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Abstract: Bernstein expansion of a polynomial function has linear and quadratic rates of convergence to the original function.

In this paper, we extend a direct approximation method by the minimum and maximum Bernstein control points to multivariate

polynomials and continuous rational functions over boxes. Furthermore, we explore the rate of convergence and properties of

Bernstein basis and illustrate the advantages of this approach through its applications for positivity of nonlinear functions. To this

end, sharpness, minimization, degree elevation and convergence properties of polynomials are extended to the multivariate rational

polynomial Bernstein case. Subsequently, local and global positive values of control Bernstein points are computed. Finally, several

valid optimization bounds for the degree of Bernstein basis and the width of a box are given.
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1 Introduction

Verifying the positivity of a nonlinear function by means
of its positive coefficients is a major issue in the formal
verification of control systems [1]. Deciding whether the
coefficients of multivariate polynomial rational functions
over n−dimensional box are positive is proposed by
several authors, see [2–6]. The same subject was
addressed for particular functions in [7] and [8]. Positivity
certificates (PC) for polynomial functions in the Bernstein
basis were proposed in [8–10]. Furthermore, providing
upper and lower bounds (minimization) for the minimum
value of polynomial functions over triangles was
extensively explored, see [11–14]. The Bernstein method
can also be used for approximation of rational functions
as in [2] and [15–18]. In [19], bounds for the range might
be used to test if a polynomial f was positive over a given
box Q. Many applications can be considered using
Bernstein method for polynomials and rational functions,
such as stability of control systems, interval computation
and robotics, see [20–22]. In [3] and [14], the authors
showed a rate of convergence and minimum bounds by
subdivision of triangles; however, without investigating
PC or optimizing the minimum lower bounds over boxes.
In this paper, we extend PC to the multivariate

polynomials and rational functions given in the Bernstein
form. Subsequently, we extend properties under the
Bernstein approach to the tensorial Bernstein cases with
additional bounds for the rate of convergence. Our
contributions are defined, as follows:

• Most of the previous PC studies have focused on the
intervals and simplicial Bernstein basis, [14], [21, 22].
In this paper, we extend Bernstein PC to the
multivariate polynomials and then rational functions
over any given box.

• Moreover, we assert if the monomial form is positive
and obtain PC in the rational Bernstein form by
sharpness, raising the degree (global certificates) as
well as width of a box and minimization methods.

• We give the main sufficient conditions for existence of
a positive function of some maximum degree or width
of a box through Bernstein basis approximations.
Furthermore, we provide a bound that is independent
of the number of the given dimensions.

This paper is organized, as follows: In Section 2, we
recall the most important background of the tensorial
Bernstein expansion. In Section 3, we provide the
convergence rate between the bounds and multivariate
polynomial functions. In Section 4, we extend the
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approach with minimization to rational functions.
Bernstein PC and non-dimensional bounds of the rational
case are presented in Section 5. Section 6 is devoted to
conclusion.

2 Background

In this section, we present the tensorial Bernstein basis of
polynomials in the state space, and introduce some
important properties. First, we consider the Bernstein
approach of a polynomial function f expanded over a
general n-dimensional box Q in the real intervals set
I(R)n,

Q = [q
1
,q1]× ....× [q

n
,qn]

with
q

µ
≤ qµ , µ = 1, ...,n.

The width of Qµ is denoted by w(Qµ),

w(Qµ) := qµ − qµ .

Let ||w(Q)||∞ := max{|Q1|, ..., |Qn|} be the maximum
width of a box, where
|Qµ |= max{|q

µ
|, |qµ |, µ ∈ {1, ...,n}}.

