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Abstract: The propagation of Rayleigh waves in an orthotropic elastic half-space underlying an orthotropic elastic layer is analysed.

The layer and the half-space are considered in finite sliding contact, for which a parameter ξ ,(0 ≤ ξ ≤ 1) has been introduced to

represent the sliding contact interfaces. The extreme values of ξ correspond to smooth and perfect contact interface, respectively. It

was found that the general dispersion equation exhibiting finite sliding contact between the layer and the half-space depends on the

sliding parameter. Frequency equations derived by Vinh et al. [1] and Vinh and Anh [2] have been recovered as particular cases of

the present formulation. Numerically the effect of sliding parameter on the speed of Rayleigh wave has been examined for orthotropic

half-space (Topaz) underlying an orthotropic layer (Barytes), (ii) Uniform half-space (Granite) underlying an elastic layer (Sandstone).

The comparison of Rayleigh wave speed behavior corresponding to smooth sliding and perfect contact has been shown graphically.
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1 Introduction

Surface waves are the elastic waves that confine
themselves along the boundary surface of an elastic body.
They have been theoretically and practically important
because of their enormous applications in several fields,
such as, geophysics, engineering, communication and
terrestrial radio broadcast. They also have technical
applications in non-destructive material testing and
electro-mechanical transducers. Rayleigh [3] was the first
to discover and characterize ” Rayleigh waves”, which
were named after him in the literature. They are a
combination of dilatational and distortional waves and
propagate with speed slightly less than that of distortional
waves. Several problems pertaining to Rayleigh type
waves have been explored by the researchers of elastic
half-space having different properties by deriving secular
equation with the help of appropriate boundary conditions
in accordance with the considered model. This frequency
equation provides the information concerning the
characteristics of Rayleigh wave propagation.

Elastic half-space can be spotted frequently in nature,
the possibility of a model consisting of an elastic layer
over an elastic half space can not be ruled out even in
natural settings. The existence of various anisotropic

layered elastic media in geophysical settings and various
composite materials and structures, such as crystals,
motivated us to study the propagation characteristics of
Rayleigh type surface waves. A layer of earth material
may be found resting on an elastic half-space of different
material in different geophysical settings; for instance, a
layer of sandstone may be in contact with elastic rock of
larger dimension. This situation may be modeled as a
layer resting over an elastic half-space.

A huge volume of literature pertaining to Rayleigh
wave propagation currently addresses different problems
of waves and vibrations in the half-space and layered
half-space. For the treatment of these research problems,
one can refer to the papers by Achenbach and Keshava [4]
and Tiersten [5]. Chandrasekharaiah [6] explored the
effect of surface stresses and voids on Rayleigh wave
propagation in homogeneous and isotropic linear elastic
half-space with voids. The dispersive nature of the
Rayleigh wave has been characterized using the
phase-velocity equation. The author has observed that the
presence of voids and surface stresses in the medium is
the reason for the dispersive nature of the wave. Vinh and
Linh in [7] have studied Rayleigh wave propagation in an
orthotropic thin layered elastic half-space and established
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an approximate secular equation of third-order employing
the effective boundary condition method. Using effective
boundary conditon method Vinh and his coworkers
[8]-[10] have also examined the propagation of Rayleigh
waves in anisotropic elastic half-spaces coated by a thin
elastic layer. For this problem the contact between the
layer and the half-space is supposed to be sliding.
Authors have obtained an approximate secular equations
of third-order for the case when the layer and the
half-space are both orthotropic, whereas fourth-order
approximate secular equation is derived when both the
layer and the half space are isotropic. These approximate
secular equations have high accuracy.

Singh et al. [11] investigated the propagation of
Rayleigh waves in an incompressible visco-elastic
material under the effect of initial stress and defined the
dispersion equation to study the effect of parameters and
incompressibility on the Rayleigh-type wave propagation.
Kaur et al. [12] have derived dispersion relation for
Rayleigh-type surface wave in an isotropic homogeneous
nonlocal elastic solid half-space with voids. They have
detected that the Rayleigh-type wave travels with
complex speed and is dispersive and attenuating. Authors
have noticed that the dispersive nature of the wave results
from the presence of voids and nonlocality in the
medium. Recently, Tomar and Kaur [13] have
investigated the role of sliding contact interface on
torsional waves in a layered medium. Singh and
Tochhawng [14] have analysed the surface waves
(Stoneley and Rayleigh waves) propagation in
thermoelastic materials with voids. They considered two
dissimilar half-spaces of thermoelastic materials with
voids and obtained secular equations of the Stoneley
waves at the bonded and unbonded interfaces.

