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1 Introduction

In 1965, Zadeh [14] introduced the theory of fuzzy set
which is an important and useful branch of mathematics,
science and engineering. Kramosil and Michalek [9]
introduced the definition of fuzzy metric space. Authors
[13,6] investigated fixed point theorems in fuzzy metric
space. Park described the concept of intuitionistic fuzzy
metric space with the help of continuous t-norm and
continuous t-conorm.In this paper [10] the authors studied
the common fixed point theorems in intuitionistic fuzzy
metric space under strict contractive. Jungck[8] defined
the concept of weak commutativity in metric space and
compatibility and proved the uniqunees of fixed point
theorems. Abu-Donia et al. [2,3] investigated common
fixed point theorems in intuitionistic fuzzy metric spaces
and intuitionistic (φ ,ψ)–contractive mappings and fixed
point theorem using ψ–contraction and
(φ ,ϕ)–contraction in probabilistic 2–metric spaces.

Gähler[5] introduced the concept of 2–metric space
which was proposed in Euclidean space by the area
function. Sharma[12] described the definition of fuzzy
2-metric space which is the generalization of the
intuitionistic fuzzy metric space and proved some
common fixed point theorems. Mursaleen and Lohani[7]
using the idea of intuitionistic fuzzy metric space and
defined the concept of intuitionistic fuzzy 2–metric space
and proved the common fixed point theorems in
intuitionistic fuzzy 2–metric space. Aamri[1] described

the notion property (E.A.).Shrivastava et al.[11] presented
the definition of the weak compatible mappings in
intuitionistic fuzzy 2-metric spaces. Chauhan and
Singh[4] proved fixed point theorem in intuitionistic
fuzzy-3 metric space.

In this paper we obtain some fixed point theorems in
intuitionistic fuzzy 3-metric spaces on two mappings and
four using the concept of weakly compatible and the
property (E.A.).

2 preliminaries

Definition 21 A binary operation
∗ : [0,1]× [0,1]× [0,1]× [0,1] −→ [0,1] is continuous
t–norm if ∗ satisfies the following conditions:
(i)∗ is commutative and associative;
(ii)∗ is continuous;
(iii)a∗1 = a for all a ∈ [0,1];
(iv)a1 ∗ b1 ∗ c1 ∗ d1 ≤ a2 ∗ b2 ∗ c2 ∗ d2 whenever
a1 ≤ a2,b1 ≤ b2,c1 ≤ c2,d1 ≤ d2 and
a1,b1,c1,d1,a2,b2,c2,d2 ∈ [0,1].
For example: a ∗ b ∗ c ∗ d = min{a,b,c,d} or
a∗b∗ c∗d = a.b.c.d. ”

Definition 22 A binary operation
♦ : [0,1]× [0,1]× [0,1]× [0,1] −→ [0,1] is continuous
t–conorm if ♦ satisfies the following conditions:
(i)♦ is commutative and associative;
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(ii)♦ is continuous;
(iii)a♦0 = a for all a ∈ [0,1];
(iv)a1♦b1♦c1♦d1 ≤ a2♦b2♦c2♦d2 whenever
a1 ≤ a2,b1 ≤ b2,c1 ≤ c2,d1 ≤ d2 and
a1,b1,c1,d1,a2,b2,c2,d2 ∈ [0,1].
For example a♦b♦c♦d = max{a,b,c,d} or
a♦b♦c♦d = min{a+b+ c+d,1}. ”

Definition 23[7] Let (X ,M,N,∗,♦) be an intuitionistic
fuzzy 3–metric space if X is an arbitrary set, ∗ is a
continuous t–norm, ♦ is a continuous t–conorm and M,N
are intuitionistic fuzzy sets on X4 × [0,∞) −→ [0,1]
satisfying the following conditions:

(i) M(x,y,z,w, t)+N(x,y,z,w, t)≤ 1,
(ii) M(x,y,z,w,0) = 0,

(iii) M(x,y,z,w, t) = 1 for all t > 0.Only when at least two
of the three simplex (x,y,z,w) degenerate,

(iv) M(x,y,z,w, t) = M(x,w,z,y, t) = M(y,z,w,x, t),
(v) M(x,y,z,w, t1 + t2 + t3 + t4) ≥ M(x,y,z,u, t1) ∗