In this paper, the considered Bernstein form is called
the tensorial Bernstein form. We define the arithmetic
operations of multiindices i = (i1, ..., in) as
component-wise. For x ∈ R

n and a multiindex j, its

monomial is x j := ∏n
µ=1 x

jµ
µ . For D = (D1, ...,Dn), we

have ∑D
j=0 := ∏n

µ=1 ∑
Dµ

jµ=0 and
(

D
i

)

:= ∏n
µ=1

(

Dµ
iµ

)

. An

n-variate polynomial function f is expressed in the
monomial form as

f (x) =
d

∑
j=0

c jx
j,

where d = (d1, ...,dn), and can be expressed in the
Bernstein basis by

f (x) =
D

∑
i=0

C
(D)
i ( f ) S

(D)
i (x), x ∈ Q. (1)

We underline that 0 is the multiindex with all
components equal to 0.

In (1), the ith Bernstein basis of degree D ≥ d is

S
(D)
i (x) =

(

D

i

)

(x− q)i(q− x)D−iw(Q)−D. (2)

Moreover, the Bernstein coefficients C
(D)
i ( f ) of degree

D over Q are given by the formula

C
(D)
i ( f ) =

i

∑
j=0

(

i
j

)

(

D
j

) s j , 0 ≤ i ≤ D, (3)

where

s j = w(Q) j
d

∑
τ= j

(

τ

j

)

cτ qτ− j, c j = 0 for d < j. (4)

Remark. The Bernstein basis polynomials are by

construction non-negative for all x ∈ Q, i.e., S
(D)
i (x) ≥ 0,

∀i = 0, ...,D.

Without loss of generality, we can consider the
domain of f to be the unit box U = [0,1]n, since any
non-empty box in R

n can be transformed thereupon by a
linear transformation. Hence, the expression of f as (1)
can be simplified with

S
(D)
i (x) =

(

D

i

)

xi(1− x)D−i, x ∈U, (5)

and

C
(D)
i ( f ) =

i

∑
j=0

(

i
j

)

(

D
j

)c j, 0 ≤ i ≤ D. (6)

We highlight two important properties of Bernstein
polynomials, namely the endpoint interpolation property

C
(D)

î
( f ) = f

(

î

D

)

, (7)

for some î, where 0 ≤ î ≤ D satisfies îµ ∈ {0,Dµ}, µ =
1, ...,n, and the enclosing property

min
0≤i≤D

C
(D)
i ( f ) ≤ f (x)≤ max

0≤i≤D
C
(D)
i ( f ),

for all x ∈U .
Denote the enclosure bound of a polynomial by the

interval

I(D)( f ,Q) := [ min
0≤i≤D

C
(D)
i ( f ), max

0≤i≤F
C
(D)
i ( f )],

and the range G(Q) := [min f (x),max f (x)]. Finally, we

define h to be the Haussdorff distance between I(D)( f ,Q)
and G(Q),

h(G(Q), I(D)( f ,Q)) =

max{| min
0≤i≤D

C
(D)
i ( f )−min f (x)|, | max

0≤i≤D
C
(D)
i ( f )−max f (x)|}.

(8)

3 Polynomial Convergence Properties

In this section, we extend convergence properties between
the range of a polynomial and its enclosure bound to the
multivariate case over a box. Furthermore, we extend the
sharpness property to multivariate polynomials in the
Bernstein basis. Let a (multivariate) Bernstein polynomial
of degree d be given over U . By application of raising the
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degree [23] to Bernstein basis, we conclude that we can
compute Bernstein coefficients of degree D as linear
convex combinations of the coefficients of degree d. It
follows that

I(D)( f ,U)⊆ I(d)( f ,U). (9)

In the following subsection, we provide a linear
convergence with respect to the maximum degree D′ of
Bernstein basis. Define

D′ = max{D1, ...,Dn}.

3.1 Linear Convergence

Linear convergence of the enclosure I(D)( f ,Q) to the range
G(Q) with respect to raising the degree of Bernstein basis
is extended from the bivariate case [12, Theorem 3] to the
multivariate case over a box in the following theorem.

Theorem 31 Let f (x) be of degree d ≤ D, the following

overestimation of the range G(Q) holds for f over Q.

