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Abstract: This paper contributes to a design of stabilizing compensators for the stabilizable systems in the class. A strongly continuous

quasi semigroup approach is implemented as a generalization of a strongly continuous semigroup for autonomous systems. Stability of

the non-autonomous linear control system is identified by a uniformly exponential stability of a strongly continuous quasi semigroup

on the state space. The results showed that in the infinite-dimensional state space, if the closed-loop non-autonomous linear control

system was stabilizable and detectable, there existed an infinite-dimensional stabilizing compensators for the system. The assigned

controller is given by u = Fx̂ where x̂ is the Luenberger observer. In any non-autonomous Riesz-spectral system, there exists a finite-

dimensional compensator for the system. The construction of the compensator is based on the separation of the unstable eigenvalues of

the corresponding Riesz-spectral operator. The numbers of the unstable eigenvalues are defined to be an order of the compensator. An

example of the non-autonomous heat equation is given to assert the theoretical results.
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1 Introduction

This paper focuses on unstable infinite-dimensional non-
autonomous linear control systems with state x, input u,
and output y (see [1, 2]):

ẋ(t) = A(t)x(t)+B(t)u(t), t ≥ 0, x(0) = x0,

y(t) =C(t)x(t),
(1)

where A(t) is a linear closed operator in X with domain
D(A(t)) = D independent of t and dense in X , B(t) :
U → X and C(t) : X → Y are bounded operators such that
B(·) ∈ L∞(R

+,L (U,X)) and C(·) ∈ L∞(R
+,L (X ,Y )),

where X , U , Y are complex Banach spaces, and L (V,W )
and L∞(Ω ,W ) denote the space of all bounded operators
from V to W and the space of all bounded measurable
functions from Ω to W provided with essential supremum
norm, respectively. In sequel, we denote system (1) by
(A(t),B(t),C(t)).

Recall that system (1) is considered stable if the
family {A(t)} is an infinitesimal generator of a strongly
continu- ous quasi semigroup which is uniformly
exponentially stable on X [3]. We often have problems of

the instability as in system (1). This occurs when a
control system is adjusted to improve the performance’s
system. To make the system behave as desired, we need to
redesign the system and add a compensator, a device
(artificial system) which compensates the deficient
performance of the original system. The system
conditioned by this way is considered stabilizable.
Concretely, system (1) is stabilizable if there exists an
admissible control u(t) such that the corresponding
solution x(t) has some desired properties. If the
stabilizability is identified by null controllability, system
(1) is stabilizable if there exists a control u(t) = F(t)x(t)
such that the zero solution of the closed-loop system

ẋ(t) = [A(t)+B(t)F(t)]x(t), t ≥ 0,

is asymptotically stable in the Lyapunov sense. In this
case, u(t) is called the stabilizing feedback control.

If system (1) is a finite-dimensional stabilizable auto-
nomous system, then construction of the stabilizing
compensator can apply the Luenberger observer or
Kalman filter, see [4–10]. The methods are also
applicable for the finite-dimensional non-autonomous
control system [11]. Similarly, if system (1) is the
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infinite-dimensional autonomous linear control system,
then the Luenberger observer can also be generalized on
the construction of the stabilizing compensator for the
system, see [12–17]. However, there is no guarantee that a
finite-dimensional controller can always produce the
closed-loop exponential stability for arbitrary system.
This is a fundamental question for the associated
feedback control. The question is answered positively if
the system is a Riesz-spectral system [14]. In fact, this
system can always be exponentially stabilized by
finite-dimensional controllers as long as the original
system is stabilizable and detectable, see [18–20]. In
other words, if the Riesz-spectral system is stabilizable
and detectable, then there exists a finite-dimensional
stabilizing compensator for the system, see [13, 21–23].

The references address the necessity of investigating
the stabilizability of system (1) and characterize the
finite-dimensional stabilizing compensator for the non-
autonomous Riesz-spectral systems [24]. A strongly
continuous quasi semigroup is chosen as an analytical
approach because the quasi semigroups can be widely
applied to the non-autonomous problems. Since it has
been introduced by Leiva and Barcenas [25] in 1991, the
research development of the strongly continuous quasi
semigroups has increased and expanded in various
applications, see [3, 24, 26–28].

This paper focuses on the stabilizing compensator for
the stabilizable non-autonomous systems (1) using the
strongly continuous quasi semigroup approach and the
finite-dimensional stabilizing compensator for the non-
autonomous Riesz-spectral systems. The organization of
this paper is as follows: In Section 2, we provide some
properties of the strongly continuous quasi semigroups
and the uniformly exponential stability as identifying
tools to the stabilizability and detectability. Application of
the Lunberger observer to design the infinite-dimensional
stabilizing compensator for system (1) is described in the
Section 3. In Section 4, we design the finite-dimensional
stabilizing compensator for the non-autonomous Riesz-
spectral systems. The theoretical results are also attached
by two examples.