The present paper aims to establish a general
frequency equation for Rayleigh waves propagating in an
orthotropic elastic half-space overlaid by an orthotropic
elastic layer of arbitrary thickness, which is in finite
sliding contact with the orthotropic half-space. This
general frequency equation provides us with the
frequency equation earlier derived by Vinh and his group
for the corresponding problems. A parameter
ξ ,(0 ≤ ξ ≤ 1) is introduced for this purpose. For ξ = 0,
the general frequency equation for Rayleigh waves
propagating in an orthotropic elastic half-space overlaid
by an orthotropic elastic layer obtained in the present
study reduces to the frequency equation of Rayleigh wave
propagtioning in smooth sliding contact interface as
obtained in equation no. (35) by Vinh and Anh [2].
However, for ξ = 1, the general frequency equation
reduces to the frequency equation of Rayleigh wave
propagation in welded contact interface given in equation
no. (36) by Vinh et al. [1]. The effect of sliding contact on
the speed of Rayleigh wave propagation in question has
been studied numerically. A special case of isotropic
layered structure has been reduced from the present

formulation and studied numerically. To analyse the effect
of sliding parameter on Rayleigh wave speed numerical
computaions are performed for four different models. In
Model-I & Model-II, the values of relevant elastic
parameters for layered orthotropic half-space are taken
from Vinh et al. [1] and Vinh and anh [2], respectively.
For Model-III, the orthotropic half-space (Topaz)
underlying an orthotropic layer (Barytes) is considered.
Lastly, in Model-IV, an isotropic elastic half-space
(Granite) underlying an isotropic elastic layer (Sandstone)
is considered. The parameter values corresponding to
different models are set depending on their respective
geophysical settings. The numerically computed results
have been depicted graphically and discussed.

2 Model formulation

We consider an elastic half-space in contact with an
elastic layer of uniform thickness h. Under rectangular
cartesian coordinate system, let the plane of contact
between the half-space and the layer be x2 = 0 such that
the half-space occupies the region x2 ≥ 0 and the layer
occupies the region −h ≤ x2 ≤ 0. The layer and the
half-space are both homogeneous, orthotropic and in
finite sliding contact with each other. The entities related
to the layer are denoted with an over bar in the half-space
and without an over bar.

For a plane strain problem, we shall take the
components of displacement vector ui in the half-space
and in the layer as

ui = ui(x1,x2, t), ūi = ūi(x1,x2, t), (1)

u3 = ū3 ≡ 0, (i = 1,2),
∂ (.)

∂x3

≡ 0,

where x1, x2 and x3 are the spatial variables and t is the
time variable.

2.1 Wave propagation

(i) In the layer:

The stress-strain relation in the orthotropic elastic layer is
given by

σ̄11 = c̄11ū1,1 + c̄12ū2,2, σ̄22 = c̄12ū1,1 + c̄22ū2,2, (2)

σ̄12 = c̄66(ū1,2 + ū2,1),

where σ̄i j are the components of stress tensor, a comma
before an index indicates the differentiation with respect to
spatial variable xk and c̄11, c̄22, c̄12 and c̄66 are the material
constants. To make strain energy function positive definite,
the following inequalities must hold among the material
constants

c̄kk > 0, c̄11c̄22 − c̄2
12 ≥ 0, (k = 1,2,6), (3)

The equations of motion in the absence of body forces are
given, as follows,

c̄11ū1,11 + c̄66ū1,22 +(c̄12 + c̄66)ū2,12 = ρ̄ ¨̄u1, (4)
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(c̄12 + c̄66)ū1,12 + c̄66ū2,11 + c̄22ū2,22 = ρ̄ ¨̄u2. (5)

Here, ρ̄ represents the mass density of the layer material
and an over dot signifies temporal derivative.

Following Vinh et al. [1] and Vinh and Anh [2] for the
Rayleigh wave traveling along the interface between the
layer and the half-space with speed c in the positive x1−
direction, we take the displacement components satisfying
(4) and (5) as

{ū1, ū2}= {Ū1(y),Ū2(y)}exp{ιk(x1 − ct)}, (6)

where

Ū1(y) = A1ch(b̄1y)+A2sh(b̄1y)

+A3ch(b̄2y)+A4sh(b̄2y),

Ū2(y) = ι
[

ᾱ1A1sh(b̄1y)+ ᾱ1A2ch(b̄1y)
]

+ ι
[

ᾱ2A3sh(b̄2y)+ ᾱ2A4ch(b̄2y)
]

.