Precisely,

h(G(Q), I(D)( f ,Q)) ≤
K

D′
, (10)

where

K :=
d

∑
j=0

n

∑
µ=1

[max(0, jµ − 1)]2|s j|, (11)

and the coefficients s j are given by (4).

Proof. For simplicity, we provide the proof for the
uni-variate case. The multivariate case holds by using the
same arguments and following Lemma 1 with Theorem

33, bellow. For x ∈ Q, assume that δi := f ( i
D
)−C

(D)
i ( f ),

i = 0, ...,D, and S(D)( f ,x) :=
D

∑
i=0

f ( i
D
)
(

D
i

)

xi(1 − x)D−i.

Then, we deduce that

h(G(Q), I(D)( f ,Q)) ≤ max
x∈Q

|S(D)( f ,x)− f (x)|

= max
x∈Q

∣

∣

D

∑
i=0

δiS
(D)
i (x)

∣

∣≤ max
0≤i≤D

|δi|.

Define δi( j) := ( i
D
) j −

( i
j)

(D
j)

, it follows that

δi = ∑i
j=0 s jδi( j). Since δi(0) = δi(1) = 0, then we

assume that j ≥ 2.
If 0 ≤ i < j, then we have

δi( j) = (
i

D
) j ≤ (

j− 1

D
) j

≤ (
j− 1

D
)2 ≤

( j− 1)2

D
.

If 2 ≤ j ≤ i, then

δi( j) =

(

(
i

D
) j −

i!(D− j)!

(i− j)!D!

)

=

(

(
i

D
) j −

i(i− 1)...(i− ( j− 1))

D(D− 1)...(D− ( j− 1))

)

= (
i

D
) j

(

1−
(1− 1

i
)...(1− j−1

i
)

(1− 1
D
)...(1− j−1

D
)

)

≤ (
i

D
) j

(

1− (1−
1

i
)...(1−

j− 1

i
)

)

≤ (
i

D
) j

(

1−
(

1−
j− 1

i

)i−1

)

.

Applying the mean value theorem, we obtain

1−
(

1−
j− 1

i

)i−1
≤

( j− 1)2

i
,

so
( j− 1)2

D
(

i

D
) j−1 ≤

( j− 1)2

D
,

from which the proof follows.

3.2 Quadratic Convergence

In this subsection, we provide a quadratic convergence
derived from the maximum width of a box Q.

Let

c
(Q)

j =
f j(Q)

j!
,

be the j−th Taylor coefficient of f . Hence,

f (Q) =
d

∑
j=0

c
(Q)
j (x−Q) j. (12)

Thus,

f (x) =
d

∑
j=0

c
(Q)

j

d

∑
i= j

(

i
j

)

(

D
j

)w(Q) jS
(D,Q)
i , d ≤ D,

where

S
(D,Q)
i (x) =

(

D

i

)

(x−Q)i(Q− x)D−i

w(Q)D
.

The polynomial f in (12) has Bernstein coefficients
given by

C
(D,Q)
i ( f ) =

i

∑
j=0

c
(Q)

j

(

i
j

)

(

D
j

)w(Q) j . (13)

The enclosing property over Q is given as

min
0≤i≤D

C
(D,Q)
i ( f ) ≤ f (x)≤ max

0≤i≤D
C
(D,Q)
i ( f ), for all x ∈ Q.

(14)
First, we show that the vertex condition (sharpness)

property for the multivariate case holds. To this end, we
apply the linear transformation which maps Q to the unit
box U and to use the Bernstein coefficients (6) of the
mapped polynomial.
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Proposition 32 The Bernstein enclosure bound of a

multivariate polynomial is sharp, i.e.

max
0≤i≤D

C
(D)
i ( f ) = max f (x)

if and only if

max
0≤i≤D

C
(D)
i ( f )=C

(D)

î
( f ) for some î satisfying îµ ∈{0,Dµ}.

A similar equality holds for the minimum value.