2 Stabilizability and Detectability

A strongly continuous quasi semigroup is a major tool in
this research. We recall the definition of the strongly
continuous quasi semigroup which was initiated by Leiva
and Barcenas [25]. The weaker definition that follows the
definition of C0-semigroup is provided.

Definition 1.Let L (X) be the set of all of bounded linear
operators on a Banach space X . A two-parameter
commutative family {R(t,s)}s,t≥0 in L (X) is called a
strongly continuous quasi semigroup (in short C0-quasi
semigroup) on X if:

(a)R(t,0) = I, the identity operator on X ,

(b)R(t,s+ r) = R(t + r,s)R(t,r),
(c)lims→0+ ‖R(t,s)x− x‖= 0,
(d)there is a continuous increasing function M : [0,∞)→

[0,∞) such that

‖R(t,s)‖ ≤ M(s), (2)

for all r,s, t ≥ 0 and x ∈ X .

For each t ≥ 0 we define an operator A(t) on D by

A(t)x = lim
s→0+

R(t,s)x− x

s
,

where D is a set of all x ∈ X such that the following limits
exist

lim
s→0+

R(t,s)x− x

s
, t ≥ 0.

The family {A(t)} is called an infinitesimal generator
of the C0-quasi semigroup {R(t,s)}. Some examples and
properties of C0-quasi semigroups can be founded in [25],
[26], and [27]. In the sequel, we write the quasi semigroup
{R(t,s)} and the infinitesimal generator {A(t)} by R(t,s)
and A(t), respectively.

In general A(t) does not need to be closed and D does
not need to be dense in X, as shown in Example 3.2 and
Example 3.3 of [27]. However, in this paper we always
assume that each A(t) is a closed operator and the domain
D is a dense set in X . As the first auxiliary result and
using a similar principle we can construct a new C0-quasi
semigroup from any C0-quasi semigroup.

Lemma 1.Let R1(t,s) be a C0-quasi semigroup on a

Banach space X1 with the infinitesimal generator A1(t). If

there is an H ∈ L (X1,X2) such that H−1 ∈ L (X2,X1)
and HH−1 = IX2

and H−1H ∈ L (X2,X1) for some

Banach space X2, then R2(t,s)x2 := HR1(t,s)H
−1x2 for

all x2 ∈ X2 is a C0-quasi semigroup on a Banach space X2

with the infinitesimal generator A2(t) = HA1(t)H
−1 on

domain D(A2(t)) = {x2 ∈ X2 : H−1x2 ∈ D(A1(t))}.

Proof. From the definition of R2(t,s) we can easily verify
that it satisfies Definition 1. Moreover, by Theorem 3.2
of [27] and differentiating R2(t,s) respect to s then
evaluating for s = 0 we obtain A2(t). �

Stabilizability and detectability of the non-autonom-
ous linear control systems are characterized by the
uniformly exponential stability of the associated C0-quasi
semigroup.

Definition 2.A C0-quasi semigroup R(t,s) is considered
uniformly exponentially stable on a Banach space X if
there exist constants α > 0 and N ≥ 1 such that

‖R(t,s)x‖ ≤ Ne−αs‖x‖, x ∈ X , t,s ≥ 0. (3)

The definitions of stabilizability and detectability of
the non-autonomous linear control systems follow the
similar definitions for the autonomous systems developed
by Curtain and Zwart [14].
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Definition 3.The non-autonomous linear control system
(A(t),B(t),C(t)) is considered:

(a)stabilizable if there exsits an F ∈ L∞(R
+,L (X ,U))

such that A(t)+B(t)F(t) is an infinitesimal generator
of a uniformly exponentially stable C0-quasi semi-
group RF(t,s). The operator F is called a stabilizing
feedback operator;

(b)detectable if there exists an L ∈ L∞(R
+,L (Y,X)) such

that A(t)+L(t)C(t) is an infinitesimal generator of a
uniformly exponentially stable C0-quasi semigroup
RL(t,s). L is called an output injection operator.

α in (3) is called the decay rate and the supremum over
all possible values of α is called the stability margin of
R(t,s). Indeed, the stability margin is minus its uniform
growth bound ω0(R) defined by

ω0(R) = inf
t≥0

ω0(t),

where ω0(t) = inf
s>0

(

1
s

log‖R(t,s)‖
)

.

Theorem 1.Let R(t,s) be a C0-quasi semigroup on the

Banach space X. R(t,s) is uniformly exponentially stable

on X if and only if ω0(R)< 0.