(7)

A1,A2,A3 and A4 are constants, k is the wavenumber and
y = kx2. Using (6) into (2), the relevant components of
stresses in the layer can be written as

{σ̄12, σ̄22}= k{Σ̄1(y), Σ̄2(y)}exp{ιk(x1 − ct)}, (8)

where

Σ̄1(y) = β̄1A1sh(b̄1y)+ β̄1A2ch(b̄1y)

+ β̄2A3sh(b̄2y)+ β̄2A4ch(b̄2y),

Σ̄2(y) = ι
[

γ̄1A1ch(b̄1y)+ γ̄1A2sh(b̄1y)
]

+ ι
[

γ̄2A3ch(b̄2y)+ γ̄2A4sh(b̄2y)
]

.

(9)

Substituting x2 = 0 into equations (7) and (9), one obtains
a system of four equations in A1,A2,A3 and A4, which on
solving yields

A1 =
γ̄2

[γ̄]
Ū1(0)+

ι

[γ̄]
Σ̄2(0),

A2 =
ιβ̄2

[ᾱ ; β̄ ]
Ū2(0)+

ᾱ2

[ᾱ; β̄ ]
Σ̄1(0),

A3 =− γ̄1

[γ̄]
Ū1(0)−

ι

[γ̄]
Σ̄2(0),

A4 =− ιβ̄1

[ᾱ; β̄ ]
Ū2(0)−

ᾱ1

[ᾱ; β̄ ]
Σ̄1(0).

(10)

where the notations are defined as

[ f ;g] = f2g1 − f1g2, and [ f ] = f2 − f1. (11)

(ii) In the half-space:
The stress-strain relations in the orthotropic elastic half-
space are given earlier by (1), but without an overbar, that
is

σ11 = c11u1,1 + c12u2,2, σ22 = c12u1,1 + c22u2,2,

σ12 = c66(u1,2 + u2,1).
(12)

Following Vinh et al. [1], the relevant displacement
components for the Rayleigh surface wave traveling with

speed c and wavenumber k in the positive x1− direction
are given as

{u1,u2}= {U1(y),U2(y)}exp{ιk(x1 − ct)}, (13)

where

U1(y) = B1e−b1y +B2e−b2y,

U2(y) = ι
(

α1B1e−b1y +α2B2e−b2y
)

.
(14)

B1 and B2 are constants. As in Vinh and Ogden [11], the
existence of Rayleigh wave will be ensured if the
following inequality holds

0 < X < min{c11,c66}. (15)

Employing (13) into (12), the stress-strain relations are
given by

{σ12,σ22}= k{Σ1(y),Σ2(y)}exp{ιk(x1 − ct)}, (16)

where

Σ1(y) = β1B1e−b1y +β2B2e−b2y,

Σ2(y) = ι
(

γ1B1e−b1y + γ2B2e−b2y
)

.
(17)

Substituting x2 = 0 in (14) and (17), we obtain

U1(0) = B1 +B2, U2(0) = ι(α1B1 +α2B2),

Σ1(0) = β1B1 +β2B2, Σ2(0) = ι(γ1B1 + γ2B2).
(18)

3 Boundary conditions and secular equation

The present study is performed by introducing a sliding
parameter ξ (0 ≤ ξ ≤ 1) such that when ξ = 0, the layer
and the half-space are in smooth contact and when ξ = 1,
the layer and the half-space are in perfect contact with
each other. While for 0 < ξ < 1, the contact between the
layer and the half-space is in finite sliding contact. The
appropriate boundary conditions will be set up on the
displacements and stresses at x2 = 0 and at the surface of
the layer x2 =−h. We shall assume that the top surface of
the layer is mechanically stress free. Mathematically,
these boundary conditions are expressed as:
At the interface x2 = 0:

σ̄12 = ξ σ12, σ̄22 = σ22,

(1− ξ )σ12+Fkξ u1 = Fkξ ū1, u2 = ū2.
(19)

F is a constant quantity having the dimension of force per
unit area.
At the boundary surface x2 =−h:

σ̄12 = σ̄22 = 0, (20)

When ξ = 1, the boundary conditions given in (19)
reduce to those given by Vinh et al. [1] for the
corresponding problem at welded contact interface.
Whereas, when ξ = 0, they reduce to those given by Vinh

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


998 N. Kaur: Rayleigh waves in orthotropic layered elastic half-space

and Anh [2] for the corresponding problem at smooth
contact interface.
Boundary conditions given in (19) can be written as

Σ̄1(0) = ξ Σ1(0), Σ̄2(0) = Σ2(0),

(1− ξ )Σ1(0)+FξU1(0) = FξŪ1(0), U2(0) = Ū2(0).
(21)

Using equations (8) and (9) in (20) gives

β̄1A1sh(ε1)− β̄1A2ch(ε1)+ β̄2A3sh(ε2)− β̄2A4ch(ε2) = 0,
(22)

