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Abstract: This paper addresses a novel structure of continuous static games (CSGs) called hybrid continuous static games (HCSG).

These types of games are based on the fact that the game is presented as a hybrid game between multiple players playing independently

using Nash equilibrium solutions (NES) and others playing according to a secure concept using Min-Max solutions (MMS). A Nash

Min-Max approach was established to solve such genre games. Also, an algorithm for solving Nash Min-Max hybrid continuous static

games (NMMHCSG) has been outlined in clear steps. Moreover, a realistic application of four firms selling replaceable products and

seeking to maximize their profits was presented to demonstrate the steps of the algorithm.
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1 Introduction

Some decisions extensively affect our life, while others
slightly influence it. For instance, we can consider the
choice of an item of our clothes and accepting or rejecting
a job offer, ...etc. Decision science handles all decision
problems and their solutions approaches [1] .

Many decision problems may be considered a
parametric system that has one or more cost criteria. The
discussion has been limited, however, in the presence of a
single decision-maker (controller) with a single cost
function and has sole control over the selection of all
system parameters constrained by a system of algebraic
equality and inequality constraints. The more general case
is achieved under the assumption that there exist multiple
decision-makers, each with their cost criterion. Now, we
have reached the territory of game theory while the game
appears when there exists the more general case of
multiple decision-makers [2] . This generalization
introduces the possibility of competition among the
system controllers called players and the optimization
problem under consideration has been termed a game.
Each player controls a specified subset of the system
parameters called his control vector and seeks to
minimize his cost criterion subject to specified equality
and inequality constraints [3] .

In our real-life, there are several applications of game
theory that may be found in economics, biology, political
strategies, and many other areas. Competition among
firms seeking to maximize their profit and competition for
food and territory among biological species are two
examples [3] . Also, there are extensive engineering
applications that are designed across the game theory.
Variety of interesting studies, such as defense applications
of wireless networks, cybernetics internet security, smart
grid distribution network, electricity marketing to image
processing and coding, electromagnetic apparatus design
to electrical vehicles, MIMO systems spectrum access,
and target tracking cognitive radio. can be obtained by
just a quick internet search, see [4–9] .

Although game theory is appropriate for the analysis
of multiple controller cooperative systems, it may also be
employed effectively in the analysis of uncertain systems
via a worst-case analysis [3, 10–12] . Games can be
classified into three major classes matrix games
[10, 13, 14] , continuous static games [3, 15] and
differential games [16] . In this paper, hybrid studies on
continuous static games at which the decision possibilities
need not be discrete and costs related in a continuous
rather than a discrete manner are provided. The game is
called static because there exists no time history involved
in the relationship between costs and decisions.
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Continuous static games play an extremely important
role in various science fields to analyze static
optimization issues. In this result, continuous static games
offer researchers many opportunities to consider various
types of solutions depending on the optimization problem
nature. Multiple types of CSGs are presented in the
previous works [11, 15, 17–21] . In (1984) [15] , M.
Osman introduced different parametric problems in
continuous static games. The authors in [17] assumed
some general parameters in the objective functions for
pareto continuous static games. In (2005), [18]
introduced a new problem formulation of special class of
large scale continuous static games was given by M.
ElShafei. In [19] , the author constructed a Nash
cooperative continuous static game solved with an
interactive approach. In (2015), [11] presented an
interactive approach for solving fuzzy continuous static
games. Furthermore, H. A. Kalifa in [20] explored an
interactive approach for solving multiobjective nonlinear
programming and applied the results to cooperative
continuous static games. In (2019), [21] showed that the
fractional cooperative continuous static games can be
solved using a parametric approach.

In this paper, a hybrid Nash Min-Max approach for
solving a novel structure of continuous static games
called hybrid continuous static games is established. This
approach is based on the fact that the game is presented as
a hybrid game between multiple players playing
independently using NES [3, 22] and others playing with
a secure concept using MMS [3, 10] . Moreover, an
algorithm for solving such type of games is stated in clear
steps. Furthermore, a competition among firms seeking to
maximize their profit as an application to clarify the
proposed algorithm steps is presented.

The remainder of this paper is organized , as follows:
The next section reviews some basic theorems used as a
basis of our proofs in the next sections. A general
structure of hybrid continuous static games is formulated
in section (3) and its solution concept is developed in
section (4). Section (5) presents the algorithm used for
solving the introduced Nash Min-Max hybrid continuous
static game (NMMHSG). An application of four firms
selling substitutable products is introduced in section (6)
as a numerical example to clarify the algorithm steps.
Conclusion and recommendations are reported in section
(7).

2 Basic Theorems

Theorem 2.1. (Taylor’s Theorem [3] ) If ŷ ∈ E m and if
there exists a ball B centered at ŷ such that the function
G(·) : B → E 1 is C r+1 for every point ŷ+ δy ∈ B, then
with δy = αδ ′y, where α ≥ 0 and δ ′y is a unit vector in
the direction of δy , we have

G
(

ŷ+αδ ′y
)

= G(ŷ)+U [G(ŷ)]+
1

2!
U 2 [G(ŷ)]+ ...

+
1

r!
U r [G(ŷ)]+R

where,

R =
1

(r+ 1)!
U r+1

[

G(ŷ+β δ ′y)
]

For some β ∈ (0,α) and where U is the differential
operator defined by:

U(·)
△
= δy1

∂ (·)

∂y1

+ ...+ δym
∂ (·)

∂ym

proof. The proof of the above theorem is given in [3] .

Theorem 2.2. (First Order Approximation Theorem [3] )
Let G(·) : E m → E 1 be C 1 for every point ŷ+ δ ′y ∈ B.
Then,

G(ŷ+αδ ′y)−G(ŷ) =
∂G(ŷ)

∂y
δy+R(α)

where lim
α→0

[R(α)/α] = 0 and δy = αδ ′y.

proof. The proof of Theorem 2.2 is given in [3] .

Theorem 2.3. (Farkas’ Lemma [3] ) Let C be the finite
convex cone generated by the vectors y 1, ...,y q in E m and
let C ∗ be the polar cone to C. Then, y ∈ C if and only if
y T z ≥ 0 ∀ z ∈C ∗.

proof. Theorem 2.3 is proved in [3] .