Proof. Let R(t,s) be uniformly exponentially stable on X .
There exist constants α > 0 and N ≥ 1 such that

eαs‖R(t,s)x‖ ≤ N‖x‖,

for all t,s ≥ 0 and x ∈ X . This provides

‖R(t,s)‖ ≤ Ne−αs or
1

s
log‖R(t,s)‖ ≤ logN

s
−α,

for all t ≥ 0 and s > 0. This gives that ω0(R)≤−α < 0.
Conversely, let ω0(R) = −α for some α > 0. From

Definition 1, there exist s0,s1 > 0 and n ∈ N such that

‖R(t,s)‖ ≤ M(s0)
n+1 ≤ e−αs(e−αks0s1M(s0)

n+1),

for all t ≥ 0 and s > s0. For 0 ≤ s ≤ s0 we have

‖R(t,s)‖ ≤ M(s) ≤ M(s0)≤ e−αs(eαs0M(s0)),

for all t ≥ 0. From both it can be chosen an N > 1 such that

‖R(t,s)‖ ≤ Ne−αs
, t,s ≥ 0.

Thus, R(t,s) is uniformly exponentially stable on X . �

The following theorem gives a method to construct a
quasi semigroup from two quasi semigroups and the
relationship of their growth bounds.

Theorem 2.Let R1(t,s) and R2(t,s) be the C0-quasi

semigroups on Banach spaces X1 and X2 with the

infinitesimal generator A1(t) and A2(t), respectively. If

D(·) ∈ L∞(R
+,L (X1,X2)) and ‖Ri(t,s)‖ ≤ Mi(s), for all

t,s ≥ 0, i = 1,2, then A(t) =

[

A1(t) 0
D(t) A2(t)

]

with domain

D = D(A1(t))×D(A2(t)) is the infinitesimal generator

of the C0-quasi semigroup R(t,s) on X = X1 ×X2 given by

R(t,s) =

[

R1(t,s) 0
S(t,s) R2(t,s)

]

(4)

where S(t,s)x1 =

∫ s

0
R2(t + τ,s− τ)D(t + τ)R1(t,τ)x1dτ ,

for all x1 ∈X1. Moreover, there exists a positive continuous

function M such that

‖R(t,s)‖ ≤ M(s), t,s ≥ 0.

Proof. We see that the matrix operator

[

A1(t) 0
0 A2(t)

]

is

the infinitesimal generator of a C0-quasi semigroup
[

R1(t,s) 0
0 R2(t,s)

]

on X . Since

[

0 0
D(t) 0

]

is bounded on

X , Theorem 3 of [3] implies that A(t) =

[

A1(t) 0
D(t) A2(t)

]

is

the infinitesimal generator of a C0-quasi semigroup.
By the definition of S(t,s) and the transformation of

variable υ = r+ τ we have

S(t + r,s)R1(t,r)x1 +R2(t + r,s)S(t,r)x1 =
∫ s

0
R2(t + r+ τ,s− τ)D(t + r+ τ)R1(t,r+ τ)x1dτ+

∫ r

0
R2(t +υ ,r+ s−υ)D(t+υ)R1(t,υ)x1dυ

=
∫ r+s

0
R2(t +υ ,r+ s−υ)D(t+υ)R1(t,υ)x1dυ

=S(t,r+ s)x1.

Therefore, the operator R(t,s) in (4) satisfies

R(t,r+ s)x =

[

R1(t,r+ s) 0
S(t,r+ s) R2(t,r+ s)

][

x1

x2

]

=

[

R1(t + r,s) 0
S(t + r,s) R2(t + r,s)

][

R1(t,r) 0
S(t,r) R2(t,r)

][

x1

x2

]

= R(t + r,s)R(t,r)x, x ∈ X .

This gives that R(t,s) is a C0-quasi semigroup with the
infinitesimal generator A(t).

Next, for x =

[

x1

x2

]

, we have

R(t,s)x =

[

R1(t,s)x1

Q

]

,

Q =
∫ s

0
R2(t + τ,s− τ)D(t + τ)R1(t,τ)x1dτ +R2(t,s)x2.

Therefore,

‖R(t,s)x‖X ≤ max
{

M1(s)‖x1‖,M1(s)M2(s)s‖D(·)‖‖x1‖
+M2(s)‖x2‖

}

≤ M(s)‖x‖X ,

where
M(s) = max {M1(s),M1(s)M2(s)s‖D(·)‖+M2(s)}. �
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3 Compensator Design

When we consider the stabilizing by state feedback
u(t) = F(t)x(t), we hope that the whole state can be
measured. However, it is impossible for an infinite-
dimensional system. A more realistic assumption is that
can only measure an output that involves information
about a part of the state. A problem that arises naturally is
how to stabilize the system using only partial information
about the state, as schematically shown in Figure 1. The
second system in Figure 1 is an artificial system which is
called a compensator, whose input and output are the
output and input of the original system, respectively. The
whole system in Figure 1 (modified from [14]) is called a
closed-loop system.

