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Abstract: Ganie and Sheikh [12] have recently studied the space V∞(θ ) adopting the notion of sigma means and lacunary sequence

θ = (kr). In the present paper, we introduce and explore V∞(M ,θ ) and V∞(M , p,θ ), where M is an Orlicz function. Some inclusion

relations will be defined between the concerned spaces.
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1 Introduction

We represent the set of all sequences (real or complex) by
Ω . Any subspace of Ω is called the sequence space.
Following the authors in [1], [2], [3], [4], let C represent
the complex field, N = {0,1,2, · · ·} and the set of real
numbers be abbreviated by R. Further, as in [5], [6], [7]
and [8], we abbreviate the set of all bounded sequences
by ℓ∞ and c will represent the set of all convergent
sequences.

Let X be a real or complex linear space, H : X → R.
Then, paranormed space denotes the pair (X ,H ) with
paranorm H if:
(i) H(θ ) = 0, where θ is the zero entry of X

(ii) H(−u) = H(u),
(iii) H(u+w)≤ H(u)+H(w), and
(iv) scalar multiplication is continuous, means if (a j) is a
sequence of scalars with a j → a as j → ∞ and (un) is a
sequence in X with H(u j − u) → 0 as j → ∞ then
H(a ju j − au) → 0 as j → ∞. Assume that (pk) is a
bounded sequence of strictly positive real numbers with
H = max{1,sup

j

p j}.

Let σ be a mapping of the set of natural numbers into
itself. By an invariant mean ( or a σ mean), we call a

functional S on ℓ∞ satisfying:

(i) S(v)≥ 0, when the sequence v = (v j) has v j ≥ 0,
for all j,

(ii) S(e) = 0, where e = (1,1, ...),
and

(iii) S(vσ(n)) =S(v) for all v ∈ ℓ∞.

If we choose σ to be translation operator j → j + 1,
then σ mean is often called as a Banach limit (see,
[9]-[12], [13], [14], [15]). A invariant mean extends the
limit functional on c in the notion that S(v) = lim

v→∞
v, for

all v ∈ c, if and only if σ has no finite orbits, which means
if and only if for all j ≥ 0, i ≥ 1, σ i( j) 6= j (see, [16],
[17]-[19]).

A sequence u∈ ℓ∞ as a σ -convergent sequence if all its
σ -means are the same and by Vσ we represent the set of
all σ -convergent sequences. For u = (un), we write T u =
(T u j) = (uσ( j)), then (see, [12], [16], [20] )

Vσ =

{

u ∈ ℓ∞ : lim
p→∞

spn(u) = L , uniformly in j, L = σ − lim u

}

,
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where sp j(u) =
1

p+1

p

∑
m=0

uσ m( j).

An increasing sequence θ = (km) is called a lacunary
sequence provided k0 = 0 and Hm = km − km−1 → ∞. In
this manuscript, the intervals computed by θ shall be

abbreviated by Im = (km−1,km] and the fraction km
km−1

will

be symbolized by qm (see, [21,22,23]).

Hamid and Neyaz (see, [12]) and Mursaleen (see, [16])
introduced the space V∞(θ ), which is given by:

V∞(θ ) =

{

u ∈ ℓ∞ : sup
m, j

|tm j(u)|< ∞

}

,

where, tm j(u) =
1

hm
∑

i∈Im

uσ i( j).

As in [23], a continuous, convex and non-decreasing
map M : [0,∞) → [0,∞) satisfying
M (0) = 0, M (u) > 0 f or u > 0 and
M (u) → ∞ as u → ∞ is called an Orlicz function. If the
convex nature in it is replaced by subadditivity i.e.
M (u+w) ≤ M (u) + M (w), then the map M reduces
to modulus function as is defined in [24]) and was further
investigated in [16], [22], [25], [26], and other works.

Orlicz map M is known to attain ∆2− condition, if we
can find a constant K > 0 in such a way that M (2v) ≤
K M (v) (v ≥ 0) for each value of v. The ∆2−condition is
equivalent to M (lv) ≤ K lM (v) for all values of v and
for l > 1. Lindenstrauss and Tzafriri [25] used this notion
and introduced the following space:

LM =
{

u ∈ Ω : ∑∞
r=0 M

(

|vr |
ρ

)

< ∞, for some ρ > 0
}

.

The space LM with norm

‖v‖ = inf { ρ > 0 :
∞

∑
k=1

M

(

|vk |

ρ

)

≤ 1}

yields a Banach space and is known as an Orlicz sequence
space. For M (t) = t p, 1 ≤ p < ∞, the space LM

coincides with the classical sequence spaces ℓp, i.e.

ℓp =

{

v = (v j) ∈ Ω :
∞

∑
j=0

|v j|
p < ∞

}

.

2 Main results

This section addresses the new spaces V∞(M ,θ ) and
V∞(M , p,θ ), where M is an Orlicz function. We also
establish some inclusion relations between these spaces.

There exist various ways of framing new spaces by
virtue of the given sequence space. One of them relates to

the field of convergence of any infinite matrix. Utilizing
these notions, numerous interesting properties have been
constructed for newly made spaces (see, 1-24]).