Lemma 2.1. If ŷ is a regular point of Y , the tangent cone
T to Y at ŷ is given by T = K̂, where

T =

{

e ∈ E m

∣

∣

∣

∣

∣

∂gI(ŷ)

∂y
e = 0 and

∂ ĥJ(ŷ)

∂y
e ≥ 0

}

,

K =







y ∈ E m

∣

∣

∣

∣

∣

∣

yT = λ T ∂gI(ŷ)

∂y
+ µT ∂hJ(ŷ)

∂y
,

λ ∈ E n, µ ∈ E q, µ ≥ 0, µT hJ(ŷ) = 0







and the polar cone to K is given by

K̂ =
{

e ∈ E m
∣

∣yT e ≥ 0 ∀ y ∈ K
}

where ĥ(·) =
[

h1(·),h2(·), ...,hq̂(·)
]T

denote the active
inequality constraints at ŷ and e ∈ T is the tangent vector
to Y at ŷ.

proof. The proof of the above-mentioned lemma is given
in [3] .

3 General Structure of Hybrid Continuous

Static Games

This section addresses a general structure of hybrid
continuous static games based on the fact that the game is
hybrid between multiple players having different
strategies. We can formulate such type of games, as
follows:
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Let u = (u1,u2, ...,um) ∈ ℜ m denote the control vectors
for player i = {1,2...,m} ⊂ {1,2...,m,m+ 1, ...,r} (the
set of all players), υ = (v1,v2, ...,vr) ∈ τ ⊂ ℜ si−m denote
the composite control vectors for player j = {m+ 1, ...,r}
and ω /∈ τ ⊂ ℜ si−m denote the composite control for

other remaining players. Where (u,υ ,ω) ∈ ℜs, s =
r

∑
e=1

se

are all composite control.

Each player l = {1,2...,m,m+ 1, ...,r} selects his control
to minimize a scalar-valued criterion

Fl(x,u,υ ,ω) (1)

Subject to n equality constraints

gI(x,u,υ ,ω) = 0, I = 1, ...,n (2)

where x ∈ ℜ n is the state vector. The composite control is
required to be an element of regular control constraint set
Ω ∈ ℜ s, defined by

Ω = {(u,υ ,ω) ∈ ℜ s | hJ[ζ (u,υ ,ω),u,υ ,ω ]≥ 0} (3)

where J = 1, ...,q, x = ζ (u,υ ,ω) is the solution to (2) and
gives (u,υ ,ω) and the functions Fl(·) : ℜ n ×ℜ s → ℜ l ,
gI(·) : ℜ n × ℜ s → ℜ n, hJ(·) : ℜ n × ℜ s → ℜ q are
assumed to be C 1 with | ∂gI(x,u,υ ,ω)/∂x | 6= 0 in a ball
about a solution point (x,u,υ ,ω).

At this point, several approaches depending on each
team’s chosen optimality concept may be used for solving
the problem (1) - (3). One of them is discussed in the next
section.

4 Nash Min-Max Approach for Solving

HCSG

In this section, a hybrid Nash Min-Max approach is
established for solving the game (1) - (3). This approach
is based on the fact that the game is presented as a hybrid
game between multiple players (T1) using NES and others
(T2) playing on a secure concept using MMS, see
NMMHCSG problem (4).

4.1 Problem Formulation

Assume that the game (1) - (3) consists of two teams, the
first team decided to play independently using NES with
players set i ∈ T1 = {1,2...,m} ⊂ {1,2...,m,m+ 1, ...,r}
(the set of all players). On the other hand, the second
team use a MMS between its players set j ∈ T2 =
{m+ 1, ...,r}. Then, using the control notations, Nash
Min-Max point for any player l can be formulated as the
following non-linear programming problem

Find the point (ζ (û, υ̂), û, υ̂) that solves

NMMHCSG: Min Fi(x,u, υ̂), i = 1,2, ...,m

Fj(x, û,υ), j ∈ τ ⊂ {m+ 1, ...,r} (4)

Subject to

g(x,u, υ̂) = 0, h(x,u, υ̂)≥ 0,

ϕ(x, û,υ) = 0, ψ(x, û,υ)≥ 0

and

Max Fj(x, û,υ), j /∈ τ

Subject to

g(x,u, υ̂) = 0, h(x,u, υ̂)≥ 0,

ϕ(x, û,υ) = 0, ψ(x, û,υ)≥ 0

where x ∈ ℜ n is the state vector, u = (u1,u2, ...,um) ∈
ℜ m is the control of the player i = 1,2, ...,m (playing
independently), υ = (vm+1, ...,vr) ∈ ℜs−m denotes the
control vector of the remaining players using MMS, and s

= s1 + s2 +... +sr. Also, (u,υ) is required to be an
element of a regular control constrain set Ω ∈ ℜ s, where

Ω =

{

(u,υ) ∈ ℜs

∣

∣

∣

∣

h(ζ (u,υ),u,υ)≥ 0,

ψ(ζ (u,υ),u,υ)≥ 0

}

where x = ζ (u,υ) is the solution of g(x,u,υ) = 0 and
ϕ(x,u,υ) = 0 given (u,υ) and we assume that
|∂g(x,u,v)/∂x| 6= 0, |∂ϕ(x,u,υ)/∂x| 6= 0 in a ball about
a solution point (x̂, û, υ̂). The functions Fi(·) : ℜ n × ℜ m

× ℜ s × ℜ r → ℜ m and Fj(·) : ℜ n × ℜ m × ℜ s × ℜ r →

ℜ r are of class C 1. The functions Fj(·) : ℜ n × ℜ m × ℜ s

× ℜ r → ℜ s−r−m, g(·) : ℜ n × ℜ m × ℜ s × ℜ r → ℜ n1 ,
h(·) : ℜ n × ℜ m × ℜ s × ℜ r → ℜ q1 , ϕ(·) : ℜ n × ℜ m ×
ℜ s × ℜ r → ℜ n2 and ψ(·) : ℜ n × ℜ m × ℜ s × ℜ r →
ℜ q2 are of class C 2 in x and υ and C 1 in u, ℜ n1 × ℜ n2

→ ℜ n and ℜ q1 × ℜ q2 → ℜ q.