Proof. By the interpolation property, C
(D)

î
( f ) with

îµ ∈ {0,Dµ} is a value for f at a vertex of U . It follows

that max0≤i≤DC
(D)
i ( f ) is sharp if it appears at such a

Bernstein value.

Conversely, suppose that

max
0≤i≤D

C
(D)
i ( f ) = max f (x) = f (x̂), for some x̂ ∈U,

and

max
0≤i≤D

C
(D)
i ( f ) >C

(D)

î
with îµ ∈ {0,Dµ}.

If 0 < x̂µ < 1, µ = 1, ...,n, then 0 <Ciµ (x̂µ)< 1 and

f (x̂) =
D

∑
i=0

C
(D)
i ( f ) S

(D)
i (x̂)

< maxC
(D)
i ( f )

D

∑
i=0

S
(D)
i (x̂)

= maxC
(D)
i ( f ),

a contradiction. The proof of other cases is analogous.

The following lemma will be used in the proof of
quadratic convergence rate.

Lemma 1. Let δi( j,Q) := ( i
D

w(Q)) j −
( i

j)
(D

j)
w(Q) j , and

j, i = 0, ...,D. Then,

0 ≤ δi( j,Q) ≤
D− 1

D2

n

∑
µ=1

[max(0, jµ − 1)]2w(Q) j . (15)

Proof. Using the tensor product, the proof of this
lemma follows using arguments similar to Stahl,s proof
for the univariate case [24].

Theorem 33 Let B ∈ IR
n be fixed. Then, for all Q ∈ IR

n

where Q ⊆ B, and d ≤ D it holds that

h(G(Q), I(D)( f ,Q)) ≤ K′||w(Q)||2∞, (16)

where K′ is an explicit constant independent of Q.

Proof. For x ∈ Q, put S(D)( f ,x) := ∑D
i=0 f ( i

D
w(Q) +

Q)S
(D,Q)
i . Then,

S(D)( f ,x)− f (x) =
D

∑
i=0

f (
i

D
w(Q)+Q)S

(D,Q)
i −

D

∑
i=0

C
(D,Q)
i S

(D,Q)
i

=
D

∑
i=0

d

∑
j=0

c
(Q)
j (

i

D
w(Q)) jS

(D,Q)
i −

D

∑
i=0

C
(D,Q)
i S

(D,Q)
i

=
D

∑
i=0

d

∑
j=0

c
(Q)

j δi( j,Q)S
(D,Q)
i .

Let B ∈ IR
n be fixed and Q ⊆ B, with

c
(B)
j = max{|c

(Q)

j |, Q ∈ IB}. Then, it follows by Lemma

1,
(

i
j

)

= 0 if iµ0
< jµ0

, that

h(G(Q), I(D)( f ,Q))

≤
D− 1

D2

d

∑
j=0

(

n

∑
µ=1

[max(0, jµ − 1)]2
)

|c
(B)
j |w(Q) j

≤
D− 1

D2

d

∑
j=0

(

n

∑
µ=1

[max(0, jµ − 1)]2
)

|c
(B)
j |||w(Q)|| j

∞.

If ∑n
µ=1[max(0, jµ − 1)]2 6= 0, then there exist at least a

single µ0 with jµ0
≥ 0. Then, ||w(Q)||2∞ can be taken.

Evaluate the remaining degrees of ||w(Q)||∞ by the
respective degrees of ||w(B)||∞, then the extracted
constant value is independent of Q.

Remark. Let xxx
(D)
i be a grid point and the µ th component is

given by

xxx
(Dµ )
i,µ = xµ +

iµ

Dµ
(xµ − xµ), µ = 1, . . . ,n. (17)

Then, following the proof of Theorem 33, the absolute

difference | f (xxx
(D)
i ) − C

(D,Q)
i | can be optimized from

above for all i, 0 ≤ iµ ≤ Dµ , by K′||w(Q)||2∞.