M(x,y,u,w, t2)∗M(x,u,z,w, t3)∗M(u,y,z,w, t4) ,
(vi) M(x,y,z,w, .) : [0,∞)−→ [0,1] is left continuous,
(vii) lim

t−→∞
M(x,y,z,w, t) = 1,

(viii)N(x,y,z,w,0) = 1,
(ix) N(x,y,z,w, t) = 0 for all t > 0.Only when at least three

simplex (x,y,z,w) degenerate,
(x) N(x,y,z,w, t) = N(x,w,z,y, t) = N(y,z,w,x, t),
(xi) N(x,y,z, t1 + t2 + t3 + t4) ≤

N(x,y,z,u, t1)♦N(x,y,u,w, t2)♦N(x,u,z,w, t3)♦
N(u,y,z,w, t4),

(xii) N(x,y,z,w, .) : [0,∞)−→ [0,1] is right continuous,
(xiii) lim

t−→∞
N(x,y,z,w, t) = 0,

for all x,y,z,w,u ∈ X and t, t1, t2, t3, t4 > 0. The values
M(x,y,z,w, t) and N(x,y,z,w, t) may interpret the degrees
of nearness and non-nearness that the volume of the
quadrilateral enlarged (x,y,z,w) with respect to t
respectively. ”

Definition 24 Let (X ,M,N,∗,♦)be an intuitionistic fuzzy
3–metric space. Then a sequence {xn} in X is said to be
convergent to a point x ∈ X for all t > 0,
lim

n−→∞
M(xn,x,z,w, t) = 1 and lim

n−→∞
N(xn,x,z,w, t) = 0. ”

Definition 25 Let (X ,M,N,∗,♦)be an intuitionistic fuzzy
3–metric space.Then a sequence {xn} in X is said to be
Cauchy sequence if, for all t > 0 and p > 0,
lim

n−→∞
M(xn+p,xn,z,w, t) =

1 and lim
n−→∞

N(xn+p,xn,z,w, t) = 0. ”

Definition 26 An intuitionistic fuzzy 3–metric space
(X ,M,N,∗,♦) is said to be complete if and only if every
Cauchy sequence in X is convergent. ”

Lemma 2.1 Let (X ,M,N,∗,♦) is an intuitionistic fuzzy
3–metric space, then M and N are continuous function on
X4× (0,∞).

Lemma 2.2 Let (X ,M,N,∗,♦) is an intuitionistic fuzzy

3–metric space,if for all x,y,z,w ∈ X , t > 0 and for a
number k ∈ (0,1)
M(x,y,z,w,kt) ≥ M(x,y,z,w, t) and N(x,y,z,w,kt) ≤
N(x,y,z,w, t).

Definition 27 Two self-mappings A and B of a
intuitionistic fuzzy 3–metric (X ,M,N,∗,♦) are said to be
weakly compatible if ABx = BAx when Ax = Bx for some
x ∈ X. ”

Definition 28 Two self-mappings A and B of a
intuitionistic fuzzy 3–metric (X ,M,N,∗,♦) are said to be
compatible if lim

n−→∞
M(ABxn,BAxn,z,w, t) =

1 , lim
n−→∞

N(ABxn,BAxn,z,w, t) = 0 f orall z,w ∈ X and t >

0 whenever {xn} is a sequence in X such that
lim

n−→∞
Axn = lim

n−→∞
Bxn = x for some x ∈ X.

Definition 29 Let A and B be two self-mappings of a
intuitionistic fuzzy 3–metric (X ,M,N,∗,♦).We say that
A and B satisfy the property (E.A) if there exists a
sequence {xn} such that lim

n−→∞
Axn = lim

n−→∞
Bxn = x for

some x ∈ X.

3 Main results

Theorem 1. Let (X ,M,N,∗,♦) be intuitionistic fuzzy 3–
metric such that a ∗ b = min{a,b} and a♦b = max{a,b}
for a,b ∈ X and let A and B be two weakly compatible of
X into itself such that
(i)AX ⊂ BX,
(ii)A and B satisfy the property (E.A),
(iii)M(Ax,Ay,z,w,kt) ≥
min{M(Bx,By,z,w, t),M(Bx,Ax,z,w, t),M(By,Ay,z,w, t),

M(By,Ax,z,w, t),M(Bx,Ay,z,w, t)}

N(Ax,Ay,z,w,kt) ≤
max{N(Bx,By,z,w, t),N(Bx,Ax,z,w, t),N(By,Ay,z,w, t),

N(By,Ax,z,w, t),N(Bx,Ay,z,w, t)}

If AX or BX is a complete subspace of X, then A and B
have a unique common fixed point.