γ̄1A1ch(ε1)+ γ̄1A2sh(ε1)+ γ̄2A3ch(ε2)+ γ̄2A4sh(ε2) = 0,
(23)

where ε j = b̄ jε and ε = kh.
Introducing (10) into equations (22) and (23), we have

a11Σ̄1(0)− ιa12Σ̄2(0)+ b11Ū1(0)− ιb12Ū2(0) = 0, (24)

a21Σ̄1(0)− ιa22Σ̄2(0)+ b21Ū1(0)− ιb22Ū2(0) = 0, (25)

where

a11 =
[ᾱ; β̄ chε]

[ᾱ ; β̄ ]
, a12 =− [β̄shε]

γ̄
,

a21 =
[γ̄shε; ᾱ ]

[ᾱ ; β̄ ]
, a22 =

[γ̄chε]

γ̄
,

b11 =
[β̄ shε; γ̄]

[γ̄]
, b12 =

β̄1β̄2[chε]

[ᾱ; β̄ ]
,

b21 =− γ1γ2[chε]

γ̄
, b22 =

[β̄ ; γ̄shε]

[ᾱ ; β̄ ]
.

(26)

Now using (21) into (24) and (25), we obtain

[

a11 +
b11(1− ξ )

Fξ

]

Σ1(0)− ιa12Σ2(0)+ b11U1(0)− ιb12U2(0) = 0,

(27)

[

a21 +
b21(1− ξ )

Fξ

]

Σ1(0)− ιa22Σ2(0)+ b21U1(0)− ιb22U2(0) = 0.

(28)
Using (18) into (27) and (28), we obtain two homogeneous
linear equations in two unknowns B1 and B2. For nontrivial
solution of this system of equations, the determinant of its
coefficient matrix must vanish, which yields

[

(a11a22 − a12a21)ξ +(a22b11 − a12b21)

(

1− ξ

Fξ

)]

[γ;β ]

+

[

(a11b22 − a21b12)ξ +(b11b22 − b12b21)

(

1− ξ

Fξ

)]

[α;β ]

− (a12b21 − b11a22)[γ]+ (a12b22 − a22b12)[α;γ]

+ (b11b22 − b12b21)[α]− ξ (a11b21 − a21b11)[β ] = 0,
(29)

where

[α] = (X − c11 − c66b1b2)θ ,

[γ;β ] = c66[c
2
12 − c22(c11 −X)]b1b2 +X(c11 −X)θ ,

[β ] = [α;γ], [α;β ] = c66(c11 −X)(b1 + b2)θ ,

[γ] = c22c66b1b2(b1 + b2)θ ,

[α;γ] = c66(c11 −X − c12b1b2)θ ,

θ = [b][(c12 + c66)b1b2]
−1.

Employing (26) into (29), we obtain

A1 +B1chε1chε2 +C1shε1shε2 +D1chε1shε2

+E1chε2shε1 = 0,
(30)

where the coefficients A1, B1, C1, D1 and E1 are given by

A1 =−ξ (ᾱ∗
1 β̄ ∗

2 γ̄∗2 + ᾱ∗
2 β̄ ∗

1 γ̄∗1 )
[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

+2β̄ ∗
1 β̄ ∗

2 γ̄∗1 γ̄∗2 c̄ f
(1−ξ )

ξ

[

(e1 −x)

√

S+2
√

P

]

− β̄ ∗
1 β̄ ∗

2 (γ̄
∗
1 + γ̄∗2 )

(

e1 −x−e3

√
P
)

+2β̄ ∗
1 β̄ ∗

2 γ̄∗1 γ̄∗2
(

x−e1 −
√

P
)

−ξ γ̄∗1 γ̄∗2 (ᾱ
∗
2 β̄ ∗

1 + ᾱ∗
1 β̄ ∗

2 )
(

e1 −x−e3

√
P
)

,

B1 =−A1 +ξ [γ̄∗][ᾱ∗, β̄ ∗]
(

e2
3 −e1e2 +e2x

)√
P+x(e1 −x),

C1 =−ξ
(

ᾱ∗
1 β̄ ∗

1 γ̄∗2 + ᾱ∗
2 β̄ ∗

2 γ̄∗1
)

[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

+(γ̄∗2
1 β̄ ∗2

2 + γ̄∗2
2 β̄ ∗2

1 )c̄ f
(1−ξ )

ξ

[

(e1 −x)

√

S+2
√

P

]

+(γ̄∗2
1 β̄ ∗2

2 + γ̄∗2
2 β̄ ∗2

1 )
(

x−e1 −
√

P
)

−ξ
(

γ̄∗2
2 ᾱ∗

1 β̄ ∗
1 ,+γ̄∗2

1 ᾱ∗
2 β̄ ∗

2

)