4.2 Solution Concept

4.2.1 Cost Perturbations and Tangent Cones [3]

Before introducing the formal definitions of the solution
concept, it is fundamental to first develop a general
relation for the perturbation induced in a cost function
Fe(x,u) due to local perturbations about a nominal
composite control u. These relations are used to develop
the necessary optimal conditions for the Nash Min-Max
solutions.
At a point u ∈ Ω = {(x,u) ∈ ℜ s |h [ζ (u),u]≥ 0}, let B

⊂ E s denote a ball about u and let x = ζ (u) denote the
corresponding solution to g(x,u). Let T ⊆ E s denote the
tangent cone to Ω at u and let δu(·) generate a tangent
vector z ∈ T , let u +αδu(α) ∈ Ω for all sufficiently
small α > 0 and δu(α) → z as α → 0.
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For each player e = 1,2, ...,r, Theorem 2.2 yields

δFe
△
= Fe [ζ [u+αδu(α)],u+αδu(α)]−Fe[ζ (u),u]

=

[

∂Fe

∂x

∂ζ

∂x
+

∂Fe

∂u

]

α z+ R̃i(α) (5)

where R̃i(α) / α → 0 as α → 0 and all quantities are
evaluated at (x,u). Applying Theorem 2.2 to

g [ζ [u+αδu(α)], u+αδu(α)] = g[ζ (u), u] = 0,

we have

0 =

[

∂g

∂x

∂ζ

∂x
+

∂g

∂u

]

α z+ R̂(α)

where R̂(α)/α → 0 as α → 0. Thus, in view of

∣

∣

∣

∣

∂g(x,u)

∂x

∣

∣

∣

∣

6= 0 (6)

we have

∂ζ

∂u
α z = −

[

∂g

∂x

]−1 [

∂g

∂u
α z+ R̂(α)

]

(7)

for all z ∈ T .

Combining (5) and (7) yields

δFe =

[

∂Fe

∂u
−

∂Fe

∂x

[

∂g

∂x

]−1 ∂g

∂u

]

α z+Re(α) (8)

for all e = 1,2, ...,r and z ∈ T , where Re(α) / α → 0 as α
→ 0. Defining

γ T (e)
△
=

∂Fe

∂x

[

∂g

∂x

]−1

, e = 1, ...,r (9)

and

Je[x,u,γ (e)]
△
= Fe(x,u)− γ T (e) g(x,u), e = 1, ...,r (10)

we can write (8) as

δFe =

[

∂Je

∂u

]

α z+Re(α), e = 1, ...,r (11)

for all z ∈ T . Note from (9) and (10) that γ(e) is the unique
solution to

∂Je

∂x
= 0, e = 1, ...,r (12)

for u + αδu(α) ∈ Ω for all sufficiently small α > 0, we
have

h [ζ [u+αδu(α)] , u+αδu(α)]≥ 0 (13)

Thus, the first order approximation theorem (Theorem

2.2) along with (7) and the regularity assumption yield

the following result for T that refers to the tangent cone to
Ω at u defined by

T =

{

z ∈ ℜ s

∣

∣

∣

∣

∣

[

∂ ĥ

∂ue

−
∂ ĥ

∂x

[

∂g

∂x

]−1 ∂g

∂u

]

z ≥ 0

}

(14)

where ĥ(·) denotes the active inequality constraints at u.

In discussing a particular player e with control ue ∈ ℜs, it
is convenient to focus on the control constraints induced
on player e by a choice v of the composite control of the
remaining players. Thus, for specific v with u = (ue,v) we
have ue ∈ Ue, where

Ue = {ue ∈ ℜ s | h [ζ (ue,v),ue,v]≥ 0} (15)

If Ue ⊆ ℜse is regular at ue, e= 1,2, ...,r for a given v, then
the tangent cone Te ⊆ ℜse to Ue ⊆ ℜse at ue is given by

Te =

{

ze ∈ ℜ se

∣

∣

∣

∣

∣

[

∂ ĥ

∂ue

−
∂ ĥ

∂x

[

∂g

∂x

]−1 ∂g

∂u

]

ze ≥ 0

}

(16)

where e = 1,2, ...,r, and ĥ(·) denotes the active inequality
constraints at u = (ue,v).

4.2.2 Formal Definitions of the Solution Concept

Definition 4.1. (Regular Point [23, 24] ) A point u =
(ui,v) ∈ Ω = {(x,u) ∈ ℜ s |hJ [ζ (u),u]≥ 0} is a
completely regular point if and only if for each i = 1, ...,r

1. u is a regular point of Ω .
2. ui is a regular point of Ui.

where x = ζ (u) denotes the corresponding solution to
gI(x,u) = 0, I = 1, ...,n, J = 1, ...,q and

Ui = {ui ∈ ℜ s | hJ [ζ (ui,v),ui,v]≥ 0, i = 1, ...,r}

Definition 4.2. A point û=(ûi, v̂i, ω̂)∈Ω is a completely
regular Nash Min-Max point if and only if for each i =
1,2, ...,m and j = m+ 1, ...,r

Fi [ζ (û), û] ≤ Fi [ζ (ui, v̂ j, ω̂),ui, v̂ j, ω̂ ] (17)

and







Fj [ζ (ûi, v̂ j,ω),ui, v̂ j,ω ]≤

Fj [ζ (û), û]≤

Fj [ζ (ûi,v j , ω̂), ûi,v j, ω̂ ]

(18)

for all (ui,v j ,ω) such that (ui, v̂ j, ω̂) ∈ Ω , (ûi,v j, ω̂) ∈ Ω
and (ûi, v̂ j,ω) ∈ Ω defined by