Proof. Since A and B satisfy the property (E.A), there
exists in X a sequence {xn} satisfying
lim

n−→∞
Bxn = lim

n−→∞
Axn = v, for some v ∈ X.

Suppose that BX is complete. Then lim
n−→∞

Bxn = Bu for

some u ∈ X.Also lim
n−→∞

Axn = Bu. We show that Au = Bu.

Suppose that Au 6= Bu.From (iii) we take x = xn,y = u

M(Axn,Au,z,w,kt) ≥
min{M(Bxn,Bu,z,w, t),M(Bxn,Axn,z,w, t),M(Bu,Au,z,w, t),

M(Bu,Axn,z,w, t),M(Bxn,Au,z,w, t)}
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N(Axn,Au,z,w,kt) ≤
max{N(Bxn,Bu,z,w, t),N(Bxn,Axn,z,w, t),N(Bu,Au,z,w, t),

N(Bu,Axn,z,w, t),N(Bxn,Au,z,w, t)}

Letting n−→ ∞ we get
M(Bu,Au,z,w,kt) ≥
min{M(Bu,Bu,z,w, t),M(Bu,Bu,z,w, t),M(Bu,Au,z,w, t),

M(Bu,Bu,z,w, t),M(Bu,Au,z,w, t)}

N(Bu,Au,z,w,kt) ≤
max{N(Bu,Bu,z,w, t),N(Bu,Bu,z,w, t),N(Bu,Au,z,w, t),

N(Bu,Bu,z,w, t),N(Bu,Au,z,w, t)}

M(Bu,Au,z,w,kt) ≥
M(Bu,Au,z,w, t) ,N(Bu,Au,z,w,kt) ≤ N(Bu,Au,z,w, t),
by using lemma 2.1 we have Au = Bu.
Since A and B are weakly compatible, ABu = BAu thus,
AAu = ABu = BAu = BBu.
We show that Au is common fixed point of A and B.
Suppose that Au 6= AAu. Then, we take x = u,y = Au and
we have
M(Au,AAu,z,w,kt) ≥
min{M(Bu,BAu,z,w, t),M(Bu,Au,z,w, t),M(BAu,AAu,z,w, t),

M(BAu,Au,z,w, t),M(Bu,AAu,z,w, t)}

N(Au,AAu,z,w,kt) ≤
max{N(Bu,BAu,z,w, t),N(Bu,Au,z,w, t),N(BAu,AAu,z,w, t),

N(BAu,Au,z,w, t),N(Bu,AAu,z,w, t)}

M(Au,AAu,z,w,kt) ≥
M(Au,AAu,z,w, t) , N(Au,AAu,z,w,kt) ≤
N(Au,AAu,z,w, t)
Hence by lemma 2.1, we have Au = AAu and
BAu = AAu = Au.The proof is similar when AX is
assumed to be a complete subspace of X, since AX ⊂ BX.
Then the common fixed point is unique.

Theorem 2.Let (X ,M,N,∗,♦) be an intuitionistic fuzzy
3–metric space such that
a ∗ b = min{a,b} , a♦b = max{a,b} and t ∗ t ≥ t. Let
A,B,P and Q be mappings of X into itself such that
(2.1)AX ⊂ QX and BX ⊂ PX ;
(2.2)(A,P) or (B,Q) satisfies the property (E.A);
(2.3)(A,P) and (B,Q) are weakly compatible;
(2.4)there exists a number k ∈ (0,1) such that
M(Ax,By,z,w,kt) ≥
min{M(Px,Qy,z,w, t),M(Px,By,z,w, t),M(Qy,By,z,w, t)}
N(Ax,By,z,w,kt) ≤
max{N(Px,Qy,z,w, t),N(Px,By,z,w, t),N(Qy,By,z,w, t)}
For all x,y,z,w ∈ X
(2.5)One of AX ,BX ,PX or QX is a complete subspace of
X.
Then A,B,P and Q have a unique common fixed point in
X .

Proof. Suppose that (B,Q) satisfies the property
(E.A).Then there exists a sequence {xn} in X such that
lim

n−→∞
Bxn = lim

n−→∞
Qxn = u f orsome u ∈ X .