[e1 −x−e3

√
P]

− (β̄ ∗2
1 γ̄∗2 + β̄ ∗2

2 γ̄∗1 )
(

e1 −x−e3

√
P
)

,

D1 = β̄ ∗
2 γ̄∗1 [ᾱ

∗; β̄ ∗]c̄ f
(1−ξ )

ξ
[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

+
[

ξ β̄ ∗
1 γ̄∗2 (γ̄

∗
2 − γ̄∗1 )(x−e1)+ β̄ ∗

2 γ̄∗1 e2

√
P(ᾱ∗

2 β̄ ∗
1 − ᾱ∗

1 β̄ ∗
2 )
]

√

S+2
√

P,

E1 =−β̄ ∗
1 γ̄∗2 [ᾱ

∗; β̄ ∗]c̄ f
(1−ξ )

ξ
[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

+
[

ξ β̄ ∗
2 γ̄∗1 (γ̄

∗
2 − γ̄∗1 )(e1 −x)− β̄ ∗

1 γ̄∗2 e2

√
P(ᾱ∗

2 β̄ ∗
1 − ᾱ∗

1 β̄ ∗
2 )
]

√

S+2
√

P.
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Here the quantities ᾱ∗
k , β̄ ∗

k , γ̄∗k , S and P are given by

ᾱ∗
k =

b̄2
k + r2

νx− ē1

(1+ ē3)b̄k

, β̄ ∗
k = rµ(b̄k − ᾱ∗

k ),

γ̄∗k = rµ

(

ē3 +
ᾱ∗

k b̄k

ē2

)

,(k = 1,2)

S =
e2(e1 − x)+ 1− x− (e3+ 1)2

e2

,

P =
(e1 − x)(1− x)

e2

x =
X

c66
, e1 =

c11

c66
, e2 =

c22

c66
, e3 =

c12

c66
,

ē1 =
c̄11

c̄66

, ē2 =
c̄66

c̄22

, ē3 =
c̄12

c̄66

, c̄ f =
c̄66

F
,

c2 =

√

c66

ρ
, c̄2 =

√

c̄66

ρ̄
,

rµ =
c̄66

c66

, rν =
c2

c̄2

.

Note that the expressions for b̄1 and b̄2 are the same as
what stated earlier. However, but with S̄ and P̄, they are
given

S̄ = (ē1 − r2
νx)+ ē2[1− r2

νx− (ē3 + 1)2],

P̄ = ē2(ē1 − r2
νx)(1− r2

νx).

Equation (30) is the secular equation of Rayleigh waves
in an orthotropic half-space overlaid an orthotropic layer
in contact with the half-space. It can be seen that the
coefficients of this secular equation depend on the sliding
parameter ξ . Hence the speed of Rayleigh waves will
certainly depend upon the sliding parameter ξ . It is
general secular equation that can provide frequency
equation of Rayleigh wave propagation in the following
cases: (i) when the half-space and the layer are in smooth
sliding contact (ξ = 0), (ii) when the half-space and the
layer are in smooth sliding contact (ξ = 1), and (iii) when
the half-space and the layer are in finite sliding contact
(0 < ξ < 1). The following section addresses the two
extreme cases of the sliding parameter.

4 Limiting cases

Case 1: (Smooth contact interface) Substituting ξ = 0
into (30), the various coefficients of this equation take the
following form

A1 = 2β̄ ∗
1 β̄ ∗

2 γ̄∗1 γ̄∗2 (e1 −x)

√

S+2
√

P =−B1,

C1 = (β̄ ∗2
2 γ̄∗2

1 + β̄ ∗2
1 γ̄∗2

2 )(e1 −x)

√

S+2
√

P,

D1 = β̄ ∗
2 γ̄∗1 [ᾱ

∗; β̄ ∗]
[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

,

E1 =−β̄ ∗
1 γ̄∗2 [ᾱ

∗; β̄ ∗]
[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

.

(31)

With these coefficients, the equation (30) is the exact
secular equation of Rayleigh wave in an orthotropic

elastic half-space overlaid by an orthotropic layer, which
is in smooth sliding contact with the half-space. These
coefficients are exactly the same coefficients (apart from
notations) obtained in equation (35) by Vinh and Anh [1]
for the corresponding problem of smooth sliding contact
interface between the layer and the half-space.
Case 2:(Welded contact interface) Substituting ξ = 1
into (30), the various coefficients of this equation take the
following form

A1 =−
(

ᾱ∗
1 β̄ ∗

2 γ̄∗2 + ᾱ∗
2 β̄ ∗

1 γ̄∗1
)