4 Bernstein Form for Rational Controller

In this section, we assume that any rational (control)
function r := p/g is of the same degree d for both
polynomials p and g. Otherwise, we can elevate the
degree of Bernstein basis of either p or g, which is
necessary to ensure that their Bernstein coefficients are of
the same order d ≤ D. Let the range of r over U be
defined by R(U) := [minr(x),max r(x)] =: [r,r]. The
tensorial rational Bernstein coefficients of r of degree D

are given by

C
(D)
i (r) =

C
(D)
i (p)

C
(D)
i (g)

, 0 ≤ i ≤ D. (18)
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Without loss of generality, we assume that C
(D)
i (g) > 0,

∀ 0 ≤ i ≤ D.

By [17, Theorem 3.1], the range enclosure bound for
a rational polynomial function is given as

L(D) := minC
(D)
i (r)≤ r(x)≤ maxC

(D)
i (r) =: M(D). (19)

Denote the enclosure bound of r by

I(D)(r,U) := [L(D),M(D)].

Remark. From (19), the enclosure bound optimizes the
range of a rational function,

R(U)⊆ I(D)(r,U).

By applying (18) to (19), the following theorem
provides the sharpness property of r with respect to its
enclosure bound.

Proposition 41 [15, Proposition 3] For x ∈ R
n, it holds

that L(D) = r (M(D) = r) if and only if

L(D) (M(D)) = C
(D)

î
(r) with some î satisfying

îµ ∈ {0,Dµ}.

4.1 Minimum Bound

By the expansion of a rational function onto Bernstein
form, the minimum Bernstein coefficient optimizes the
minimum range of r over a box. Choosing D = d and
considering the unit box U as a domain of r, the enclosure
improves by subdividing U into subdomains and
computing enclosures for r over each subdomain. At
subdivision level 1 ≤ l, we can repeat bisection of

U (0,1) := U in all n coordinate directions in subboxes
U (l,ν) of edge length 2−l, ν = 1, . . . ,2nl , see [12], [25].
An n-dimensional polynomial rational function r = p/g

can be represented as

r(x) =
d

∑
i=0

C
(d,ν)
i (r) S

(d,U(l,ν))
i (x), for x ∈U (l,ν), (20)

where C
(d,ν)
i (r) denote the rational Bernstein coefficients

of r of degree d over U (l,ν) = [q(l,ν),q(l,ν)].

The method in the following remark can be used to
search for a subdomain where the minimum Bernstein
value appears.

Remark.(cut-off-test) Let U ′ be a subbox of U , and r∗ an

upper bound on r over U . If minC
(d,U ′)
i (r)> r∗, then r can

not occur in U ′. Hence, U ′ can be deleted from the set of
subboxes to be subdivided.

Remark. Assume that L(d) =C
(d)
i0

(r), for some 0 ≤ i0 ≤ d,

is attained over some U (l,ν0), 1 ≤ ν0 ≤ 2nl, and the

corresponding grid point xxx
(d,U(l,ν0))
i0

in U (l,ν0). For all

µ = 1, ...,n, define the value L∗ by

L∗ = min{r(xxx
(d,U(l,ν0))
i0

), C
(U(l,ν0))

î
(r), îµ ∈ {0,dµ}}.

Then, by the interpolation property (7) and the enclosure
bound (19), we have

min
0≤i≤d,

1≤ν≤2nl

C
(l,ν)
i (r)≤ min

x∈U
r(x)≤ L∗. (21)

The following theorem provides a quadratic
convergence with respect to subdivision.

Theorem 42 [15] For each 1 ≤ l, it holds that

min
0≤i≤l,

1≤ν≤2nd

C
(l,ν)
i (r)− r ≤ T (2−l)2

where T is an explicit constant independent of l.

Theorem 43 Let ε > 0 be a real number and satisfying

1

(2−l)2
>

T

ε
.

Then,

L∗− min
0≤i≤d,

1≤ν≤2nl

C
(l,ν)
i (r)< ε. (22)

Proof. Let xxx
(d,U(l,ν0))
i0

be a grid point in U (l,ν0) and

C
(l,ν0)
i0

(r) is the corresponding Bernstein coefficient.