Since BX ⊂ PX, there exists in X a sequence {yn} such
that Bxn = Pyn. Hence lim

n−→∞
Pyn = u. Let us show that

lim
n−→∞

Ayn = u. From(2.4) we have

M(Ayn,Bxn,z,w,kt) ≥
min{M(Pyn,Qxn,z,w, t),M(Pyn,Bxn,z,w, t),M(Qxn,Bxn,z,w, t)}

≥min{M(Pyn,Qxn,z,w, t),1,M(Qxn,Pxn,z,w, t)}

≥M(Pyn,Qxn,z,w, t)

N(Ayn,Bxn,z,w,kt) ≤
max{N(Pyn,Qxn,z,w, t),N(Pyn,Bxn,z,w, t),N(Qxn,Bxn,z,w, t)}

≤max{N(Pyn,Qxn,z,w, t),0,N(Qxn,Pxn,z,w, t)}

≤ N(Pyn,Qxn,z,w, t)

Letting n−→ ∞, we get
lim

n−→∞
M(Ayn,Bxn,z,w,kt) =

1 , lim
n−→∞

N(Ayn,Bxn,z,w,kt) = 0. Hence we deduce that

lim
n−→∞

Ayn = u. Suppose PX is a complete subspace of X.

Then, Pv = u for some v ∈ X. Subsequently, we have
lim

n−→∞
Ayn = lim

n−→∞
Bxn = lim

n−→∞
Qxn = lim

n−→∞
Pyn = Pv.

From (2.4) we have
M(Av,Bxn,z,w,kt) ≥
min{M(Pv,Qxn,z,w, t),M(Pv,Bxn,z,w, t),M(Qxn,Bxn,z,w, t)}
N(Av,Bxn,z,w,kt) ≤
max{N(Pv,Qxn,z,w, t),N(Pv,Bxn,z,w, t),N(Qxn,Bxn,z,w, t)}
Letting n −→ ∞ we have
lim

n−→∞
M(Av, pv,z,w,kt) = 1 , lim

n−→∞
N(Av, pv,z,w,kt) = 0.

Hence, we deduce that Av = Pv. Since A and P are weakly
compatible,APv = PAv and then
AAv = APv = PAv = PPv.
On the other hand, since AX ⊂ QX, there exists a point
s ∈ X such that Av = Qs . We show that Qs = Bs. Using
(2.4) we have
M(Av,Bs,z,w,kt) ≥
min{M(Pv,Qs,z,w, t),M(Pv,Bs,z,w, t),M(Qs,Bs,z,w, t)}

≥M(Av,Bs,z,w, t)

N(Av,Bs,z,w,kt) ≤
max{N(Pv,Qs,z,w, t),N(Pv,Bs,z,w, t),N(Qs,Bs,z,w, t)}

≤ N(Av,Bs,z,w, t)

By Lemma 2.1 we have Av = Bs, therefore
Av = Pv = Qs = Bs. Since B and Q are weakly
compatible implies that BQs = QBs and
QQs = QBs = BQs = BBs. we show that Av common fixed
point of A,B,Pand Q. Using(2.4) we have
M(Av,AAv,z,w,kt) = M(AAv,Bs,z,w,kt) ≥
min{M(PAv,Qs,z,w, t),M(PAv,Bs,z,w, t)
,

,M(Qs,BAv,z,w, t)}
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≥M(AAv,Av,z,w, t)}

N(Av,AAv,z,w,kt) = N(AAv,Bs,z,w,kt) ≤
max{N(PAv,Qs,z,w, t),N(PAv,Bs,z,w, t)
,

,N(Qs,BAv,z,w, t)}

≤ N(AAv,Av,z,w, t)}

Therefore by Lemma 2.1, we have Av = AAv = PAAv and
Av is common fixed point of A and P.
Similarly, we show that Bs is common fixed point of
B and Q. Since Av = Bs,we conclude that Au is common
fixed point of A,B,P and Q.
The proof is similar when QX is assumed to be complete
subspace of X. The cases in which AX OR BX is complete
subspace of X are similar to the cases in which
PX or QX, respectively, is complete since
AX ⊂ QX and BX ⊂ PX.
If Av = Bv = Pv = Qv = v and As = Bs = Ps = Qs = s,
using (2.4), we have
M(v,s,z,w,kt) = M(Av,Bs,z,w,kt) ≥
min{M(Pv,Qs,z,w, t),M(Pv,Bs,z,w, t)

,M(Qs,Bs,z,w, t)}

≥M(v,s,z,w, t)}

N(v,s,z,w,kt) = N(Av,Bs,z,w,kt) ≤
max{N(Pv,Qs,z,w, t),N(Pv,Bs,z,w, t)

,N(Qs,Bs,z,w, t)}

≤ N(v,s,z,w, t)}

By Lemma 2.1, we obtain v = s. Then, the common fixed
point is unique.
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