[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

−
[

β̄ ∗
1 β̄ ∗

2 (γ̄
∗
1 + γ̄∗2 )+ γ̄∗1 γ̄∗2 (ᾱ

∗
2 β̄ ∗

1 + ᾱ∗
1 β̄ ∗

2 )
]

(

e1 −x−e3

√
P
)

+2β̄ ∗
1 β̄ ∗

2 γ̄∗1 γ̄∗2
(

x−e1 −
√

P
)

,

B1 =−A1 +[γ̄∗][ᾱ∗; β̄ ∗]
(

e2
3 −e1e2 +e2x

)√
P+x(e1 −x),

C1 =−(ᾱ∗
1 β̄ ∗

1 γ̄∗2 + ᾱ∗
2 β̄ ∗

2 γ̄∗1 )
[

{e2
3 −e2(e1 −x)}

√
P+x(e1 −x)

]

+(β̄ ∗2
2 γ̄∗2

1 + β̄ ∗2
1 γ̄∗2

2 )
(

x−e1 −
√

P
)

−
[

γ̄∗2
2 ᾱ∗

1 β̄ ∗
1 + γ̄∗2

1 ᾱ∗
2 β̄ ∗

2 + β̄ ∗2
1 γ̄∗2 + β̄ ∗2

2 γ̄∗1
]

(

e1 −x−e3

√
P
)

,

D1 =
[

β̄ ∗
1 γ̄∗2 [γ̄

∗](x−e1)+ β̄ ∗
2 γ̄∗1 e2

√
P[ᾱ∗; β̄ ∗]

]

√

S+2
√

P,

E1 =
[

β̄ ∗
2 γ̄∗1 [γ̄

∗](e1 −x)− β̄ ∗
1 γ̄∗2 e2

√
P[ᾱ∗; β̄ ∗]

]

√

S+2
√

P.

(32)

These coefficients are exactly the same as what was
obtained in equation (37) by Vinh et al. [1] for the
corresponding problem of welded contact interface
between the layer and the half-space. Note that the
symbol ᾱk should be ᾱ∗

k (k = 1,2) in equation (36) of
Vinh et al. [1].

5 Particular case

If we neglect the presence of layer, the problem reduces to
the problem of Rayleigh wave propagation in orthotropic
elastic half-space. Thus, to recover the frequency equation
of Rayleigh wave in orthotropic half-space, we shall set
h = 0 (or ε = 0) into equation (37). Then, one can obtain
the relevant frequency equation as follows:

(c66 −X)[c2
12− c22(c11 −X)]

+X
√

c22c66

√

(c11 −X)(c66 −X) = 0.
(33)

This is the same secular equation for Rayleigh wave
propagation as obtained by Vinh and Ogden [11] in the
relevant half-space and given in (2.17) apart from
notations.
Remark: Diminishing thickness of the top layer, one can
recover the frequency of Rayleigh wave propagation in an
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orthotropic half-space coated with thin layer of
orthotropic material. Thus, making h → 0 (or ε → 0) into
equation (37), one can obtain the frequency equation
containing the parameter ξ . It can be verified that on
setting either ξ = 0 or ξ = 1, the equation (37) reduces to

[c2
12 − c22(c11 −X)]

√
P+(c11 −X) = 0. (34)

This equation is the same as equation (36) obtained by
Vinh and Anh [2] or equation (34) of Vinh et al. [1] for
the corresponding problems. The question arising is why
equation (37) reduces to the same equation for two
different values of ξ . This occurs because when the
presence of the layer over the half-space is neglected, the
concept of smooth or smooth sliding contact interface
between the layer and the half-space is meaningless.
Thus, equation (37) reduces to equation (34) in either
cases of ξ .

6 Special case: Isotropic case

When both the layer and the half-space are isotropic, the
secular equation for the Rayleigh wave propagation can be
obtained from (30). For this case, the various coefficients
reduce to

c11 = c22 = λ + 2µ , c12 = λ , c66 = µ ,

c̄11 = c̄22 = λ̄ + 2µ̄, c̄12 = λ̄ , c̄66 = µ̄,

where λ and µ are the Lame’s constants. With the
coefficients given in (35), equation (30) reduces to the
frequency equation of Rayleigh wave in an isotropic
half-space overlaid with an isotropic elastic layer in finite
sliding contact. With ξ = 1 (perfect contact), it can be
verified that the relevant frequency equation is consistent
with those earlier obtained by Vinh et al. [1] for the
corresponding problem. However, when ξ = 0 (smooth
sliding contact), the frequency equation (30) reduces to
the secular equation of Rayleigh wave propagation in
isotropic half-space overlaid with isotropic layer in
smooth sliding contact, where the various coefficients can
be reduced from (31) as

A1 = 8(2− x̄)xb̄1(b̄
2
2 + 1)(b1 + b2)b

2
1rµ =−B1,

C1 = x
(b1 + b2)b

2
1

b̄2

[

8b̄2
1b̄2

2 +(b̄2
2 + 1)2(2− x̄)2

]

rµ ,

D1 = (2− x̄)x̄
(b̄2

2 + 1)b̄1

b̄2

[

{(2− x)2− 4b2
1}b1b2 + x2b2

1

]

,

E1 =−4x̄b̄2
1

[

{(2− x)2 − 4b2
1}b1b2 + x2b2

1

]

.