Ω =
{

(ui,v j,ω) ∈ ℜ s
∣

∣ hJ [ζ (ui,v j,ω),ui,v j,ω ]≥ 0
}

where u ∈ ℜ m, υ ∈ τ ⊂ ℜ si−m denote the control vectors
for player i and j, respectively. Also, ω /∈ τ ⊂ ℜ si−m
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denotes the composite control vector for other remaining

players. (u,υ ,ω) ∈ ℜs, s =
r

∑
e=1

se are all composite

control and x = ζ (u,υ ,ω) is the solution to gI(x,u,υ ,ω)
and gives (u,υ ,ω). The functions Fi(·) : ℜ n × ℜ m × ℜ s

× ℜ r → ℜ m and Fj(·) : ℜ n × ℜ m × ℜ s × ℜ r → ℜ r

are of class C 1. The functions Fj(·) : ℜ n × ℜ m × ℜ s ×
ℜ r → ℜ s−r−m, gI(·) : ℜ n × ℜ m × ℜ s × ℜ r → ℜ n,
I = 1, ...,n and hJ(·) : ℜ n × ℜ m × ℜ s × ℜ r → ℜ q,
J = 1, ...,q are of class C 2 in x and υ and C 1 in u. For a
local Nash Min-Max point, replace Ω by B ∩ Ω for some
ball B ⊂ ℜ s centered at û.

Lemma 4.1. If (û, υ̂) = (ûi, v̂ j) ∈ Ω is a local Nash
Min-Max point for NMMHCSG, problem (4), and if x̂ =
ζ (û, υ̂) is solution to g(x, û, υ̂) = 0 and ϕ(x, û, υ̂) = 0,
then for each i = 1,2, ...,m and j = m+ 1, ...,r there exist
vectors γ(i) ∈ ℜ n and γ( j) ∈ ℜ m defined by

∂Ji [x̂, û, υ̂ ,γ (i),γ ( j)]

∂x
= 0, i = 1,2, ...,m (19)

∂J j [x̂, û, υ̂ ,γ (i),γ ( j)]

∂x
= 0, j = m+ 1, ...,r (20)

such that

∂Ji [x̂, û, υ̂ ,γ (i),γ ( j)]

∂ui

z i ≥ 0, i = 1,2, ...,m (21)

for all z i ∈ Ti,

∂J j [x̂, û, υ̂ ,γ (i),γ ( j)]

∂v j

z j ≥ 0, j ∈ τ ⊂ {m+ 1, ...,r}

(22)
for all z j ∈ T j, j ∈ τ ⊂ {m+ 1, ...,r} and

∂J j [x̂, û, υ̂ ,γ (i),γ ( j)]

∂v j

z j ≥ 0, j /∈ τ (23)

for all z j ∈ Tj, j /∈ τ , where Ti and Tj denote the tangent
cones to Ω at (û, υ̂) defined by

Ti =

{

zi ∈ ℜsi

∣

∣

∣

∣

∣

[

∂ ĥ

∂ui
−

∂ ĥ

∂x

[

∂g

∂x

]−1 ∂g

∂u

]

zi ≥ 0

}

(24)

Tj =

{

z j ∈ ℜs j

∣

∣

∣

∣

∣

[

∂ψ̂

∂υ j
−

∂ψ̂

∂x

[

∂ϕ

∂x

]−1 ∂ϕ

∂υ

]

z j ≥ 0

}

(25)

where

Ji [x,u,υ ,γ(i),γ( j)]
△
= Fi(x,u,υ)− γ T (i)g(x,u,υ)

− γ T ( j)ϕ(x,u,υ)

and

J j [x,u,υ ,γ(i),γ( j)]
△
= Fj(x,u,υ)− γ T (i)g(x,u,υ)

− γ T ( j)ϕ(x,u,υ)

for all i ∈ T1 = {1,2, ...,m} and j ∈ T2 = {m+ 1, ...,r}.

Proof. From (11) and Definition 4.2 for each player i =
1,2, ...,m we have

δFi =

[

∂Ji [x̂, û, υ̂ ,γ (i),γ ( j)]

∂ui

]

α z+Ri(α) (26)

for all i = 1,2, ...,m and z ∈ T , with

z i = 0 ∀ k ∈ {1,2, ...,m} , k 6= i, i = 1,2, ...,m (27)

Combining (26) and (27) yields

[

∂Ji [x̂, û, υ̂ ,γ (i),γ ( j)]

∂ui

]

α z i +Ri(α) ≥ 0 (28)

for all z i ∈ Ti, i = 1,2, ...,m. Dividing (28) by α > 0 and
taking the limit as α → 0 yields (21).

Similarly, from (11) and the Definition 4.2 for each player
j = m+ 1, ...,r, we have

[

∂J j [x̂, û, υ̂ ,γ (i),γ ( j)]

∂v j

]

α z j +R j(α)≥ 0 (29)

for all z j ∈ Tj, j ∈ τ ⊂ m+ 1, ...,r, and

[

∂J j [x̂, û, υ̂ ,γ (i),γ ( j)]

∂v j

]

α z j +R j(α) ≥ 0, j /∈ τ (30)

for all z j ∈ Tj, where R j(α)/α → 0 as α → 0. Dividing
(29) and (30) by α > 0 and taking the limit as α → 0
yield (22) and (23) which establish the lemma. �

Necessary optimal conditions used to define Nash
Min-Max points for problem (4) may now be stated in the
following theorem.

Theorem 4.1. If ŵ = (û, υ̂) = (ûi, v̂ j) ∈ Ω is a
completely regular local Nash Min-Max point and if
x̂ = ζ (ŵ) is solution to g(x, ŵ) = 0 and ϕ(x, ŵ) = 0, then
for each i = 1,2, ...,m and j = m + 1, ...,r there exist
vectors λ (i) ∈ ℜ n1 , µ(i) ∈ ℜ q1 , ρ( j) ∈ ℜ n2 , β ( j) ∈

ℜ q2 , ρ̄( j) ∈ ℜ n2 , and β̄ ( j) ∈ ℜ q2 such that

∂Li [x̂, ŵ,λ ,µ ,ρ ,β ]

∂x
= 0, i = 1,2, ...,m (31)

∂Li [x̂, ŵ,λ ,µ ,ρ ,β ]

∂ui

= 0, i = 1,2, ...,m (32)

∂L j [x̂, ŵ,λ ,µ ,ρ ,β ]

