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Abstract: The present paper addresses the approximate analytical solution of the nonlinear Riccati differential equations using the

Multistage homotopy asymptotic method which is used in nonlinear physics. The suggested algorithm is accurate, effective and simple

to utilize semi-analytic tool for nonlinear problems. To test accuracy of the recommended algorithm serval test problems are considered

and the obtained results are compared with those of the recent literature. These results revealed accuracy and efficiency of the suggested

method.
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1 Introduction

Nonlinear Ordinary differential equations (ODEs) are
utilized to understand and model several realism matters
in applied science and material science. One of the
indispensable nonlinear ODE is the Riccati equation
which has the following form

dy

dτ̂
= P(τ̂)+Q(τ̂)y+R(τ̂)y2

, (1)

where P, Q, R and y are real functions of the τ̂ .
Model equation (1) has applications in diffusion
problems, random processes and engineering science,
including network synthesis, optimal control and robust
stabilization. Reid [1] featured a portion of the essential
theoretical concepts identified with the Riccati equation.
Because of its significance, its efficient and accurate
solution is essential. In most cases, it is hard to tackle
nonlinear problems analytically. To find the approximate
analytical solution numerous techniques have been
recently used for Riccati model equation. In [2, 3], the

authors utilized the Adomian decomposition method
(ADM) while in [4], the variational iteration method
(VIM) was utilized. Similarly, the Homotopy analysis
method (HAM) was implemented in [5] whereas optimal
homotopy asymptotic method (OHAM) has been utilized
in [6] and Iterative reproducing kernel Hilbert spaces
method has been implemented in [7].

The OHAM is an approximate analytical method
which can be easily used and has a built in convergence
criteria, like homotopy analysis method (HAM), but with
a higher degree of flexibility. One of the advantages of
OHAM is independency whether small parameters exist
or do not exist in the governing model equation. Many
authors have shown that the suggested procedure is
accurate and reliable, and calculated the solutions of
complex problems which have significant applications in
science and technology, see [8–14] and the references
theirin. It is noticeable that OHAM solution with the
easiest auxiliary function of the form Hi(q) for the initial
value problems is valid for a short time span.
Accordingly, to circumvent this limitation, a new
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modification based on the standard OHAM is made. It is
an easy way to insure the validity of the approximations
of large time T is dividing the interval [0,T ] by
subinterval as [τ̂0, τ̂1], ..., [τ̂ j−1, τ̂ j ] where τ̂ j = T and
implementing the Multistage homotopy asymptotic
method (MOAHM) solution on each subintervals. In the
proposed procedure, previous interval’s solution is used
for the initial approximation in each interval, so one can
calculate a continuous approximate analytical solution.

Currently, the researchers work competently to
develop methods for the approximate and exact solutions
for such sort of complex PDEs [15–19]. In this regard,
numerous methods have been employed for the solution
like finite difference method [20], homotopy analysis
method [21, 22], variational iteration method (VIM) and
modified VIM algorithms [23–30], meshless
method [31–41] and Adomian decomposition
method [42]. The present paper aims to utilize MOHAM
to find out the approximate solutions for the nonlinear
Riccati ordinary differential equations.

The rest of this paper is organized as follow: Section 2
addresses the principles of the proposed algorithm. In
Section 3, we employ the suggested method for solving
several examples of the model equations. Results are
presented and compared with those in the previous pieces
of literature in Section 4. The last section is dedicated to
conclusion.

2 Description of MOHAM

This section is devoted to the principles of the OHAM as
given in [43–45]. Consider the initial-value problem

Li(yi(τ̂))+Ni(yi(τ̂)) = 0, i = 1,2, ...,N, (2)

Initial condition as

yi(α) = αi, (3)

where yi(τ̂) represents the unknown function, whereas Li

and Ni denote the linear operator and nonlinear operator,
and τ̂ is the independent variable. By means of the
MOHAM, one can construct the homotopy

(1− q)[Li(vi(τ̂ ,q))− yi,0(τ̂)] = Hi(q, τ̂)[Li(vi(τ̂,q))

+Ni(vi(τ̂,q))],
(4)

