2l 1Plg) L+, )

(35)

n

n; o C[P]q%%([l’ﬂq]q*[ﬂ]q) [Plglp+2]q

(36)

2 ([p+ 1l [plg) [(Bo+- 1) (Ip+ 11— p)g) +E Bl (([p+uq)2)"

and

(p+2-rl) (Pldp+2, "
%‘Zemupmqmq)( ) |

The result is sharp.

Theorem 9.  Let the function f given by (1) belong to
the class G827, with
Y(2) = 1 + Bz + Pz + ... satisfying the conditions of
the Definition 3 and ®,%, € R, and { > 0, then the
following inequalities hold:

(i) for nf < o < n3, we have

(Ipt1g—1pl)* (412"
[P]q ( )

@p+2— “’“PH’ 1 @ a2, [Py

122 (1- og it (1))
Japs] . u
< et (oh)
(ii) for n; < 0 < nj;, we have

p+1lg
‘a,,Jrz (x)apH‘—i— ng )

-[551—%—

[pw 2n
P]q )
(p+2 [p p+2 1
2e"([p+1]4—| p+1 ,

28%1[plq ([ [l’]éz] )n
P+2)q ’

n;‘ _ 2@’”’([[)«#1][,7

[pl0) [#2(Ip+11g-)g) + 58300l [ (p11)" )"
¢ [ply(lp+214—1plq) ’
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