∂x
= 0, j ∈ τ ⊂ {m+ 1, ...,r} (33)

∂L j [x̂, ŵ,λ ,µ ,ρ ,β ]

∂x
= 0, j /∈ τ (34)

∂L j [x̂, ŵ,λ ,µ ,ρ ,β ]

∂v j

= 0, j ∈ τ ⊂ {m+ 1, ...,r} (35)

∂L j [x̂, ŵ,λ ,µ ,ρ ,β ]

∂v j

= 0, j /∈ τ (36)
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g(x̂, ŵ) = 0 (37)

ϕ(x̂, ŵ) = 0 (38)

h(x̂, ŵ)≥ 0 (39)

ψ(x̂, ŵ)≥ 0 (40)

µ t(i) h(x̂, ŵ)≥ 0, i = 1,2, ...,m (41)

β t( j) ψ(x̂, ŵ)≥ 0, j ∈ τ ⊂ {m+ 1, ...,r} (42)

β̄ t( j) ψ(x̂, ŵ)≥ 0, j /∈ τ (43)

µ(i)≥ 0, i = 1,2, ...,m (44)

β ( j) ≥ 0, j ∈ τ ⊂ {m+ 1, ...,r} (45)

β̄ ( j) ≥ 0, j /∈ τ (46)

where,

Li [x,w,λ ,µ ,ρ ,β ] = Fi(x,w)−λ tg(x,w)− µ th(x,w)

−ρ tϕ(x,w)−β tψ(x,w) (47)

for each player i ∈ T1 = {1,2, ...,m} and

L j [x,w,λ ,µ ,ρ ,β ] = Fj(x,w)−λ tg(x,w)− µ th(x,w)

−ρ tϕ(x,w)−β tψ(x,w) (48)

for each player j ∈ T2 = {m+ 1, ...,r}.

While the partial derivatives of L j are evaluated using the
two sets of multipliers ρ( j),β ( j)∀ j ∈ τ ⊂ {m+ 1, ..., r}

and ρ̄( j), β̄ ( j)∀ j /∈ τ depending on the minimization or
maximization criteria for the player j, ℜ n1 × ℜ n2 → ℜ n

and ℜ q1 × ℜ q2 → ℜ q.

Proof. Consider the following cones

κi =











y ∈ ℜM

∣

∣

∣

∣

∣

∣

∣

yt = µ t

[

∂h

∂ui

−
∂h

∂x

[

∂g

∂x

]−1 ∂g

∂ui

]

,

µ th(x̂, ŵ) = 0,µ(i)≥ 0, i = 1, ...,m











(49)

κ j =











y ∈ ℜN

∣

∣

∣

∣

∣

∣

∣

yt = β t

[

∂ψ

∂v j

−
∂ψ

∂x

[

∂ϕ

∂x

]−1 ∂ϕ

∂v j

]

,

β tψ(x̂, ŵ) = 0,β ( j)≥ 0, j ∈ τ











(50)

κ j =











y ∈ ℜQ

∣

∣

∣

∣

∣

∣

∣

yt = β t

[

∂ψ

∂v j

−
∂ψ

∂x

[

∂ϕ

∂x

]−1 ∂ϕ

∂v j

]

,

β tψ(x̂, ŵ) = 0,β ( j)≥ 0, j /∈ τ











(51)
where τ ⊂ {m+ 1, ...,r} and the polar cones are

κ∗
i =

{

ν ∈ ℜM

∣

∣

∣

∣

y tν ≥ 0 ∀ y ∈ κi,

i = 1,2, ...,m

}

(52)

κ∗
j =

{

ν ∈ ℜN

∣

∣

∣

∣

y tν ≥ 0 ∀ y ∈ κ j,

j ∈ τ ⊂ {m+ 1, ...,r}

}

(53)

κ∗
j =

{

ν ∈ ℜQ

∣

∣

∣

∣

y tν ≥ 0 ∀ y ∈ κ j

j /∈ τ

}

(54)

where all equations are evaluated at (x̂, ŵ). By the same
proof of Lemma 2.1, since ŵ = (û, υ̂) is a regular point of
Ui the tangent cones Ti and Tj, given by (16), we have

Ti = κ∗
i ∀ i = 1,2, ...,m

Tj = κ∗
j ∀ j ∈ τ ⊂ {m+ 1, ...,r}

Tj = κ∗
j ∀ j /∈ τ

from this result and Lemma 4.1, we get

∂Ji [x̂, ŵ,γ(i),γ( j)]

∂ui

∈ κi ∀ i = 1,2, ...,m (55)

∂J j [x̂, ŵ,γ(i),γ( j)]

∂v j

∈ κ j ∀ j ∈ τ ⊂ {m+ 1, ...,r} (56)

∂J j [x̂, ŵ,γ(i),γ( j)]

∂v j

∈ κ j ∀ j /∈ τ (57)

where γ(i) and γ( j) are defined by

∂Ji [x̂, ŵ,γ(i),γ( j)]

∂x
= 0 ∀ i = 1,2, ...,m , (58)

∂J j [x̂, ŵ,γ(i),γ( j)]

∂x
∈ κ j ∀ j = m+ 1, ...,r (59)

where

Ji [x,w,γ(i),γ( j)]
△
= Fi(x,w)− γ t(i)g(x,w)

− γ t( j)ϕ(x,w), i = 1,2, ...,m (60)

and

J j [x,w,γ(i),γ( j)]
△
= Fj(x,w)− γ t(i)g(x,w)

− γ t( j)ϕ(x,w), j = m+ 1, ...,r (61)

Thus, from (49), we have

∂Ji

∂ui

= µ t

[

∂h

∂ui

−
∂h

∂x

[

∂g

∂x

]−1 ∂g

∂ui

]

, i = 1,2, ...,m (62)

where µ(i) satisfies (39), (41) and (44). Then, we define

λ t(i) = γ t(i)− µ t

[

∂h

∂x

[

∂g

∂x

]−1
]

∀ i = 1,2, ...,m, (63)

ρ t( j) = γ t( j)−β t

[

∂ψ

∂x

[

∂ϕ

∂x

]−1
]