Here, q ∈ [0,1] and τ̂ ∈ R where Hi(q) 6= 0 is an auxiliary
function. Hi(0) = 0 for q? = 0, and vi(τ̂ ,q) is an unknown
function. It is understood that vi(τ̂ ,0) = yi,0(τ̂) holds for
q = 0 and vi(τ̂,0) = yi,0(τ̂) holds for q = 1. Similarly, q

changes from 0 to 1, and the solution vi(τ̂,q) changes from
yi,0(τ̂) to yi(τ̂) where yi,0(τ̂) is the initial guess which is
known and calculated from Eq. (3) for q = 0 as

Li(yi,0(τ̂)) = 0. (5)

Now, Hi(q) has been chosen in the following manner

Hi(q) =C1, jq+C2, jq
2 +C3, jq

3 + . . . (6)

or
Hi(q, τ̂) =C1, jq+C2, jτ̂q2 +C3, jτ̂

2q3 + . . . (7)

where C1, j,C2, j,C3, j, . . . denote convergence control
parameters (CCPs). To compute the required approximate
solution, the Taylor’s series are utilized in the
accompanying form to expand vi(τ̂ ,q,Ck) about q

vi(τ̂,q,Ck) = y0(τ̂)+
∞

∑
k=1

yi,k(τ̂ ,C1,C2, . . . ,Ck)q
k
. (8)

Define the vectors

Ci = {C1,C2, . . . ,Ci},

yi,s = {yi,0(τ̂),yi,1(τ̂,C1), . . . ,yi,s(τ̂,Cs)},
where s = 1,2,3, . . ., setting Eq. (8) into Eq. (4) and to the
linear equations which are given below, we proceed by
comparing coefficient q, Also, Eq. (5) gives the
zeroth-order problem, whereas the first- and second-order
problems are given, as follows:

Li(yi,1τ̂)) =C1N0(yi,0), yi,1(a) = 0, (9)

and

Li(yi,2(τ̂))−Li(yi,1(τ̂)) =C2Ni,0(yi,0)+C1, j[Li(yi,1(τ̂))

+Ni,1(yi,1)],yi,2(a) = 0.

(10)

The general equations for yi,k(τ̂) are

Li(yi,k(τ̂))−Li(yi,k−1(τ̂)) =Ck, jNi,0(yi,0(τ̂))

+
k−1

∑
m=1

Ci,m[Li(yi,k−m(τ̂))

+Ni,1(yi,k−1)], yi,k(a) = 0,

(11)

where k = 2,3, . . . and Ni,m(y0(τ̂),yi,1(τ̂), . . . ,yi,m(τ̂)) is
the coefficient of qm in the expansion of Ni(vi(τ̂,q)) about
q which is known as embedding parameter,

Ni(vi(τ̂,q)) = Ni,0(yi,0(τ̂))+
∞

∑
m=1

Ni,m(yi,m)q
m
. (12)

Since the convergence of Eq. (12) depends on the CCPs
C1,C2,C3, . . . , if it is convergent at q = 1, then

vi(τ̂,Ck) = yi,0(τ̂)+
∞

∑
k=1

yk(τ̂ ,C1,C2, . . . ,Ck). (13)

The result of the mth-order approximation is as follows

ỹ(τ̂,C1,C2,C3, . . . ,Ck) = y0(τ̂)+
∞

∑
k=1

yk(τ̂,C1,C2, . . . ,Ck).

(14)
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Substituting Eq. (14) into Eq. (2) gives the accompanying
residual

Ri(τ̂,C1, j,C2, j,C3, j, ...,Cm, j)

= L(ỹi(τ̂ ,C1, j,C2, j,C3, j, ...,Cm, j))

+N(ỹi(τ̂ ,C1, j,C2, j,C3, j, ...,Cm, j)),

(15)

where y(τ̂) represents the exact solution when Ri = 0. It
is noticeable that such type of case will not happen for
nonlinear problems, yet we can limit the function

Ji(C1, j,C2, j,C3, j, ...,Cm, j)