Figure 1: Closed-loop system

A basic question is how to design the compensator. In
the finite-dimensional systems, we have two approaches,
i.e. by Luenberger observer or by Kalman filter. Since the
designed controller uses the partial information of the state
to estimate the whole state and to apply the state feedback
on the estimated state, we use Luenberger observer.

Definition 4.Luenberger observer for the non-autonomous
linear control system (A(t),B(t),C(t)) (1) is defined by

˙̂x(t) = A(t)x̂(t)+B(t)u(t)+L(t)(ŷ(t)− y(t)),

ŷ(t) =C(t)x̂(t),
(5)

where L(·) ∈ L∞(R
+
,L (Y,X)).

For the non-autonomous linear control system (1),
how to design an observer of (5) such that x̂ is the best
estimation of the state x. This is possible if the system
(A(t),B(t),C(t)) is detectable.

Lemma 2.Let (A(t),B(t),C(t)) be a non-autonomous

linear control system with the associated Luenberger

observer (5). If A(t) + L(t)C(t) is the infinitesimal

generator of a uniformly exponential C0-quasi semigroup

where L(·) ∈ L∞(R
+,L (Y,X)), then approximated error

e(t) := x̂(t)− x(t) converges to 0 exponentially as t → ∞.

Proof. Let RL(t,s) be a uniformly exponential C0-quasi
semigroup generated by the family A(t) + L(t)C(t). For
y(t) =C(t)x(t), the mild solution of (5) is

x̂(t) =RL(0, t)x̂0 +

∫ t

0
RL(s, t − s)B(s)u(s)ds

−
∫ t

0
RL(s, t − s)L(s)C(s)x(s)ds. (6)

By Theorem 3 of [29] RL(t,s) verifies the integral equation

RL(r, t)x = R(r, t)x0 +

∫ t

0
RL(r+ s, t − s)L(r+ s)·

C(r+ s)R(r,s)x0ds.

Therefore, the mild solution of (A(t),B(t),C(t)) can be
formulated to be

x(t) = R(0, t)x0 +

∫ t

0
R(s, t − s)B(s)u(s)ds

= RL(0, t)x0 +

∫ t

0
R(s, t − s)B(s)u(s)ds

−
∫ t

0
RL(s, t − s)L(s)C(s)[R(0,s)x0 + x(s)

−R(0,s)x0]ds

= RL(0, t)x0 +

∫ t

0
R(s, t − s)B(s)u(s)ds

−
∫ t

0
RL(s, t − s)L(s)C(s)x(s)ds. (7)

By subtracting (7) by (6) we have

e(t) = x̂(t)− x(t) = RL(0, t)(x̂0 − x0) = RL(0, t)e0,

where e0 = x̂0 − x0. Since RL(0, t) converges to 0, then
e(t) converges to 0 exponentially. �

Lemma 2 states that the Luenberger observer (5) is a
good estimator for the state of (A(t),B(t),C(t)) whenever
RL(t,s) is uniformly exponential. If x(t) is the state, then
to stabilize the system we have to choose a feed back
operator u(t) = F(t)x(t) where F(·) ∈ (R+,L (X ,U))
such that A(t)+B(t)F(t) is the infinitesimal generator of
a uniformly exponential C0-quasi semigroup. However,
the observation vias y(t) = C(t)x(t) that gets a part
information of the state x(t).

The following theorem shows that the feed back u(t) =
F(t)x̂(t) which is based to the estimated state having same
influence, whenever the error of estimator converges to 0
as t → ∞.

Theorem 3.Let (A(t),B(t),C(t)) be the stabilizable and

detectable non-autonomous linear control system. If

F(·) ∈ L∞(R
+,L (X ,U)) and L(·) ∈ L∞(R

+,L (Y,X))
such that A(t) + B(t)F(t) and A(t) + L(t)C(t) are the

infinitesimal generator of uniformly exponential C0-quasi

semigroups, respectively, then the control u = Fx̂ where x̂

is the Luenberger observer with output injection L

stabilizes the closed-loop system, and the stabilizing

compensator is given by

˙̂x(t) = [A(t)+L(t)C(t)]x̂(t)+B(t)u(t)−L(t)y(t)),

u(t) = F(t)x̂(t),
(8)

which is depicted in Figure 2.
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Figure 2: (A(t),B(t),C(t)) with compensator (8)

Proof. By hypothesis there exist the exponentially stable
C0-quasi semigroups RF(t,s) and RL(t,s) which are
generated by A(t) + B(t)F(t) and A(t) + L(t)C(t),
respectively. We notice the closed-loop system

[

ẋ(t)
˙̂x(t)

]

= A(t)

[

x(t)
x̂(t)

]

, t ≥ 0, (9)

where A(t) =

[

A(t) B(t)F(t)
−L(t)C(t) A(t)+B(t)F(t)+L(t)C(t)

]

.