∀ j ∈ τ, (64)

and

ρ̄ t( j) = γ t( j)−β t

[

∂ψ

∂x

[

∂ϕ

∂x

]−1
]

∀ j /∈ τ (65)

where τ ⊂ {m+ 1, ...,r}, γ(i) and γ( j) are defined by (58)
and (60).
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Combining (12) and (63), for all i = 1,2, ...,m and τ ⊂
{m+ 1, ...,r}, yields

0 =
∂Ji

∂x
=

∂Fi

∂x

−

[

λ t(i)+ µ t(i)

[

∂h

∂x

[

∂g

∂x

]−1
]]

(i=1,2,...,m)

∂g

∂x

−

[

ρ t( j)+β t( j)

[

∂ψ

∂x

[

∂ϕ

∂x

]−1
]]

( j∈τ)

∂ϕ

∂x

−

[

ρ̄ t( j)+ β̄ t( j)

[

∂ψ

∂x

[

∂ϕ

∂x

]−1
]]

( j/∈τ)

∂ϕ

∂x
(66)

which is equivalent to (31). Combining (60), (62) and
(63) yields (32). From (48) and choosing β ( j) ≥ 0 ∀ j ∈
τ ⊂ m+ 1, ...,r, then (33) follows from (59) by
substituting for γ(i) and γ( j) from (63) and (64),
respectively. Similarly, (35), (42) and (45) easily follows
from (50), (56) and (64). By choosing β̄ ( j) ≤ 0 ∀ j /∈ τ ,
and substituting for γ(i) from (63) and γ( j) from (65),
then (34) follows from (59). Also, (36), (43) and (46) can
easily follow from (51) and (57) which complete the
theorem proof. �

Note that the necessary optimal conditions stated in
Theorem 4.1 may be simplified for the case of
state-independent control constraints, i.e. for h(u,υ) ≥ 0,
the two vectors λ (i) and γ(i) are identical. Moreover,
λ (i) and ρ( j) are then uniquely defined as functions of
x̂, û and υ̂ from (31), (33) and (34) since ∂Li/∂x and
∂L j/∂x are independent, control constraints. Similarly, if
(40) is state-independent then we can get from (64) that
ρ( j) = ρ̄( j) = γ( j) and in this case (35) and (36) become

identical independent of β ( j) and β̄ ( j). Furthermore, the
necessary optimal conditions are simplified, if the
inequality constraints are decoupled; for example, let
ψ1(v j) ≥ 0, j ∈ τ ⊂ {m+ 1, ...,r} and ψ2(v j) ≥ 0, j /∈ τ .
In this case, the components of β ( j) multiplying zero
gradients (∂ψ2/∂v j = 0∀ j /∈ τ) in (35) and the

components of β̄ ( j) multiplying zero gradients
(∂ψ1/∂v j = 0∀ j ∈ τ) in (36) may be set equal to zero.
Hence, a single β -vector, β ( j), may be employed with
the appropriate signs for the components of β ( j). That is,
βk( j) ≥ 0(≤ 0) if ψk(·) ≥ 0 is applied to the minimizing
(maximizing) player. The same case can be obtained with
hk(·) ≥ 0 that increases the necessary optimal conditions
simplification.

5 Algorithm for Solving NMMHCSG [Problem (4)]

The algorithm for solving NMMHCSG, problem (4), can
be summarized in the following steps:

Step 1: Form the game between multiple set of players,
i ∈ T1 = {1,2, ...,m} ⊂ {1,2, ...,m,m+ 1, ...,r}
playing independently using NES and others

player set j ∈ T2 = {m+ 1, ...,r} using NMS
concept.

Step 2: Formulate the corresponding Nash Min-Max
hybrid continuous static game problem (4).

Step 3: Apply the necessary optimal conditions (31) - (46)
stated in Theorem 4.1.

Step 4: Solve the system of equations (31) - (48) using
any computer package, i.e. [gamultiobj] MATLAB
built-in tool to get the regular local Nash Min-Max
solution point to the NMMHCSG problem (4).

Four firm’s maximization profit application is given below
to illustrate the above-mentioned algorithm steps.

6 Numerical Example (Four Firms Application)

Four firms sell substitutable products and seek to
maximize their profits through advertising using the
model from [3] 1. Assuming that the steady-state fractions
of the markets x1,x2,x3 and x4 that each firm receives
are given by

g1(·) = 0 =−3x1 + u1 − u 2
1 − x1u2, (67)

g2(·) = 0 =−2x2 + u2 − u 2
2 − 2x2u1, (68)

g3(·) = 0 =−5x3 + u3 − u 2
3 − 2x3u4, (69)

g4(·) = 0 =−4x4 + u4 − u 2
4 − 4x4u3 (70)

where u1 ≥ 0, u2 ≥ 0, 0 ≥ u3 ≤ 1, and 0 ≥ u4 ≤ 1 are the
advertising expenditure rates for firms 1,2,3,4,
respectively, and xi ≥ 0, i = 1, ...,4 with x1 + x2 ≤ 1. The
steady-state profits of four firms are taken, respectively, as

P1 = 5x1 − u1, (71)

P2 = 3x2 − u2, (72)

P3 = 8x3 − u3, (73)

P4 = 5x4 − u4 (74)

Assuming that the game consists of two teams T1 and T2.
The first team T1 consists of the first two firms (players)
with control vector ui, i = 1,2 each player i seeks to
minimize his cost function using NES. On the other hand,
the remaining two players, with control vector u j, j =
3,4, form the second team T2. Each player j seeks to
minimize his cost function using MMS.