Let M be an Orlicz function, we define

V∞(M ,θ ) =

{

u = (uk) : sup
m,i

M (|tmi(u)|)< ∞

}

,

and

V∞(M , p,θ ) =

{

u = (uk) : sup
m,i

(M |tmi(u)|)
pm < ∞

}

,

where, tmi(u) =
1

hm
∑

r∈Im

uσ r(i).

Now, we begin with the following result:

Theorem 2.1: The space V∞(M ,θ ) is a Banach space
normed by

‖u‖ = inf

{

ρ > 0 : sup
m,i

M

(

| tm,i(u) |

ρ

)

≤ 1

}

.

Proof: It is obvious that V∞(M ,θ ) is a linear space
under coordinate-wise addition and scalar multiplication
over C. It is also normed space equipped with the
following norm

‖u‖= inf

{

ρ > 0 : supm,i M

(

|tm,i(u) |
ρ

)

≤ 1

}

.

Let u = (u j) be any Cauchy sequence in V∞(M ,θ ),

where u j = (u j
k)k with k = 1,2,3, · · · . For ε small and

positive, choose v,u0 > ε as fixed in such a manner that
M

(

vu0
2

)

≥ 1. Then, for each ε
u0v

> 0, we can find a

natural number K such that for all r,s ≥ K, we have

‖ur − us‖ ≤
ε

u0v
.

Consequently, aforementioned norm and for all
r,s ≥ K, we see that

sup
m,i

M

(

| tm,i(u
r − us) |

‖ur − us‖

)

≤ 1,

as ‖ur − us‖ is positive, so plugin ρ for
∥

∥ui − u j
∥

∥. Thus,
we have for all m ≥ 0 and for all r,s ≥ K that

M

(

| tm,i(u
r − us) |

‖ur − us‖

)

≤ 1.

Also, since M
(

vu0
2

)

≥ 1, we have

M

(

| tm,i(u
r − us) |

‖ur − us‖

)

≤ M

(vu0

2

)

∀ m, i.
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This shows that

| tm,i(u
r − us) | ≤

vu0

2

ε

vu0

=
ε

2
∀ i.

Thus, for each ε , we can find a natural number K in
such a way that

| tm,i(u
r − us) |< ε ∀ r,s ≥ K and for all i,m.

Since M is continuous and letting s → ∞, we see that

sup
m≥K

M

(

| tm,i(u
r − u) |

ρ

)

≤ 1.

On taking infimum over such ρ’s, we get the following
for all i that

inf

{

ρ > 0 : sup
m≥K

M

(

| tm,i(u
r − u) |

ρ

)

≤ 1

}

< ε

for every r ≥ K. However, M is Orlicz function with
ur ∈ V∞(M ,θ ), we conclude that u ∈ V∞(M ,θ ), which
completes the proof.

We state the following result without proof, which can
be established using standard technique.

Theorem 2.2: The space V∞(M , p,θ ) is a paranormed
space with

‖G (u)‖ = inf

{

ρ
pn
H :

{

supm,i M

(

|tm,i(u) |
ρ

)pm
}

1
H

≤ 1

}

.

Theorem 2.3: If (p j) and (q j) are any two real
sequences such that 0 < p j ≤ q j < ∞ for each j ∈ N, then

V∞(M , p,θ )⊆ V∞(M ,q,θ )

Proof: Let u ∈ V∞(M , p,θ ). Then,

sup
m,i

(M |tmi(u)|)
pm < ∞.

This gives

M (|tmi(u)|)< ∞.

Since M is increasing, we have

sup
m,i

(M |tmi(u)|)
qm ≤ sup

m,i

(M |tmi(u)|)
pm < ∞.

Thus, we conclude that u ∈ V∞(M ,q,θ ) and the proof
follows.

Theorem 2.4: For (p j) to be any sequence of real
numbers. Then,

(i) For 0 < inf p j ≤ 1 for each j ∈N, we have

V∞(M , p,θ )⊆ V∞(M ,θ ).

(ii) For 1 < p j ≤ sup pk ≤ ∞ for each j ∈ N, we have

V∞(M ,θ )⊆ V∞(M , p,θ ).

Proof: (i) Let u ∈V∞(M, p,θ ). Then,

sup
m,i

(M|tmi(u)|)
pm < ∞.

Now, since 0 < inf p j ≤ 1 for each j ∈ N, we have

M (|tmi(u)|)≤ sup
m,i

(M |tmi(u)|)
pm < ∞.

Thus, we conclude that u ∈ V∞(M ,θ ).

(ii) Let u ∈ V∞(M ,θ ). Then, for each ε > 0, there
exists a natural number K such that

(M |tmi(u)|)< ε, ∀m ≥ K for all i ∈N.

Since 1 < p j ≤ sup p j < ∞, we have

sup
m,i

(M |tmi(u)|)
pm ≤ (M |tmi(u)|)< ε.

Since ε is arbitrary small positive number, we conclude
that u ∈ V∞(M , p,θ ). Hence, the proof of the theorem is
complete.

3 Conclusion

Sequence spaces have been addressed by various authors
as cited in the paper. In this paper we have introduced the
new approach of sequences by the combination of sigma
means with lacunary sequences and orlicz function. Some
basic properties have been presented to best benefit the
readers.
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