Then,

L∗− min
0≤i≤d,

1≤ν≤2nl

C
(l,ν)
i (r) ≤ |r(xxx

(d,U(l,ν0))
i0

)− min
0≤i≤d,

1≤ν≤2nl

C
(l,ν)
i (r)|

= |r(xxx
(d,U(l,ν0))
i0

)−C
(l,ν0)
i0

(r)|

≤ T (2−l)2,

where the last inequality follows by Theorem 42.

Corollary 1 Given r = p/g holds with the same

assumptions of Theorem 43, it follows that r of degree D

has only positive Bernstein coefficients if r ≥ ε .

5 Positivity of Rational Functions

It may be the case where we have positive rational
functions over a box in the monomial form, but they have
non-positive Bernstein coefficients as shown in the
following example.

Example 51 Let p(x)= 7x2−5x+1 and g(x)= x2−2x+7
be in the monomial form of degree 2. It can be immediate

to find that r = p/g is positive over [−1,1]. However, note

that minC
(2)
i (r) =−1 is negative in the Bernstein form.
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It follows by Remark 2 that the (univariate) Bernstein
basis of f of degree D over [q,q]

S
(D)
i (x) =

(

D

i

)

(q− x)D−i(x− q)i

w(Q)D
, i = 0, ...,D,

is positive over (q,q). For r = p/g, the Bernstein

coefficient C
(D)
0 is the value of r at q, and C

(D)
D is the value

at q. Hence, if the minimum Bernstein coefficient of r(x)
is positive, then r satisfies the positivity certificates (PC)

over a given domain. O(D)(r) denotes the ordered list of
rational Bernstein coefficients of r over U . Furthermore,
we define PC in the Bernstein basis by PC(O(D)(r)),

PC(O(D)(r)) :

{

C
(D)
i (r)≥ 0 for all 0 ≤ i ≤ D

C
(D)

î
(r)> 0 for î, îµ ∈ {0,Dµ}.

5.1 Sharpness for Positivity

The sharpness property can be used to assert the positivity
of rational functions. In other words, if the sharpness
property in Proposition 41 holds, r satisfies PC.

Proposition 51 Let r be positive in the monomial form

over U. If

minC
(D)
i (r) =Cî(r) for some î, with îµ ∈ {0,Dµ}. Then r

satisfies PC.

Proof. Suppose that minC
(D)
i (r) = L(D). From

Proposition 41, we have L(D) = r if and only if

L(D) = C
(D)

î
(r) for some î satisfying îµ ∈ {0,Dµ}. Using

the interpolation property (7), it follows that L(D) is
positive if r(x) in the monomial form is positive.

5.2 Degree Elevation for Positivity

Here, we study PC for rational functions if the degree
d ≤ D is elevated. Specifically, we certify that r = p/g

has global PC of some degree D over U . To this end, a

linear rate of convergence for I(D)(r,U) to R(U) with
respect to raising the degree is given in the following
theorem.

Theorem 52 [15, Theorem 5] For d ≤ D is the Bernstein

degree of r(x), it holds that

h(R(U), I(D)(r,U))≤
A

D′
, (23)

where A is an explicit constant independent of the total

degree D′.

Remark. By raising the degree D′ high enough, from
Theorem 52, the minimum Bernstein bound of r

converges to the minimum value of r, and consequently

satisfies PC(O(D)(r)).

The degree of Bernstein form can be bounded in the
following proposition.

Proposition 53 Assume that r(x) of degree d is a positive

in the monomial form over U. If

D′ >
A

r
,

where A is the constant (23), then r satisfies the global

PC(O(D)(r)).

Proof. Elevate D ≥ d, so

r−L(D) ≤ r.

Then, C
(D)
i (r) are nonnegative. Therefore, Theorem 52

implies that

r−L(D) ≤
A

D′
,

and the interpolation property shows that Cî, 0≤ î ≤D, are
positive.