Since A(t) is a bounded perturbation of the infinitesimal

generator

[

A(t) 0
0 A(t)

]

, by Theorem 3 of [3] A(t) is the

infinitesimal generator of a C0-quasi semigroup RA(t,s).
We must show that RA(t,s) is uniformly exponentially

stable. On D ⊕D we have the identity
[

A(t)+L(t)C(t) 0
−L(t)C(t) A(t)+B(t)F(t)

]

=

[

I −I

0 I

]

A(t)

[

I I

0 I

]

.

(10)

Let R0(t,s) be a C0-quasi semigroup generated by the
operator on the right-side of (10). Lemma 1 guarantees
that RA(t,s) and R0(t,s) have the same growth constant.
On other hand, Theorem 2 gives that the growth bound of
R0(t,s) is the maximum of the growth bounds of RF(t,s)
and RL(t,s), which are negative. Therefore, Theorem 1
asserts that the C0-quasi semigroup RA(t,s) is uniformly
exponentially stable. �

Since the compensator has the same state of the
system (A(t),B(t),C(t)) which is infinite-dimensional,
the compensator has infinite dimension. The following
example illustrates how to design a compensator for the
non-autonomous linear control systems.

Example 1.Consider the non-autonomous equation of the
temperature of a heated rod, which can be measured via
some device on interval [0,1],

xt(ξ , t) = a(t)π−2xξ ξ (ξ , t)+ b(ξ )u(t),

xξ (0, t) = xξ (1, t) = 0, x(ξ ,0) = x0(ξ ),

y(t) =

∫ 1

0
c(ξ )x(ξ , t)dξ ,

(11)

where x(t,ξ ) ∈ R is the temperature at time t and at point
ξ ∈ [0,1], u(t) ∈ R is the control input, a(t) is a time-
dependent thermal (a positively bounded uniformly
continuous function), b is the actuator function, and c is
the sensor function.

We formulate system (11) in a Hilbert space X =
L2(0,1), where L2(0,1) is the usual L2-space with inner

product 〈φ ,ϕ〉 :=
∫ 1

0 φ(ξ )ϕ(ξ )dξ . We define an operator
A : D(A)⊂ X → X as

Ah =
1

π2

d2h

dξ 2
, h ∈ D(A),

D(A) = {h ∈ H2(0,1) : h′(0) = 0 = h′(1)}.

The A is a self-adjoint operator in X and its eigenvalues
and eigenfunctions are λ0 = 0, λ j = − j2 and φ0(ξ ) = 1,

φ j(ξ ) =
√

2cos( jπξ ), j = 1,2, . . ., respectively, where
{φ j} forms a complete orthogonal system in X . We also
define B(t)u = Bu = bu and C(t)x =Cx = 〈c,x〉.

Setting A(t) = a(t)A, we see that A(t) and A have
common eigenfunctions even though they have different
eigenvalues. We can also verify that A(t) satisfies the
spectrum decomposition assumption for any β . Following
Example 13 of [29], if we choose the stability margin
β = −0.5, then we have the stabilizing feedback and
stabilizing output given by F(t)x = −〈x,φ0〉 and
L(t)y = −yφ0, respectively. Theorem 3 provides that the
stabilizing compensator is given by

x̂t(ξ , t) = a(t)π−2x̂ξ ξ (ξ , t)−
∫ 1

0
c(ξ )x̂(t,ξ )dξ

+ b(ξ )u(t)+ y(t), x̂(ξ ,0) = x̂0(ξ ),

x̂ξ (0, t) = x̂ξ (1, t) = 0,

u(t) =−
∫ 1

0
x̂(ξ , t)dξ .

(12)

Therefore, the system is stabilizable with the compensator
instead of a state feedback.

4 Finite-Dimensional Compensator

Although in theory as shown in Example 1, we can
construct an appropriate compensator, for a wide class of
interesting systems, an implementation of state feedback
or controllers of infinite order is often impossible. This
section aims to find sufficient conditions under which
system (1) can be stabilized by a finite-dimensional
compensator. In particular, we focus on system (1) of a
type of non-autonomous Riesz-spectral systems (see [24]
for details). Recall that the family A(t) in (1) generates a
C0-quasi semigroup R(t,s) on X .