=

∫ τ̂ j+h

τ̂ j

R2
i (y, τ̂ ,C1, j,C2, j,C3, j, ...,Cm, j)dτ̂,

(16)

where the length and the number of subintervals [τ̂ j , τ̂ j+1]

are denoted by h and N = [T
h
] respectively. Next, in each

subinterval, changing the initial approximation from the
previous one, we can solve Eq. (16) at j = 0,1, . . . ,N. For
instance, we define α = y(τ̂ j) in [τ̂ j, τ̂ j+1]. The unknown
CCPs Ci, j(i = 1,2,3, . . . ,m, j = 1,2, . . . ,N) can be
defined from the solution of the system of equations given
below

∂J

∂C1, j

=
∂J

∂C2, j

= . . .=
∂J

∂Cm, j

= 0, (17)

so the approximate solution is given, as follows:

ỹ(τ̂) =





y1(τ̂), τ̂0 ≤ τ̂ < τ̂1,

y2(τ̂), τ̂1 ≤ τ̂ < τ̂2,

.

.

.

yN(τ̂), τ̂N−1 ≤ τ̂ < T.

(18)

We effectively calculate the initial value problems’
solution analytically for large value of T . MOHAM
converts to the standard OHAM when j = 0. It also
essential to mention that MOHM gives an easy way to
adjust and control the convergence region by means of the
auxiliary function Hi(q) involving many convergent
control parameters (CCPs) Ci, j’s. Then, the proposed
method overcomes the main difficulty, due to the large
computational domain, in calculating the solution of
problems.

3 Implementation of proposed scheme

The suggested MOHAM is implemented in Ricaati
nonlinear differential equations to show the effectiveness
and validity of the algorithm. Furthermore, the
initial-boundary conditions can be computed easily in
accordance with the exact solution throughout the paper.

Test Problem 1First, let’s consider the nonlinear initial-

value problem [2, 4, 6, 7, 46, 47]

dy

dt
+ y2 − 1 = 0, y(0) = 0, (19)

with the exact solution

y(τ̂) =
e2τ̂ − 1

e2τ̂ + 1
. (20)

To solve Test Problem 1 utilizing MOHAM, we proceed

as follows

L[y(τ̂ ,q)] =
dy(τ̂ ,q)

dτ̂
, g(τ̂) =−1, N[y(τ̂ ,q)] = y2(τ̂,q).

(21)
Choose the auxiliary function Hi(q) as

Hi(q) = (C1, jq + C2, jq
2 + C3, jq

3), where C1, j,C2, j,C3, j

are unknown constants to be computed.

Using the method as discussed in Section 1 with step-size

h = 0.1 and starting with τ̂0 = 0 to τ̂10 = T = 1 various

order problems and their solutions for the first

subintervals are given, as follow:

Zeroth-order problem

ý0(τ̂) = 0, y0(0) = 0, (22)

Their solution

y0 = 0. (23)

First-order problem

ý1(τ̂ ,C1, j) =C1, j(y
2
0 −1)+(1+C1, j)ý0, y1(0) = 0. (24)

Solution

y1 =−C1, j τ̂. (25)

Second-order problem

ý2(τ̂ ,C1, j,C2, j) =C2, j(y
2
0 − 1)+ 2C1, jy0y1 +C2, jý0

+(1+C1, j)ý1, y2(0) = 0.
(26)

Solution

y2 =−(C1, j +C2
1, j +C2, j)τ̂ . (27)

Third-order problem

ý3(t,C1, j,C2, j,C3, j) =C3, j(y
2
0 − 1)+ (2C2, jy0 +C1, jy1)y1

+ 2C1, jy0y1 +C3, jý0 +C2, jý1

+(1+C1, j)ý2, y3(0) = 0.