Form the corresponding NMMHCSG, as follows:

Min F1 =−5x1 + u1,

F2 =−3x2 + u2,

F3 =−8x3 + u3 for player P3 Min-Max,

or F4 =−5x4 + u4 for player P4 Min-Max

1 This model has been modified to meet our problem

formulation.
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Subject to

g1(·) = 0 =−3x1 + u1 − u 2
1 − x1u2,

g2(·) = 0 =−2x2 + u2 − u 2
2 − 2x2u1,

ϕ1(·) = 0 =−5x3 + u3 − u 2
3 − 2x3u4,

ϕ2(·) = 0 =−4x4 + u4 − u 2
4 − 4x4u3,

h1(·) = x1 ≥ 0, h2(·) = x2 ≥ 0,

h3(·) = 1− x1− x2 ≥ 0,

h4(·) = u1 ≥ 0, h5(·) = u2 ≥ 0,

ψ1(·) = x3 ≥ 0, ψ2(·) = x4 ≥ 0,

ψ3(·) = u3 ≥ 0, ψ4(·) = 1− u3 ≥ 0,

ψ5(·) = u4 ≥ 0, ψ6(·) = 1− u4 ≥ 0

and

Max F4 =−5x4 + u4 for player P3 Min-Max,

or F3 =−8x3 + u3 for player P4 Min-Max

Subject to

g1(·) = 0 =−3x1 + u1 − u 2
1 − x1u2,

g2(·) = 0 =−2x2 + u2 − u 2
2 − 2x2u1,

ϕ1(·) = 0 =−5x3 + u3 − u 2
3 − 2x3u4,

ϕ2(·) = 0 =−4x4 + u4 − u 2
4 − 4x4u3,

h1(·) = x1 ≥ 0, h2(·) = x2 ≥ 0,

h3(·) = 1− x1− x2 ≥ 0,

h4(·) = u1 ≥ 0, h5(·) = u2 ≥ 0,

ψ1(·) = x3 ≥ 0, ψ2(·) = x4 ≥ 0,

ψ3(·) = u3 ≥ 0, ψ4(·) = 1− u3 ≥ 0,

ψ5(·) = u4 ≥ 0, ψ6(·) = 1− u4 ≥ 0

Employing Theorem 4.1, the Lagrangian function for the
first two players is defined by (47), as follows:

L1 =− 5x1 + u1 −λ1(1)
[

−3x1 + u1− u 2
1 − x1u2

]

−λ2(1)
[

−2x2 + u2 − u 2
2 − 2x2u1

]

−ρ1(1)
[

−5x3 + u3− u 2
3

−2x3u4]−ρ2(1)
[

−4x4 + u4 − u 2
4 − 4x4u3

]

− µ1(1)

x1 − µ2(1)x2 − µ3(1) [1− x1− x2]− µ4(1)u1 − µ5(1)

u2 −β1(1)x3 −β2(1)x4 −β3(1)u3 −β4(1) [1− u3]−

β5(1)u4 −β6(1) [1− u4]

L2 =− 3x1 + u2 −λ1(2)
[

−3x1 + u1− u 2
1 − x1u2

]

−λ2(2)
[

−2x2 + u2 − u 2
2 − 2x2u1

]

−ρ1(2)
[

−5x3 + u3− u 2
3

−2x3u4]−ρ2(2)
[

−4x4 + u4 − u 2
4 − 4x4u3

]

− µ1(2)

x1 − µ2(2)x2 − µ3(2) [1− x1− x2]− µ4(2)u1 − µ5(2)

u2 −β1(2)x3 −β2(2)x4 −β3(2)u3 −β4(2) [1− u3]−

β5(2)u4 −β6(2) [1− u4]

Since the remaining players 3 and 4 use MMS, then

1. To determine the MMS for player 3, define

L3 =− 8x3 + u3 −λ1(3)
[

−3x1 + u1 − u 2
1 − x1u2

]

−λ2(3)
[

−2x2 + u2 − u 2
2 − 2x2u1

]

−ρ1(3)
[

−5x3 + u3 − u 2
3

−2x3u4]−ρ2(3)
[

−4x4 + u4 − u 2
4 − 4x4u3

]

− µ1(3)

x1 − µ2(3)x2 − µ3(3) [1− x1− x2]− µ4(3)u1 − µ5(3)

u2 −β1(3)x3 −β2(3)x4 −β3(3)u3 −β4(3) [1− u3]−

β5(3)u4 −β6(3) [1− u4]

where, β1(3),β2(3),β3(3),β4(3)≥ 0 and β5(3),β6(3)≤ 0.
Applying the necessary optimal conditions, we get

∂L1

∂x1

= 0 =−5+λ1(1) [u2 + 3]− µ1(1)+ µ3(1) (75)

∂L1

∂x2

= 0 = 2λ2(1) [u1 + 1]− µ2(1)+ µ3(1) (76)

∂L1

∂x3

= 0 = ρ1(1) [u4 + 5]−β1(1) (77)

∂L1

∂x4

= 0 = 4ρ2(1) [u3 + 1]−β2(1) (78)

∂L2

∂x1
= 0 = λ1(2) [u2 + 3]− µ1(2)+ µ3(2) (79)

∂L2

∂x2

= 0 =−3+ 2λ2(2) [u1 + 1]− µ2(2)+ µ3(2) (80)

∂L2

∂x3

= 0 = ρ1(2) [u4 + 5]−β1(2) (81)

∂L2

∂x4

= 0 = 4ρ2(2) [u3 + 1]−β2(2) (82)

∂L3

∂x1

= 0 = λ1(3) [u2 + 3]− µ1(3)+ µ3(3) (83)

∂L3

∂x2

= 0 = 2λ2(3) [u1 + 1]− µ2(3)+ µ3(3) (84)

∂L3

∂x3

= 0 =−8+ρ1(3) [2u4 + 5]−β1(3) (85)

∂L3

∂x4

= 0 = 4ρ2(3) [u3 + 1]−β2(3) (86)

∂L1

∂u1

= 0 = 1+λ1(1) [2u1 − 1]+ 2x2λ2(1)− µ4(1) (87)

∂L2

∂u2

= 0 = 1+λ2(2) [2u2 − 1]+ x1λ1(2)− µ5(1) (88)

∂L3

∂u3

= 0 = 1+ρ1(3) [2u3 − 1]+ 4x4ρ2(3)−β3(3)

+β4(3) (89)

∂L3

∂u4

= 0 = ρ2(3) [2u4 − 1]+ 2x3ρ1(3)−β5(3)