Refers to [24] and simplicity, we assume A(t) = a(t)A
where A is a self-adjoint Riesz-spectral operator, and
B(t) ∈ L (Rl ,X) and C(t) ∈ L (X ,Rm) for all t ≥ 0. In
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this case, we have

Ax =
∞

∑
j=1

λ j〈x,φ j〉φ j , x ∈ D(A),

where D(A) = {x ∈ X : ∑∞
j=1 |λ j|2|〈x,φ j〉|2 <+∞}, λ j are

the eigenvalues of A such that

Reλ1 ≥ Reλ2 ≥ Reλ3 · · ·

and φ j are the corresponding eigenfunctions forming a
Riesz basis for X .

The approach developed in this section generalizes the
approaches of Schumacher [18] and Curtain and Salamon
[13] to the non-autonomous systems. To make the output
operator is well-defined for the solutions of system (1), we
need the following hypothesis.

(H1) Operator B(·) is an admissible input for C0-quasi
semigroup R(t,s) i.e for every τ > 0 there exists a constant

β > 0 such that

∫ τ

0
R(s,τ − s)B(s)u(s)ds ∈ D and

∥

∥

∥

∥

∫ τ

0
R(s,τ − s)B(s)u(s)ds

∥

∥

∥

∥

≤ β‖u‖Lp([0,τ],Rl)

for every u ∈ Lp([0,τ],R
l) for 1 ≤ p < ∞.

Hypothesis (H1) implies that for F ∈ L (X ,Rl), there
exists a C0-quasi semigroup RF(t,s) generated by A(t)+
B(t)F satisfies the equation (see Theorem 2.3 of [3]):

RF(r, t)x = R(r, t)x+
∫ t

0
R(r+ s, t − s)B(r+ s)FRF(r,s)xds. (13)

As finite-dimensional model of system (1), we devote
a finite-dimensional compensator of the form (see [13]):

ẇ(t) = Mw(t)−Hy(t), w(0) = w0,

u(t) = Kw(t),
(14)

where M ∈R
n×n, H ∈R

n×m, K ∈R
l×n are suitably chosen

matrices. The following result gives the well-posedness for
the connected system (1), (14).

Theorem 4.If (H1) is satisfied, then for all x0 ∈ D ,

w0 ∈ R
n, and v ∈ Lp,loc([0,∞),Rl) there exists a unique

solution pair x(t) and w(t) of system (1) and system (14),
respectively. In other words, x(t) is continuous in D and

absolutely continuous in X and satisfies the first equation

of (1) where u(t) given in (14) and w(t) is continuously

differentiable and satisfies the first equation of (14) where

y(t) is given in (1).

Proof. Set the spaces De = D × R
n, Xe = X × R

n,
Ue = R

l × R
n and the operators Re(t,s) ∈ L (De),

Be(t) ∈ L (Ue,Xe), Fe ∈ L (De,Ue) by

Re(t,s) =

[

R(t,s) 0

0 eMs

]

, Be =

[

B 0
0 −H

]

, Fe =

[

0 K

C 0

]

.

Hypothesis (H1) is still valid if D ,X ,R(t,s),B(·) is
replaced by De,Xe,Re(t,s),Be(·), respectively. Moreover,
x(t) ∈ D and w(t) ∈ R

n satisfy (1) and (14) in the above
sense, respectively, if and only if the following equation
holds for every t ≥ 0,

[

x(t)
w(t)

]

= Re(0, t)

[

x0

w0

]

+

∫ t

0
Re(s, t − s)Be(s)

(

Fe

[

x(s)
w(s)

]

+

[

v(s)
0

])

ds

This proves the assertions. �

To complete the sufficiency for the existence of a
stabilizing finite-dimensional compensator for system (1),
we need the following hypothesis.

(H2) Assume that there exist operators F ∈ L (X ,Rl),
L ∈ L (Rm,X) and a finite dimensional subspace W ⊂ X

such that the following conditions are satisfied.

(1)The feedback quasi semigroup RF(t,s) satisfying (13)
is uniformly exponentially stable.

(2)The observer quasi semigroup RL(t,s) generated by
A(t)+LC(t) is uniformly exponentially stable.

(3)RF(t,s)W ⊂W for all t,s ≥ 0.
(4)ranL ⊂W , where ranL denotes the range of L.

If (H2) is satisfied and dimW = n, then there exist
linear maps ι : Rn → X and π : X →R

n satisfying

πι = IRn , ιπx = x, x ∈W. (15)

Moreover, W ⊂ D(AF(t)) and πAF(t)ι is a well-defined
linear map on R

n, where AF(t) = A(t)+B(t)F . Now, we
consider system (14) in the form:

ẇ(t) = π [AF(t)+LC(t)]ιw(t)− ιLy(t),

u(t) = Fιw(t), w(0) = w0.
(16)

Theorem 5.If conditions of (H1), (H2) and (16) are

satisfied, then the closed loop system (1),(16) is uniformly

exponentially stable.