(28)

Solution

y3 =
1

3
(−3C1, jτ̂ − 6C2

1, jτ̂ − 3C3
1, jτ̂ − 3C2, jτ̂

− 6C1, jC2, j τ̂ − 3C3, jτ̂ +C3
1, jτ̂

3).
(29)

Thus, the third-order solution in the first subinterval is

ỹ = y0(τ̂)+ y1(τ̂ ,C1, j)+ y2(τ̂ ,C1, j,C2, j)

+ y3(τ̂ ,C1, j,C2, j,C3, j).
(30)
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Setting Eqs. (23), (25), (27), (29) in equation Eq. (30), we

have

ỹ =−C1, jτ̂ +(−C1, j −C2
1, j −C2, j)τ̂ +

1

3
(−3C1, jτ̂ − 6C2

1, jτ̂

− 3C3
1, jτ̂ − 3C2, jτ̂ − 6C1, jC2, j τ̂ − 3C3, jτ̂ +C3

1, jτ̂
3).

(31)

Setting Eq. (31) into Eq. (19) yields the residual and the

functional J, respectively.

Ri(τ̂ ,C1,1,C2,1,C3,1) =
dỹ

dτ̂
+ ỹ2 − 1. (32)

Ji(C1,1,C2,1,C3,1) =

∫ 0.1

0
R2

i (τ̂ ,C1,1,C2,1,C3,1). (33)

From the conditions in equation (17), we have

∂J

∂C1,k

= 0, k = 1,2,3. (34)

Similar procedure is adopted for the remaining
subintervals. The values of the CCPs Ci, j, i, j = 1,2,3
are presented in Table 1.
Using values of the CCPs, the third-order MOHAM
approximate solution (31) is

ỹ=





0.+0.996671336163τ̂ , 0 ≤ τ̂ ≤ 0.1

−0.000029418844814+1.0007606282τ̂ −0.0069983τ̂2

−0.31070241τ̂3 +0.0100618τ̂4 +0.003425τ̂5

−0.00003167τ̂6 −0.00000503τ̂7 , 0.1 ≤ τ̂ ≤ 0.2

−0.0002888+1.0043734τ̂ −0.0229839τ̂2

−0.2928424τ̂3 +0.0292025τ̂4 +0.0112269τ̂5

−0.00040991τ̂6 −0.0000732τ̂7 , 0.2 ≤ τ̂ ≤ 0.3

−0.00110897+1.01194−0.0443849τ̂2 −0.280614τ̂3

+0.0448625τ̂4 +0.0195707τ̂5 −0.00154347τ̂6

−0.000314995τ̂7 , 0.3 ≤ τ̂ ≤ 0.4

−0.00405472+1.03475τ̂ −0.105588τ̂2 −0.219526τ̂3

+0.0348786τ̂4 +0.0153235τ̂5 −0.00137746τ̂6

−0.000327967τ̂7 , 0.4 ≤ τ̂ ≤ 0.5

−0.00405534+1.03658−0.111662τ̂2 −0.216119τ̂3

+0.03687914 +0.0169487τ̂5

−0.00105361τ̂6 −0.000301032τ̂7 , 0.5 ≤ τ̂ ≤ 0.6

−0.00186323+1.0128−0.0277962τ̂2 −0.33006τ̂3

+0.067117τ̂4 +0.058378τ̂5 −0.0123766τ̂6

−0.0044202τ̂7 , 0.6 ≤ τ̂ ≤ 0.7

−0.00125685+1.00944τ̂ −0.0214852τ̂2 −0.331413τ̂3

+0.0564445τ̂4 +0.0707526τ̂5 −0.0141525τ̂6

−0.00673927τ̂7 , 0.7 ≤ τ̂ ≤ 0.8

−0.000631917+1.00406τ̂ −0.0100671τ̂2 −0.333289τ̂3

+0.0396243τ̂4 +0.0847778τ̂5 −0.0133528τ̂6

−0.00953772τ̂7 , 0.8 ≤ τ̂ ≤ 0.9

−0.0018064+0.999734τ̂ +0.00515828τ̂2 −0.333541τ̂3

+0.0155664τ̂4 +0.0979867τ̂5 −0.00885416τ̂6

−0.0126488τ̂7 , 0.9 ≤ τ̂ ≤ 1.