(35)

With the coefficients given in equation (35), equation (30)
represents the secular equation of Rayleigh wave
propagation in an isotropic half-space overlaid an
isotropic layer with smooth sliding contact. This result is
new and has not been derived hitherto.

Table I: Material Constants (dimensionless)

Symbol Symbol

(Layer) Value Value (Half-space ) Value Value

(Model-I) (Model-II) (Model-I) (Model-II)

ē1 2.2 2.5 e1 2.5 3.5

ē2 1.8 1.2 e2 3.0 2.8

ē3 0.5 0.5 e3 1.5 1.0

rµ 1.0 0.5 rν 1.2 2.8

Table II: Material Constants (×1011dynes/cm2)

Baryte Topaz

(Layer) (Half-space)

Symbol Value Symbol Value

c̄11 8.62 c11 28.1

c̄12 5.23 c12 12.13

c̄22 9.17 c22 35.03

c̄66 2.74 c66 13.14

7 Numerical Results

To study the effect of sliding parameter on the phase
speed of Rayleigh wave propagation, we have performed
numerical computations for the following specific
models. For Model-I and Model-II, the values of relevant
parameters have been borrowed from Vinh et al. [1] and
Vinh and Anh [2], respectively. For Model-III, Topaz has
been considered as orthotropic elastic half space, while
Barytes is taken as the overlaid orthotropic layer. The
relevant values of various elastic constants for Topaz and
Barytes have been taken from Love ([15], pp-164. The
corresponding density for Barytes and Topaz is taken as
4.48 gm/cm3 and 3.55 gm/cm3 respectively. With these
parametric values, the non-dimensional phase speed x has
been computed for different values of non-dimensional
wavenumber ε at different values of sliding parameter ξ .
The value ξ = 0.000000001 (→ 0) approximately
corresponds to smooth contact interface, while ξ = 1
corresponds to welded contact interface and any value of
ξ lying between 0 and 1, VIZ ξ = 0.5 corresponds to
finite sliding contact interface. The reason for choosing
ξ = 0.000000001 instead of ξ = 0 for smooth contact
interface is that the coding of the program could not allow
us to use the value ξ = 0 as the quantity ξ is present in
the denominator of all the coefficients of secular equation
(30). Moreover, the value of F is set equal to c̄66.

The results obtained from Model-I and Model-II have
been depicted in Figures 1(a) and 1(b) respectively. We
notice that the Rayleigh modes are dispersive for welded
contact (Black curve), finite sliding (Red curve) and
smooth sliding contact (Blue curve) interface. Figure 1(a)
shows that the effect of sliding parameter ξ is significant
enough on the fundamental mode of Rayleigh
propagation in the low range of ε, while in the high range
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Fig. 1: (Model-I) Variation of non-dimensional Rayleigh wave

phase speed ’x’ versus wavenumber ’ε’.
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Fig. 2: (Model-II) Variation of non-dimensional Rayleigh wave

phase speed ’x’ versus wavenumber ’ε’.

of ε, the effect of ξ is hardly seen. This shows that the
fundamental mode of Rayleigh waves with large
wavenumber is non-dispersive. However, the higher
modes are seen to be affected most by the sliding
parameter in comparison to fundamental mode. The
values of the speed of Rayleigh waves in case of smooth
sliding contact interface are less than those in case of
finite sliding contact interface, but higher than those in
case of smooth contact interface. Figure 1(b) follows
similar trend as what was observed for Figure 1(a), but
with different set of parameter values that are mentioned
in Table-I corresponding to Model-II.

Ξ=0.5Ξ=1.0 Ξ=10
-8

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

Ε

x

Fig. 3: (Model-III: Topaz half-space overlaid with Barytes layer)

Variation of phase speed ’x’ versus wavenumber ’ε’ (Zoom

version of Fundamental mode).
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Fig. 4: (Model-III: Topaz half-space overlaid with Barytes layer)

Variation of phase speed ’x’ versus wavenumber ’ε’.