Proof. By Theorem 4, the system (1),(16) is well-posed.
Let x(t) ∈ X and w(t) ∈ R

n be any solutions of (1) and
(16), respectively. Define

z(t) = ιw(t)− x(t) ∈ X , t ≥ 0. (17)

Taking into account the second equation of (1), (17) and
the first equation of (16), we have

ẇ(t) = ιAF(t)πw(t)+πLC(t)z(t). (18)

We verify that πAF(t)ι generates the C0-quasi semigroup
πRF(t,s)ι on R

n. Thus, the mild solution of (18) is given
by

w(t) = πRF(0, t)ιw0 +

∫ t

0
πRF(s, t − s)LC(s)z(s)ds.

(19)
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Inserting (13) with r = 0 into (19), (17) gives that

z(t) = ιπRF(0, t)ιw0+
∫ t

0
ιπRF(s, t − s)LC(s)z(s)ds− x(t)

= R(0, t)ιw0+
∫ t

0
R(s, t − s)[B(s)Fιw(s)+LC(s)z(s)]ds

−R(0, t)x0 −
∫ t

0
R(s, t − s)B(s)u(s)ds

= R(0, t)z(0)+

∫ t

0
R(s, t − s)LC(s)z(s)ds. (20)

We can verify that z(t) in (20) is a classical solution of
ż(t) = [A(t) + LC(t)]z(t). This gives z(t) = RL(0, t)z(0).
This together with (18) gives the uniformly exponential
stability of the pair z(t), w(t). The uniformly exponential
stability of the pair x(t), z(t) follows from (17). �

Hypothesis (H2) is often difficult to check in concrete
examples. Schumacher [18] and Curtain and
Salamon [13] have proposed the equivalent conditions.
The basic idea is to approximate L by generalized
eigenvectors of AF and to show that if A has a complete
set of generalized eigenvectors which is stabilizable
through B, there exists a stabilizing feedback operator F

which does not affect the completeness property of A.
More precisely, we require the following assumptions on
A.

(H3) The resolvent operator of A is compact and the
set ∆ = {λ ∈ Pσ(A) : Reλ ≥ 0} is finite.

(H3) guarantees that the orthogonal projection:

P∆ x =
1

2π i

∫

Γ
(λ I−A)−1xdλ , x ∈ X ,

is well-defined, where Γ is a simple rectifiable curve
enclosing ∆ but no other eigenvalue of A. This gives

X = X∆ ⊕X∆
,

where X∆ = ranP∆ and X∆ = kerP∆ . We verify that these
subspaces are invariant under R(t,s). Furthermore, if
dimX∆ = n∆ , we have two maps

ι∆ : Rn∆ → X∆ , π∆ : X →R
n∆ ,

with the properties

π∆ ι∆ = I, ι∆ π∆ = P∆ . (21)

The projection x∆ (t) = π∆ x(t) of the solution to system (1)
satisfies the finite-dimensional differential equation

ẋ∆ (t) = A∆ (t)x∆ (t)+B∆(t)u(t), x∆ (t) = π∆ x0,

y∆ (t) =C∆ (t)x∆ (t),
(22)

where

A∆ (t) = π∆ A(t)ι∆ , B∆ (t) = π∆ B(t), C∆ (t) =C(t)ι∆ .

Remark.Proposition 2.6 of [13] implies that if (H3) is
satisfied, system (22) is controllable and observable, the
generalized eigenvectors of A is complete in X , and R(t,s)
is exponentially bounded on X∆ , then (H2) is satisfied.

Example 2.We will find a stabilizing finite-dimensional
compensator for system (11) in Example 1. We assume
that a heating-cooling device is located over [0.1,0.2] and
a temperature measuring device is over [0.8,0.9].

By the assumptions, we have b(ξ ) = 10χ[0.1,0.2](ξ )

and c(ξ ) = 10χ[0.8,0.9](ξ ), where χ[·,·] is the characteristic

function. Since the operators A(t) and B given by Bu = bu

satisfy hypothesis (H1), system (11) is well- posed in X .
Let X∆ = {αφ0 : α ∈ R} be the eigenspace of A

corresponding to the unstable spectrum ∆ = {0}. The
spectral projection of X onto X∆ is given by

P∆ φ(ξ ) =

∫ 1

0
φ(ξ )dξ , 0 ≤ ξ ≤ 1.

Choosing {φ0} as a basis of X∆ (21) gives P∆ = ι∆ π∆ ,
where π∆ : X →R and ι∆ : R→ X are given by

π∆ φ =

∫ 1

0
φ(ξ )dξ , ι∆ x∆ (ξ ) = x∆ , 0 ≤ ξ ≤ 1.