Table 1: values of the CCPs Ci, j for Test Problem 1.

j C1, j C2, j C3, j

1 0. -0.765845968670 0.535020601178

2 -0.981011273584 -0.005678127993 0.000191514720

3 -0.963243543160 -0.005864337183 0.000356952046

4 -0.932350143076 -0.010096794169 0.001028931060

5 -0.663132015693 -0.204090050582 0.099132469520

6 -0.496386056003 -0.490046974348 0.366210085802

7 -0.994825946937 0.0001697579701 0.000002877803

8 -0.978187220353 0.0000944362786 0.000004034184

9 -0.968675169304 -0.000010388908 0.000017971951

10 -0.962006041350 -0.000101003368 0.000003724602

Table 2: Comparison of the 3rd MOHAM with [2, 4, 7, 46, 47] for Test Problem

1.

τ̂ ADM [2] VIM [4] IDM [47] MHPM [46] IRKHSM [7] MOHAM

0 0 0 0 0 0 0

0.1 8.82×10−14 5.0×10−11 1.00×10−11 0 9.1×10−6 8.6×10−7

0.2 1.78×10−10 4.3×10−9 1.0×10−12 0 1.7×10−5 9.7×10−7

0.3 1.51×10−8 1.5×10−7 2.50×10−9 1.0×10−6 2.4×10−5 1.3×10−6

0.4 3.49×10−7 1.9×10−6 5.61×10−8 5.0×10−6 2.9×10−5 1.5×10−6

0.5 3.92×10−6 1.3×10−5 6.03×10−7 3.9×10−5 3.1×10−5 2.4×10−6

0.6 2.80×10−5 6.6×10−5 4.09×10−6 1.9×10−4 3.2×10−5 1.7×10−6

0.7 1.46×10−4 2.4×10−4 2.01×10−5 7.4×10−4 3.1×10−5 1.3×10−6

0.8 6.04×10−4 7.3×10−4 7.78×10−5 2.3×10−3 2.8×10−5 1.1×10−6

0.9 2.09×10−3 1.9×10−3 2.50×10−4 6.3×10−3 2.3×10−5 1.3×10−6

1.0 6.30×10−3 4.4×10−3 6.99×10−4 1.5×10−3 1.2×10−5 1.0×10−7

Table 2 contains the approximate results computed by the

third-order MOHAM and compared with those results

obtained by various methods such as ADM [2], VIM [4],

IDM [47], MHPM [46] and IRKHSM [7]. The tabulated

values revealed that the MOHAM produced better results

compared to the methods in [2, 4, 7, 46, 47]. Moreover, the

error in the solution of MOHAM does not grow

exponentially as the time progresses compared to other

methods reported in this table.

Test Problem 2

dy

dτ̂
− 2y+ y2− 1 = 0, y(0) = 0, (35)

This problem was also considered in [2,4,6,7,46,47]. The

exact solution is:

y(τ̂) = 1+
√

2tanh[
√

2τ̂ +
1

2
log(

√
2− 1√
2+ 1

)]. (36)

Now, to solve the problem (34) using MOHAM, we

consider linear and nonlinear operators as

L[y(τ̂ ,q)] =
dy(τ̂,q)

dτ̂
, g(τ̂) =−1, N[y(τ̂ ,q)] = y2(τ̂ ,q).

(37)
The auxiliary function Hi(q) is selected in the form

Hi(q) = C1, j p + C2, j p
2 where C1, j,C2, j are unknown

CCPs .

Using the algorithm discussed in Section 2 by taking

step-size h = 0.2 and a start with τ̂0 = 0 to τ̂5 = T = 1,

various order problems and their solution are

Zeroth-order problem

ý0(q) = 0, y0(0) = 0. (38)

c© 2020 NSP
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Solution

y0 = 0. (39)

First-order problem

ý1(τ̂ ,C1, j) =(1+C1, j)ý0 +C1, jy
2
0 −C1, j − 2C1, jy0,

y1(0) = 0.
(40)

Solution

y1 =−C1, jτ̂. (41)

Second-order problem

ý2(τ̂,C1, j,C2, j) = (1+C1, j)ý1 +C2, jý1 + 2C1, j(y0 − 1)y1

−C2, j(1− (y0 − 2)y0), y2(0) = 0.