Example 52 Let p(x) = 5x2 −3x+1 and g(x) = x2 +1 be

of degree 2. Note that r = p/g is positive over [0,1]. From

(18), minC
(2)
i (r) =−0.5 is negative. By raising the degree

of r, the coefficients of degree 3 can be computed using (6)

and (18), minC
(3)
i (r) = 0, C

(3)
0 (r) = 1 and C

(3)
3 (r) = 1.5.

Then, r(x) has global PC at D = 3.

5.3 Positivity over a Box

Bounding the range of a rational function r can be used to
test if the coefficients of r are positive over Q. Quadratic

convergence of I(D)(r,Q) to R(Q) is given in the following
theorem.

Theorem 54 [15, Theorem 6] Assume that B is fixed, so

B ∈ I(R)n. Then, for all Q ∈ I(R)n where Q ⊆ B, and d ≤
D,

h(R(Q), I(D)(r,Q))≤ A′ ||w(Q)||2∞, (24)

where A′ is an explicit constant independent of Q.

The immediate results of Theorem 54 and the
interpolation property are given in the next corollary

Corollary 2 Given r(x) is positive in the monomial

rational form of degree d over Q. Let r be the minimum

range of r. If r is given in the Bernstein form and

||w(Q)||2∞ <
r

A′
,

then r satisfies PC(O(D)(r)) with respect to the width of a

box.
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5.4 Independent Rational Bounds for PC

A tight bound in this section is given with no relation to
the number of dimensions of r = p/g. Precisely, we extend
independent bounds of polynomials from [10] and [26] to
the rational case.

Theorem 55 [8, Theorem 3] Given f is a positive

polynomial of maximum degree d′. Let f be the minimum

of f on U. Then, for

D′ >
d′(d′− 1)

2

max |C
(d)
i ( f )|

f
, (25)

the Bernstein coefficients for f of degree D are positive.

This bound for the maximum degree D′ can be
extended to the tensorial rational Bernstein form.

Corollary 3 Let r = p/g be given in the monomial rational

form of maximum degree d′, positive over U. If

D′ >
d′(d′− 1)

2

max |C
(d)
i (p)|

p
,

then r satisfies PC(O(D)(r)).

Proof. Elevate the degree D of r high enough and

assume, in the monomial form, that
p(x)
g(x)

> 0 =: e.

Therefore, t(x) := p(x) − e · g(x) > 0 satisfies from
Theorem 55 the PC for t(x) in the Bernstein form. Thus,
if

D′ >
d′(d′− 1)

2

max |C
(d)
i (t)|

t
,

then all C
(D)
i (p) − e · C

(D)
i (g) are positive. Hence, the

Bernstein coefficients C
(D)
i (p)/C

(D)
i (g) are positive,

∀ 0 ≤ i ≤ D.

Corollary 4 Let J1 = A
minr(x) , where A is the explicit

constant (23), and let J2 = d′(d′−1)
2

max |C
(d)
i (p)|

min t(x) . Then, the

rational monomial function r = p/g satisfies PC(O(D)(r))
over U if D′ > max{J1,J2}.

6 Conclusion

In this paper, we investigated (multivariate) polynomials
and rational functions in the monomial form and
expanded them onto the Bernstein form over a box. The
minimum and maximum Bernstein control points
optimized the range of these functions over the whole
domain. We proved that these bounds would converge
linearly to the original range if the degree was raised.
Furthermore, we proved the quadratic convergence
between these bounds and their range with respect to the
maximum width of a box. Minimization of the minimum

range was also achieved with respect to subdivision of the
given domain. Subsequently, we optimized the degree of
Bernstein basis and width of a box by computed tight
bounds, and applied them to positivity certificates of
rational polynomial functions in the tensorial Bernstein
basis. Moreover, we provided important properties for the
tensorial Bernstein basis named sharpness and
monotonicity of the bound. Finally, several valid
optimization bounds for the degree of Bernstein bases and
the width of a box were given.
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