The reduced finite-dimensional system (22) is given by

A∆ (t) = 0, B∆ = 1, C∆ = 1.

This implies that the system is controllable and observable.
As in Example 1, if we set the stability margin β = −0.5
with F∆ = −1 and L∆ = −1, then A∆ (t)(t)+B∆ F∆ = −1
and A∆ (t)(t)+L∆C∆ =−1. Therefore, the operators A∆ (t)
with F = F∆ π∆ : X →R is given by

AF(t)h =
a(t)

π2

∂ 2h

∂ξ 2
,

D(AF(t)) =
{

h ∈ H2(0,1) :h′(1) = 0,

h′(0) = π2

∫ 1

0
h(ξ )dξ

}

.

We verify that the eigenvectors and eigenvalues of AF =
A+BF coincide with those of A except for λ0 = 0 which is
now replaced by λF =−1. The corresponding normalized
eigenvector is given by

φF(ξ ) =
√

2sin(πξ ), 0 ≤ ξ ≤ 1.

We note that AF(t) and AF have common eigenvectors
even though they have different eigenvalues.

Setting W = span{φF} and the maps

(ιF w)(ξ ) = φF(ξ )w, 0 < ξ < 1, w ∈ R,

(πFφ)(ξ ) =

∫ 1

0
φF(ξ )φ(ξ ), φ ∈ X ,

we obtain that the map ιF πF : X → W is an orthogonal
projection onto W and ιF πF = 1.
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Since L∆ =−1, the operator L : R :→ X is given by

[Ly](ξ ) = [ι∆ L∆ y](ξ ) =−y, 0 ≤ ξ ≤ 1.

This implies

[L̂y](ξ ) = [ιF πF Ly](ξ ) =− 2
√

2
π yφF(ξ ), 0 ≤ ξ ≤ 1,

whose range is in W . Moreover, since the perturbed
operator A(t) + L̂C generates a uniformly exponentially
stable C0-quasi semigroup, it satisfies the spectrum
determined growth assumption at β = −0.5. Thus, the
operators F and L̂ satisfy hypothesis (H2) with the one
dimensional subspace W = span{φF}. Therefore, the
matrices in the compensator (14) can be counted as

M = πF(AF(t)+ L̂C)ιF =−a(t)+ 2
√

2
π δ ,

H = πF L̂ =− 2
√

2
π ,

K = F∆ π∆ ιF =− 2
√

2
π ,

where δ = cos(0.9π)−cos(0.8π). These give that the first
order system:

ẇ(t) =
[

−a(t)+ 2
√

2
π δ

]

w(t)+ 2
√

2
π y(t),

u(t) =− 2
√

2
π w(t),

(23)

defines a stabilizing compensator for system (11).

If in system (11) we locate the heating-cooling device
over [0.1,0.2] and the temperature measuring device over
[0.8,0.9] as well as add the finite-dimensional
compensator (23), system (11) is stabilizable i.e the
deficient performance of the system can be compensated.
In this case, the compensator (23) is more simple than the
compensator (12) because it only works on the
one-dimensional state space W generated by φF .

Remark.(1) We note that the one-dimensional space W is
generated by the eigenfunction corresponding to the
unstable eigenvalue of A. In this context, the compensator
has an order 1. The order of a compensator denotes the
numbers of unstable eigenvalues which are replaced with
stable ones.

(2) All results of Example 2 can be generalized to
arbitrary stabilizable-detectable non-autonomous Riesz-
spectral system.

(3) The compensator design implies that it is possible
to investigate disturbance decoupling problem:

ẋ(t) = A(t)x(t)+B(t)u(t)+D(t)q(t), x(0) = x0,

y(t) =C(t)x(t), t ≥ 0.
(24)

The disturbance decoupling problem is to find, if possible,
a feedback system u(t) = F(t)x(t) for the system (24) such
that in the closed-loop system the disturbance input q(·)
has no influence on x(·) for all disturbance signals.

5 Conclusion

The C0-quasi semigroup approach was applied to design
the stabilizing compensators for the infinite-dimensional
stabilizable non-autonomous linear control systems as a
generalization of the C0-semigroup for autonomous ones.
We used the uniformly exponential stability of the
C0-quasi semigroup on the state space to identify the
stability of the non-autonomous systems. For the
infinite-dimensional stabilizing compensator design, we
used the Luenberger observer. In the stabilizable-
detectable non-autonomous Riesz-spectral system, there
existed a finite-dimensional stabilizing compensator for
the system. The constructed compensator was based on
the separation of the unstable eigenvalues of the
corresponding Riesz-spectral operator. The numbers of
the unstable eigenvalues was defined to be an order of the
compensator. This compensator is more realistic to be
applied to the real problems of the infinite-dimensional
non-autonomous control systems.
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