For Model-III, we have computed the Rayleigh modes for
orthotropic elastic solid half-space underlying an
orthotropic elastic solid layer. Here, Barytes is taken as
layer and Topaz is taken as half-space, whose relevant
numerical values of elastic parameters are presented in
Table-II. The graphical illustration corresponding to
Model-III has been plotted through Figures 2(a) and 2(b).
In Figure 2(a), fundamental modes have been compared
to three different types of interfaces in the range
0 ≤ ε ≤ 0.6. For the range 0 ≤ ε ≤ 30, the plot of
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Fig. 5: (Model-VI: Granite half-space overlaid with Sandstone

layer) Comparison and variation of phase speed ’x’ versus

wavenumber ’ε’for perfect contact (ξ = 1) and smooth sliding

contact (ξ = 10−8).
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Fig. 6: (Model-III :) Variation of ’(ξ )’ against phase speed ’x’.

fundamental modes of Model-III has been depicted in
Figure 2(b). It is noticeable that in the small range of ε,
the fundamental mode of Rayleigh waves corresponding
to welded contact lies below that of the smooth sliding
contact and above the finite sliding contact interface. For
higher values of ε, the sliding/nonsliding contact interface
is irrelevant, the fundamental mode remains
non-dispersive.
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Fig. 7: (Model-III :) Variation of ’(ξ )’ against phase speed ’x’.
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Fig. 8: (Model-I:) Variation of ’(ξ )’ against phase speed ’x’.

Table III: Material Constants

Symbol Sandstone (Layer) Granite (Half-space)

Density (ρ) 2000 kg/m3 2700 km/m3

Young’s Modulus (E) 1.0–20 GPa 10–70 GPa

Poisson’s Ratio (ν) 0.21–0.38 0.1–0.3

Apart from the above models, another model called
Model-IV has been considered. This model illustrates the
isotropic elastic solid half-space underlying an isotropic
elastic solid layer. It can be viewed in geophysical
settings, such as Sandstone layer lying over a Granite
elastic half-space. The elastic parameters for Granite and
Sandstone are given below in Table-III.
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To compute the phase speed of Rayleigh modes, the
frequency equation (44) for welded contact interface
earlier derived by Vinh et al. [1] has been considered.
Whereas, for the smooth contact interface the frequency
equation (35) derived in the present work has been
considered. The results obtained from Model-IV are
shown in Figure 3, where a comparison between the
Rayleigh modes occurring at smooth sliding and welded
contact interfaces has been presented.

Figures 4(a)and 4(b) represent the phase speed
corresponding to Model-III, plotted against the sliding
parameter ′ξ ′ for different values of ε. For
ε = 0.5(0.5)2.5 the plots are depicted in Figure 4(a),
while for ε = 0.1(0.1)0.5, the plots are depicted in Figure
4(b). Figures 4(a) and 4(b) indicate that the mode shifts
downward with increasing value of ε in the considered
range. Figure 4(c) represents the phase speed
corresponding to Model-I, plotted against the sliding
parameter ′ξ ′, for ε = 1.0(1.0)5.0. The figure asserts that
the modes follow different trends for the opted values for
ε.

8 Conclusion

In this paper, the explicit exact secular equation for
Rayleigh wave propagating in an orthotropic half-space
overlaid by an orthotropic layer of arbitrary thickness has
been obtained. The layer and the half-space are assumed
to be in sliding contact at the interface. The sliding
contact between the layer and the half-space has been
defined through a parameter ξ (0 ≤ ξ ≤ 1). The exact and
explicit secular equation has been derived using effective
boundary condition method, which would be highly
potential for evaluating the associated material parameter
of the layer and the half-space. The two extreme values of
ξ , i.e. 0 and 1, correspond to smooth sliding contact
interface and perfectly bonded contact interface,
respectively. The obtained secular equation reduced to the
secular equations previously obtained for orthotropic
materials in smooth sliding contact and that for perfect
contact interface. Numerical computations for
investigating the exact secular equation for four different
models were presented. Equation (30) was solved to
compute and explicate the behaviors of Rayleigh modes
against wave number. The Rayleigh waves were found to
be dispersive in nature for the considered models and the
results were depicted graphically. The effect of sliding
parameter on dispersiveness of Rayleigh waves has also
been observed and shown graphically. The figure
exhibiting the behavior of Rayleigh wave propagation in
orthotropic half-space layer with orthotropic layer for
different values of ξ with real physical data
corresponding to topaz as the half-space coated with
barytes layer was presented. For isotropic case consisting
granite as a half-space and sandstone as a layer, a
comparison of behavior of Rayleigh wave speed

corresponding to smooth sliding and perfect contact was
conducted. The manuscript attempted to present general
secular equation for Rayleigh wave propagation for
various materials comprising definite sliding contact
between the layer and the half-space.
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