+β6(3) (90)

where, µe(l) ≥ 0, µe(l)he(l) = 0 and βkψk(l) = 0,
e = 1, ...,5, l = 1, ...,3, k = 1, ...,6. From (75) - (86), we
have
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λ1(1) =
5+ µ1(1)− µ3(1)

u2 + 3
, λ2(1) =

µ2(1)− µ3(1)

2(u1 + 1)
,

λ1(2) =
µ1(2)− µ3(2)

u2 + 3
, λ2(2) =

3+ µ2(2)− µ3(2)

2(u1 + 1)
,

λ1(3) =
µ1(3)− µ3(3)

u2 + 3
, λ2(3) =

µ2(3)− µ3(3)+ 0

2(u1 + 1)
,

ρ1(1) =
β1(1)

2u4 + 5
, ρ2(1) =

β2(1)

4(u3 + 1)
, ρ1(2) =

β1(2)

2u4 + 5
,

ρ2(2) =
β2(2)

4(u3 + 1)
,ρ1(3) =

8+β1(3)

2u4 + 5
,ρ2(3) =

β2(3)

4(u3 + 1)

From (67) - (70), we get

x1 =
u1(1− u1)

u2 + 3
, x2 =

u2(1− u2)

2(u1 + 1)
,

x3 =
u3(1− u3)

2u4 + 5
, x4 =

u4(1− u4)

4(u3 + 1)

Substituting these results into (87) - (90), the Nash Min-
Max solution for player 3 with µe(l) = 0 and βk(l) = 0
except β6(3) ≤ 0 for all e = 1, ...,5, l = 1, ...,3 and k =
1, ...,6 is

(u∗1,u
∗
2,u

∗
3,u

∗
4) =

(

11

58
,

3

29
,

1

16
,1

)

Then,

x∗1 =
u∗1(1− u∗1)

u∗2 + 3
= 0.0495, x∗2 =

u∗2(1− u∗2)

2(u∗1 + 1)
= 0.0390,

x∗3 =
u∗3(1− u∗3)

2u∗4 + 5
= 0.0084, x∗4 =

u∗4(1− u∗4)

4(u∗3 + 1)
= 0

The corresponding profits for each firm are

P1 = 0.0578, P2 = 0.0135,

P3 = 0.0045, P4 = 1

2. To determine the MMS for player 4, define

L4 =− 5x3 + u4 −λ1(4)
[

−3x1 + u1− u 2
1 − x1u2

]

−λ2(4)
[

−2x2 + u2 − u 2
2 − 2x2u1

]

−ρ1(4)
[

−5x3 + u3 − u 2
3

−2x3u4]−ρ2(4)
[

−4x4 + u4 − u 2
4 − 4x4u3

]

− µ1(4)

x1 − µ2(4)x2 − µ3(4) [1− x1− x2]− µ4(4)u1 − µ5(4)

u2 −β1(4)x3 −β2(4)x4 −β3(4)u3 −β4(4) [1− u3]−

β5(4)u4 −β6(4) [1− u4]

where β1(4),β2(4),β5(3),β6(3)≥ 0 and β3(4),β4(4)≤ 0.
Then,

∂L4

∂x1

= 0 = λ1(4) [u2 + 3]− µ1(4)+ µ3(4) (91)

∂L4

∂x2

= 0 = 2λ2(4) [u1 + 1]− µ2(4)+ µ3(4) (92)

∂L4

∂x3

= 0 = ρ1(4) [2u4 + 5]−β1(4) (93)

∂L4

∂x4

= 0 =−5+ 4ρ2(4) [u3 + 1]−β2(4) (94)

∂L4

∂u3

= 0 = ρ1(4) [2u3 − 1]+ 4x4ρ2(4)−β3(4)

+β4(4) (95)

∂L4

∂u4

= 0 = 1+ρ2(4) [2u4 − 1]+ 2x3ρ1(4)−β5(4)

+β6(4) (96)

where µe(l) ≥ 0, µe(l)he(l) = 0 and βkψk(l) = 0,
e = 1, ...,5, l = 1, ...,3, k = 1, ...,6. From (91) - (94), we
have

λ1(4) =
µ1(4)− µ3(4)

u2 + 3
, λ2(4) =

µ2(4)− µ3(4)

2(u1 + 1)
,

ρ1(4) =
β1(4)

2u4 + 5
, ρ2(4) =

5+β2(4)

4(u3 + 1)

Substituting these results into (95) - (96), the Nash Min-
Max solution for player 4 with µe(l) = 0 and βk(l) = 0
except β5(4) ≥ 0 for all e = 1, ...,5, l = 1, ...,3 and
k = 1, ...,6 is











(u∗1,u
∗
2,u

∗
3,u

∗
4) ∈ ℜ 4

∣

∣

∣

∣

∣

∣

∣

u∗1 =
11

58
, u∗2 =

3

29
,

1

4
< u∗3 < 1, u∗4 = 0











Then,

x∗1 =
u∗1(1− u∗1)

u∗2 + 3
= 0.0495, x∗2 =

u∗2(1− u∗2)

2(u∗1 + 1)
= 0.0390,

0 < x∗3 =
u∗3(1− u∗3)

2u∗4 + 5
< 0.0375, x∗4 =

u∗4(1− u∗4)

4(u∗3 + 1)
= 0

The corresponding profits for each firm are

P1 = 0.0578, P2 = 0.0135,

0.05 < P3 < 1, P4 = 0

7 Conclusion and Recommendations

In this paper, a solving technique for hybrid continuous
static games between multiple players playing
independently using NES and others playing under a
secure concept using MMS was developed. The necessary
optimal conditions for obtaining a regular local Nash
Min-Max solution point were stated. An algorithm for
solving such static optimization problems was presented.
A four firm’s maximization profit application was
introduced as an example to clarify the algorithm steps.

The present paper recommends using the developed
approach with its proposed algorithm to solve fuzzy
hybrid continuous static games. Also, using the paper
approach in industrial static optimization problems that
have the same formulation, such as utility and consumer
games. Furthermore, developing the procedure to extend
the hybrid concept of continuous static games by mixing
other types of solutions depending on the application’s
nature. Moreover, adopting the idea of hybrid games in
solving the current vital problems between countries,
such as the Renaissance Dam problem.
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