(42)

Solution

y2 =−C1, jτ̂ −C2
1, jτ̂ −C2, jτ̂ +C2

1, jτ̂
2
. (43)

The approximate solution of the problem (35) can be

written as

ỹ = y0(τ̂)+ y1(τ̂,C1, j)+ y2(τ̂ ,C1, j,C2, j). (44)

Putting Eqs, (39), (41) and (43) into Eq.(44), we have

ỹ =−2C1, jτ̂ −C2
1, jτ̂ −C2, jτ̂ +C2

1, jτ̂
2
. (45)

The values of CCPs for the first subinterval are computed

and discussed in Section 2. Similar procedure is employed

for the remaining subintervals. The values of CCPs are

given in Table 3. Using values of these constants in Eq.

(45), a second-order MOHAM solution of problem (35) is

obtained as

ỹ=





0.996256τ̂+ 1.06815τ̂2, 0 ≤ τ̂ ≤ 0.2

−0.0029499+ 1.014τ̂+ 1.07187τ̂2− 0.0877265τ̂3

−0.0290574τ̂4+ 0.00174382τ̂5, 0.2 ≤ τ̂ ≤ 0.4

−0.0484512+ 1.20571τ̂+ 0.94692τ̂2− 0.241099τ̂3

+0.0881029τ̂4+ 0.015175τ̂5, 0.4 ≤ τ̂ ≤ 0.6

0.081225+ 0.505438τ̂+ 2.11966τ̂2− 0.596433τ̂3

−0.617155τ̂4+ 0.19027τ̂5, 0.6 ≤ τ̂ ≤ 0.8

−0.0149412+ 0.883726τ̂+ 1.60129τ̂2− 0.24679τ̂3

−0.845274τ̂4+ 0.311478τ̂5, 0.8 ≤ τ̂ ≤ 1.

The approximate results are tabulated in Table 4 for Test

Problem 2. Here, we have compared those of the

suggested second-order MOHAM with the results given in

MHPM [46], VIM [4], OHAM [6] and IRKHSM [7]. It

shows that on one hand MOHAM results are better than

those of the cited methods, and on the other hand no fast

growth of error occurs with MOHAM compared to other

cited methods. Thus, MOHAM provided a two-pronged

benefit for this particular test problem.

Table 3: values of the CCPs Ci, j s for Test Problem 2.
j C1, j C2, j

1 -1.033511840649 0.002621140292

2 -0.960771065976 -0.00652715816

3 -0.788482838197 -0.05573467233

4 -1.282926388522 -0.07728547770

5 -0.978382586870 0.001991200890

Table 4: Comparison of the second-order MOHAM and the methods in [4, 6, 7,

46] for Test Problem 2.

τ̂ MHPM [46] VIM [4] OHAM [6] IRKHSM [7] MOHAM

0 0 0 0 0 0

0.2 1.2×10−5 1.0×10−6 2.9×10−4 7.6×10−5 2.3×10−7

0.4 3.0×10−4 3.3×10−5 2.5×10−3 1.7×10−4 3.6×10−6

0.6 4.7×10−3 9.9×10−5 5.5×10−3 2.5×10−4 1.7×10−5

0.8 1.9×10−2 1.5×10−5 3.8×10−3 3.4×10−4 1.7×10−5

1.0 3.4×10−2 3.4×10−3 3.4×10−3 9.2×10−4 1.4×10−5

4 Conclusion

In this paper, the proposed Multistage Optimal Homotopy
Asymptotic Method was utilized for computing the
analytical approximate solutions of the nonlinear Riccati
differential equations. For this purpose, Mathematica
software was utilized. A comparison between the
proposed MOHAM and VIM, ADM, IDM, MHPM,
IRKHSM and OHAM in the interval [0,1] in light of
approximate results, MOHAM proved more effective than
these methods. Furthermore, the absolute error of the
MOHAM was consistent and had no exponential growth.
This shows that the present scheme is more powerful to
solve nonlinear differential equations with lower order of
approximation. One of the advantages of MOHAM is
easy and straightforward calculations and the reduction in
the size of computational domain. Moreover, the
suggested method helps control the convergence region of
the series solution. The results demonstrated that the
MOHAM is accurate and efficient for computing
approximate analytical solution of the nonlinear
differential equations utilized in science and engineering.
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